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Abstract

In sequencing by hybridization (SBH), one has to reconstruct a sequence from its � -long substrings. SBH

was proposed as an alternative to gel-based DNA sequencing approaches, but in its original form the method

is not competitive. Positional SBH (PSBH) is a recently proposed enhancement of SBH in which one has

additional information about the possible positions of each substring along the target sequence. We give a linear

time algorithm for solving PSBH when each substring has at most two possible positions. On the other hand, we

prove that the problem is NP-complete if each substring has at most three possible positions. We also show that

PSBH is NP-complete if the set of allowed positions for each substring is an interval of length � , and provide a

fast algorithm for the latter problem when � is bounded.

Keywords: Positional Sequencing by Hybridization, Complexity, Eulerian Graphs, NP-Hardness, Parame-

terized Algorithms.

1 Introduction

Sequencing by hybridization (SBH) was proposed in the late eighties as an alternative approach to gel-based

DNA sequencing [Bains and Smith, 1988, Lysov et al., 1988, Southern, 1988, Drmanac and Crkvenjakov, 1987,

Macevics, 1989]. Using DNA chips, cf. [Southern, 1996], one can in principle determine exactly which � -mers
�
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( � -tuples) appear as substrings in a target that needs sequencing, and try to infer its sequence. Practical values of

� are � to ��� .

The fundamental computational problem in SBH is the reconstruction of a sequence from its spectrum - the

list of all � -mers that are included in the sequence along with their multiplicities. In [Pevzner, 1989] it was

shown that the reconstruction problem can be solved efficiently by a reduction to finding an Eulerian path in the

following graph: Vertices correspond to � ������� -tuples, and for each � -tuple in the spectrum, an edge connects the

vertices corresponding to its � �	�
��� -long prefix and suffix.

The main handicap of SBH is ambiguity of the solution. Alternative solutions are manifested as branches in

the graph (i.e., two or more edges leaving the same vertex), and unless the number of branches is very small, there

is no good way to determine the correct sequence. Theoretical analysis and simulations [Southern et al., 1992,

Pevzner and Lipshutz, 1994, Arratia et al., 1997, Dyer et al., 1994] have shown that the average length of a

uniquely reconstructible sequence using an 8-mer chip is only about two hundred, way below a single read

length on a commercial gel-lane machine.

Due to the centrality of the sequencing problem in biotechnology and in the Human Genome Project, and

due to its mathematical elegance, SBH continues to draw a lot of attention. Many authors have suggested

ways to improve the basic method. Alternative chip designs [Bains and Smith, 1988, Khrapko et al., 1989,

Pevzner et al., 1991, Preparata et al., 1999] as well as interactive protocols [Skiena and Sundaram, 1995] were

suggested. An effective and competitive sequencing solution using SBH has yet to be demonstrated.

Recently, several authors have suggested enhancements of SBH based on adding location information to

the spectrum [Adleman, 1998, Broude et al., 1994, Hannenhalli et al., 1996, Gusfield et al., 1998]. In positional

sequencing by hybridization (PSBH), additional information is gathered concerning the position of the � -mers

in the target sequence. More precisely, for each � -mer in the spectrum its allowed positions along the target are

registered. The reduction to the Eulerian path problem still applies, but for each edge in Pevzner’s graph we

now have constraints restricting its position in the Eulerian path. Mathematically, this gives rise to the positional

Eulerian path problem (PEP): Given a directed graph with a list of allowed positions on each edge, decide if there

exists an Eulerian path in which each edge appears in one of its allowed positions. In [Hannenhalli et al., 1996]

it was shown that PEP is NP-complete, even if all the lists of allowed positions are intervals of equal length.

Note that this leaves open the complexity of PSBH in this case. They also gave a polynomial algorithm for the

problem when the length of the intervals is bounded.

In this paper we address the positional sequencing by hybridization problem in the case that the number

of allowed positions per � -mer is bounded, and the positions need not be consecutive. We give a linear time
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algorithm for solving the positional Eulerian path problem, and hence, the PSBH problem, in the case that each

edge is allowed at most two positions. On the negative side, we show that the PSBH problem is NP-complete,

even if each � -mer has at most three allowed positions and multiplicity one. We use in our hardness proof

a reduction from the PEP problem restricted to the case where each edge is allowed at most three positions.

The latter problem is shown to be NP-complete as well. We also study the complexity of PSBH in the case

that the set of allowed positions for each substring is an interval of bounded length. We strengthen the results

of [Hannenhalli et al., 1996] with respect to this problem in two ways. First, we show that PSBH is NP-complete,

even if all sets of allowed positions are � -long intervals. Second, we give a faster parameterized algorithm for

the problem, where the parameter � is an upper bound on the size of the intervals. Our algorithm requires
� ��� ����� ���
	�� time, compared to the

� ��� �
�����
� �
��	�� bound of [Hannenhalli et al., 1996].

The paper is organized as follows: In Section 2 we define the PSBH and the PEP problems. In Section 3

we describe a linear time algorithm for the PEP problem when each edge has at most two allowed positions. In

Section 4 we prove that the PEP problem is NP-complete if each edge has at most three allowed positions. In

Section 5 we show that the PSBH problem is NP-complete when each � -mer is allowed at most three positions.

Furthermore, in Section 6 we prove that the PSBH problem is NP-complete when all sets of allowed positions

are intervals of equal length. Finally, in Section 7 we give a parameterized algorithm for the latter problem.

2 Preliminaries

All graphs in this paper are finite and directed. Let ��� �������
� be a graph. We denote ����� �!� throughout.

For a vertex "!#$� , we define its in-neighbors to be the set of all vertices from which there is an edge directed

into " . We denote this set by %'&)( ��" �'�+*-,/. ��,0��" �'#/�21 . We define the in-degree of " to be � %3&)( ��" �-� . The

out-neighbors %547698���" � and out-degree are similarly defined.

Let �:�;*=< � �->9>9>?��<A@51 and let B be a function mapping each edge of � to a non-empty set of integer labels

from * �C�9>->9>D���E1 . The set B
�7< � is called the set of allowed positions of edge < . The pair ���F��B � is called a

positional graph. If for all < , � B
�7< �9��G � , then ���F��B � is called a k-positional graph. Let HI�JH � ���K�->9>K>D�DH ��� �
be a permutation of the edges in � . If H defines a (directed) path, i.e., for each �LG:MON:� , H ��M �P� ��,Q��" � and

H ��MSR � �T� ��"���U � , for some ,Q�?"V�?UW#F� , then we say that H is an Eulerian path in � .

An Eulerian path H in � is said to be compliant with the positional graph �7�X�AB � , if HZY � ��< �L#[B
��< � for

every <!#\� , that is, each edge in H occupies an allowed position. The � -positional Eulerian path problem is

defined as follows:
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Problem 1 ( � -PEP)

Instance: A � -positional graph ���F��B � .
Question: Is there an Eulerian path compliant with ���F��B � ?

Let �J� *�� ��� ��� ���O1 . The 	 -spectrum of a string 
 #��
� is the multi-set of all 	 -long substrings of 
 .

The problem of sequencing by hybridization is defined as follows:

Problem 2 (SBH)

Instance: A multi-set � of 	 -long strings.

Question: Is � the 	 -spectrum of some string 
 ?

For simplicity, we shall call the input multi-set a spectrum, even if it does not correspond to a sequence.

The SBH problem is solvable in polynomial time by a reduction to finding an Eulerian path in Pevzner’s

graph [Pevzner and Lipshutz, 1994]. More specifically, construct a graph � whose vertices correspond to

(	 � � )-long substrings of strings in � , and in which edges are directed from � ������� ��� Y � to ��� ����� ��� for each

� � ����� � � #�� . Then every solution � � ����� � @���� Y � to the SBH instance naturally corresponds to an Eulerian path

� � ����� � � Y � �9>->9>���� @
� � ����� � @���� Y � in � .

The positional SBH problem is defined as follows:

Problem 3 (PSBH)

Instance: A multi-set � of 	 -long strings. For each � #�� , a set B
��� �
�[* � �9>->9>D�=� �O�	� ��1 .

Question: Is � the 	 -spectrum of some string 
 , such that for each � #�� its position along 
 is in B
��� � ?

If the set of allowed positions for each string is of size at most � , then the corresponding problem is called

� -positional SBH, or � -PSBH. � -PSBH is linearly reducible to � -PEP in an obvious manner.

The Interval PEP and Interval PSBH problems are defined as follows:

Problem 4 (Interval PEP)

Instance: A positional graph �7�X�AB � , such that for each edge < , the set B
��< � is a sub-interval of ! �C�?�#" (i.e., an

interval in the linear order �C�9>->9>��?� ).

Question: Is there an Eulerian path compliant with ���F��B � ?

Problem 5 (Interval PSBH)

Instance: A multi-set � of 	 -long strings. For each � #�� , a set B
��� � which is a sub-interval of ! � � � � � � �$" .
Question: Is � the 	 -spectrum of some string 
 , such that for each � #�� its position along 
 is in B
��� � ?
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3 A Linear Algorithm for 2-Positional Eulerian Path

In this section we provide a linear time algorithm for solving the 2-positional Eulerian path problem. A key

element in our algorithm is a reduction to 2-SAT. Before the reduction can be applied, the input must be prepro-

cessed, discarding unrealizable edge labels (positions).

Let �7� � �������
�K��B � be the input 2-positional graph. For every �EG�� G � define � ��� � to be the set of

edges allowed at position � , i.e., � ��� ��� * < #I�+.��'#IB
��< �A1 . Let us call a position � for which � ��� � � *=< 1
and � B
��< �9��� � , a resolvable position.

The first phase of the algorithm applies the following preprocessing step:

While there exists a resolvable position � , do:

Suppose � ��� � �J*=< 1 and B
��< �T�J*	���
��� 1 .

� ��� � ��
�� ��� � ���O*=< 1 .

B
��< ��
 *	��1 .

If at any stage we discover that some set � ��� � is empty, then we output False and halt, since no edge can be

labeled � .

Lemma 1 The preprocessing step does not change the set of Eulerian paths compliant with ���X�AB � .

Proof: Let � be the set of Eulerian paths compliant with ���X�AB � before the preprocessing step. It is obvious

that the preprocessing step can only reduce � . It thus suffices to prove that if H is compliant with ���F��B � then H
remains compliant with the new ���F��B � obtained by a single iteration of the while loop.

Suppose there exists a resolvable position �!G��'GJ� such that � ��� �O� *=< 1 and B
��< �O� *	���
��� 1 . Then by

definition of � ��� � , any Eulerian path HI#�� satisfies H ��� �T�:< . Hence, H ����� ����:< and upon updating B
��< ��
 *	��1 ,

H remains compliant with the new ���F��B � .

Lemma 2 The preprocessing step can be implemented in linear time.

Proof: We maintain current B
��< � for each < , and � ��� � for each � . Initialization of � ��� � for all � can be done

in linear time. We further maintain a set � of resolvable positions, which can be initialized in linear time. The

while loop can be implemented by repeatedly handling the positions in � . Let � be an arbitrary position in � ,

where � ��� � ��*=< 1 and B
�7< � ��*	�A����� 1 . Upon handling � , we delete it from � , updating B
��< � and � ����� � in

constant time. If � � becomes resolvable, we add it to � .

In the following, ���F��B � and � refer to the positional graph obtained after the preprocessing phase.
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Lemma 3 In ���F��B � each position is allowed for at most two edges.

Proof: The preprocessing ensures that if for some position � , � � ��� �9��� � , then < # � ��� � satisfies � B
��< �9��� � .
Let
�

be the set of positions � with � � ��� �9��� � , and let � � � � � . Then there are � ��� positions � for which

� � ��� �9����� , and � � ��� edges < with � B
��< �9� � � . Thus,

� ��� �	� ��G�

8
���� � � ��� �-� ��


8
� � ��� �9� �	�'��
��;� B
��< �9� �	�'��� � ��� � ��� G�� ��� ��� � >

Hence, � ��� � and each label � �# � occurs exactly twice, implying that � � ��� �9��# * �C��� 1 for all � .

For every vertex "!#X� define ��� ��"V�
� � as the set of � -labeled edges entering " , i.e.,

��� ��"���� � �;* ��,Q�?" � . ��,0��" �Z# � ��� �A1 >

Similarly define
� , � ��"V�
� � �J* ��"V�?, �T. ��"V�?, �T# � ��� � 1 >

We say that a vertex " is fixed to position � in ���X�AB � if ��� ��"V�
� �0��� ��� � or
� , � ��"V�
�VR � �T��� ���VR ��� . In other

words, any Eulerian path compliant with ���X�AB � must have " as the ��� R ��� -st vertex in the path. Define Boolean

variables 
 8� for every <
��� such that � #:B
��< � ( � � ��� variables in total). Examine the following sets of

Boolean clauses:


 8�
for every <���� such that B
��< �T�J*	�?1 > (1)


 8����� 
 8��� for every < � ��<��9�
� such that � ��� �Z�;*=< � ��<��K1 > (2)


 8
�� � 
 8

��
for every <���� � ����� such that B
��< �T�J* � � �����K1 > (3)


 8!#"%$ &('*) 
 8 � �!+&
$ ,(' for every �P#XB
� �(-S�/.	���K�
� R � #XB
���(. �/0	��� such that . is not fixed to position ��> (4)


 8 ! 6 $ 12' for every �P#XB
� ��,Q�?" ��� ���QN � such that
� ,�� ��"����SR ���T��3 > (5)


 8 ! 6 $ 12' for every �P#XB
� ��,Q�?" ��� ��� � � such that ��� ��,Q��� � ���T��3 > (6)

Lemma 4 There is a positional Eulerian path compliant with �7�X�AB � if and only if the set of clauses (1)-(6) is

satisfiable.

Proof:

4 Suppose that a satisfying truth assignment 5 exists. Let us assign an edge < to position � if and only

if 5 � 
 8� �I� True. Clauses (1) and (2) guarantee that exactly one edge is assigned to each position.
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Clauses (1) and (3) guarantee that each edge is assigned to exactly one position, and that this position

is allowed for it.

It remains to show that the above assignment of edges to positions yields a path in � . Suppose to the

contrary that both 
 8!+"�$ &(' and 
 8 � �!+&�� $ ,�� ' are assigned True, with . �� . � . Then clauses (5) guarantee the

existence of an edge ��. ��0	�T# � ����R ��� , while clauses (6) guarantee the existence of an edge ��- � ��. � ��# � ��� � .
Therefore, . is not fixed to � , and a contradiction follows from clauses (4). Hence, 5 defines an Eulerian

path compliant with ���X�AB � .
� Suppose that H is an Eulerian path compliant with ���F��B � . A truth assignment 5 satisfying clauses (1)-(6)

can be defined as follows: Assign 5 � 
 8� �Z� True if and only if H ��� �T�:< . As H is a permutation, 5 satisfies

clauses (1)-(3). Since H is a path, 5 satisfies clauses (5) and (6). It remains to prove that 5 satisfies clauses

(4). Consider the clause 
 8!#"�$ &(' ) 
 8 � �!#&
$ ,(' in (4). Since . is not fixed to � , � ��� �5��* ��-S�/.	�K� � - � �/. � �A1 and

� ���QR ���'�+* �(. ��0	�K� � . � � ��0 � � �A1 where . � ��. � � �� . . There are two possible cases. Either H ��� � � ��-S�/.	� and

then H ���VR ���T� ��. ��0	� , or H ��� ���� �(-���.	� and then H ����R ������ �(. �/0	� . In both cases the clause is satisfied.

Lemma 5 Clauses (1)-(6) can be generated in linear time.

Proof: By definition and Lemma 3, each of the sets B
��< � and � ��� � is of size at most 2. Clauses (1)-(3) can

be trivially generated by scanning the sets B
��< � for all < and � ��� � for all � . This computation takes
� ��� �

time. To construct clauses (5) we examine each edge <E� ��,0��" � and each �!# B
��< � (there are at most � �
such pairs ��<��
� � ). If � ��� R ��� contains no edge of the form ��"V�?U � , we include the clause

�
 8! 6 $ 12' . Construction

of these clauses takes
� ��� � time. Clauses (6) are constructed in a similar manner. Finally, clauses (4) can be

constructed in linear time by examining � ��� � and � ���9R ��� for all �PN � . If we find a pair of edges ��-S�/.	�T# � ��� �
and �(. �/0	� # � ���QR ��� , such that there exist edges ��,Q�?" �5# � ��� � , " �� . and ��U ��� � # � ��� R ��� , U �� . , we

include the appropriate clause.

Theorem 6 � -PEP is solvable in linear time.

Proof: The preprocessing phase is linear by Lemma 2. By Lemma 5, the number of clauses (1)-(6) is
� ��� � .

Each exclusive OR clause in (2)-(3) and each equivalence clause in (4) can be written as two OR clauses, and

therefore, by Lemma 5 one can generate all clauses in linear time. By Lemma 4, the problem is reduced to an

instance of 2-SAT which is solvable in linear time [Apsvall et al., 1979].
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Corollary 1 � -PSBH is solvable in linear time.

All clauses (1)-(6) can take the form of � )�� , with � � � being constants or literals. Hence, the 2-SAT

instance can in fact be solved by a linear-time algorithm simpler than [Apsvall et al., 1979] as follows: Let �
be the set of all clauses, written as equivalence clauses. Construct an undirected graph � � ���P��� � such that

�:� *�
 8� � �
 8� .�< #F�L�
�Z#XB
��< �A1�� *�� �	�
1 . Include ��� � � � and � ��'� �� � in � whenever � )�� is a clause in � .

It is easily seen that the 2-SAT instance is satisfiable if and only if no connected component of � contains two

vertices corresponding to a variable (or a constant) and its negation.

4 3-Positional Eulerian Path is NP-Complete

In this section we prove that the 3-PEP problem is NP-complete by reduction from 3-SAT.

Theorem 7 The 	 -PEP problem is NP-complete.

Proof: Membership in NP is trivial. We prove NP-hardness by reduction from 3-SAT. We first provide a

sketch of the construction. For each occurrence of a literal in the formula, a special vertex is introduced. Special

vertices corresponding to the same literal are connected serially to form a literal path. Two literal paths of a

variable and its negation are connected in parallel to form a variable subgraph. For each clause in the formula,

the corresponding special vertices are connected by three edges to form a clause triangle. Finally, for each

special vertex we introduce a triangle incident on it, called its bypass triangle (see Figure 1).

Negated occurrences

Positive occurrences


�� 
�

��

Figure 1: A schematic sketch of the main elements in our construction. The figure includes three variable

subgraphs. The first variable, whose subgraph is the rightmost (#1), has three positive occurrences (top) and two

negated occurrences (bottom), etc. One of the clause triangles is also drawn, using dashed line.
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The sets of allowed positions are chosen so that they force every compliant Eulerian path to visit the literal

paths one by one. A compliant Eulerian path corresponds to a satisfying truth assignment. When a special

vertex is visited, either its clause triangle, or its bypass triangle are traversed. Traversing the clause triangle

while passing through a certain literal’s path, corresponds to this literal satisfying the clause. Eventually, we

enable visiting all unvisited bypass triangles.

We now give the construction in detail. Let � be a 3-CNF formula with % variables � � �9>9>->������ , and
�

clauses � � �9>9>->�� ��� . We assume, w.l.o.g., that each clause contains three distinct variables, and that all �
%
literals occur in � . Denote 
 & �;*�� & 1 �F* � & 1 . For a literal �/##
 & , let -
	 denote the number of its occurrences

in � . For �LG�� G -
	 define � �
� � � ��� ��� � . Thus, � � ���K�->9>K>D��� �(-
	 � is an enumeration of � ’s occurrences in

� . For a clause � ������� ����� � � introducing the � -th ( � � ��� � � ) occurrence of � ( � � ��� � � , respectively), we write

� ��� ��� ����� � �
� � ����� � � �
� � � � . We shall construct a directed graph � � �����A� � and a map B from � to integer

sets of size at most 	 , such that � is satisfiable if and only if ���X�AB � has a compliant Eulerian path.

We introduce the following vertices:

� , & ���, & for each variable � & , � G MZG/% .

� " 	 !�� ' �
�" 	 !�� ' for each occurrence � �
� � of the literal � . " 	 !�� ' is called special. For �\# 
 & , we shall denote

, & also by " 	 !! �' , and �, & also by " 	 !#"#" � �
' .

� � � � , � for each clause � , , � G�0OG �
, identifying �,$� as � � �  � and , � as � � � � � � � .

We introduce the following edges:

� For each clause � �%� �
� ����� � �
� � �&��� � � �
� � � � , a clause triangle consisting of the edges * ��" 	 !�� ' ��" 	 � !�� � ' � ,
��" 	 � !�� � ' , " 	 � � !�� � � ' � , ��" 	 � � !�� � � ' ��" 	 !�� ' � 1 .

� For each occurrence � ��� � of a literal � in a clause � , a bypass triangle with the edges * ��" 	 !�� ' , �" 	 !�� ' � ,
�'�" 	 !�� ' � � � � ��� , � � � � � ��" 	 !�� ' �A1 .

� A literal path � 	 - ��( ��� � : * ��, & �?" 	 ! � ' � , ��" 	 ! � ' �?" 	 ! � ' � , ��" 	 ! � ' , " 	 ! � ' � , >9>->�� ��" 	 !+")" ' ���, & �A1 , for each literal � #

 & .

� For M � �C�9>->9>D��% , back edges ���, &���, & � . For M � �C�9>->9>D��% � � , forward edges ���, & �?, & � � � .

� A finishing path * �*�, � � � � � � ��� , � � � � � �K� � � � � ��� , � � � � � �K� � � � � ���K�9>->9>D� � � � �+� �K��, � �A1 .
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Figure 2 shows an example of the constructed graph. The motivation for this construction is the following:

Using the position sets, we intend to force the literal paths of the different variables to be traversed in the natural

order, where the only degree of freedom is switching the order between � 	 - ��( ��� & � and � 	 - � ( � �
& � . This switch

will correspond to a truth assignment for the variable �
& , by assigning True to the literal in 
 & whose � 	 - � ( was

visited first. After visiting a special vertex along this first path, we either visit its clause triangle, or its bypass

triangle. Along the other path (the one of the literal assigned False) only a bypass triangle can be visited.

Eventually, the finishing path is traversed. Its vertices are visited in the natural order. Upon visiting a vertex

� � � � , we visit only one bypass triangle - the yet unvisited triangle among those corresponding to the literals of

clause � . The truth assignment will satisfy that literal.

We now describe the sets B
��< � . We use the following notation:

.?& � - ��� R�- ��� � ���$M0� �C�9>->9>��A%�>
� & �

&
���
�
. � � ��� MQ� � �->9>9>?��% � �  � � ��>

� -��9< 	 � � -��9< 	 � � -��9< & � � � & Y � R � ��M � ��� � �	� �\# 
 &T>
� ��� < ���*- � < 	 � � -��9< & R � - 	 R�� � �	� �\# 
 & >

� �(-�, �9< � -��9< , � � -��9< �
� � R � 0 � G�0OG � >

� For each forward edge < � �*�, & Y � �?, & � , �FG:MOG % , we set B
��< � � * � - �-< & 1 . This is intended to ensure

that the literal paths are traversed in a constrained order: � 	 - � ( ��� & � and � 	 - � ( � � & � are allocated a time

interval ! � -��9< & R �C� � - �-<A& � � � � " of length � .?&SR 	 , during which they must be traversed.

� For each back edge < � �*�, &���, & � we set B
��< �Z�J*�� ���D< � �*- �D< ��� � � ��� < � � - � < ��� 1 . This enables either visiting

� 	 - ��( ��� & � first, then < and � 	 - � ( � �
& � ; or visiting � 	 - � ( � �
& � first, followed by < and � 	 - � ( ���
& � .
� For each literal path edge <L� ��" 	 !�� ' ��" 	 !�� � �

' � , with � # 
 & , �$G �IG - 	 , we set B
��< � �+* � - �-<A&QR
�*� R �C� � ��� < ���*- � < 	 R �*� R ��1 . Consecutive edges in a literal path are thus positioned 4 time units apart

(allowing a triangle in-between).

� For each clause �+� � � �
� � �&� � � �
���	� � � � �
� � � with the clause triangle *=< � � ��" 	 � !�� � ' ��" 	 � !�� � ' � , <�� �
��" 	 � !�� � ' �?" 	�
 !�� 
 ' � , < � � ��" 	�
 !�� 
 ' ��" 	 � !�� � ' �A1 such that � 	 # 
 &
� , define � 	 � � - �-<A&
��R �*� 	 �	� and set

B
��< � � � *	� � �
� � R �C�
� �0R��
1 �
B
��<��	� � *	���9�
� � R �C�
� � R��
1 �
B
��< � � � *	� � �
� �TR �C�
� � R��
1 >
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Bypass triangle

Finishing path

Clause triangle

Back edges

Forward edges

Literal path

���������
	

�� ���


����� ���

������
 �

���

� �������
	

��� � ���
	

� �

Legend:

����� � �

������
����	

������� 
 	

���
����

Figure 2: An example of the construction for the formula ��� � � � � � � � ��� ��� � � � � � � � � . All large grey (black)

vertices are actually the same vertex � � � � � ( � � � � � ).

(See Figure 3.) This means that the edges of a clause triangle must be visited consecutively during the

traversal of � 	 - � ( ��� 	 � , for some � . Furthermore, note that this may happen only if � 	 - � ( � � 	 � is traversed

immediately after time � -��9< 	 � , that is, only if it precedes � 	 - ��( � � 	 � .
3

21

� ��!#"
��$�"%
'& 
 $�" � & ��( ��
 !)"%
#$
" � & 
 $�"
�*& ��(

� �
!)" � $�"
�+& 
 $
"%
'& ��(

Figure 3: A clause triangle, with vertex " 	 � !�� � ' denoted by � . The allowed positions for each edge appear in

braces.

� For each finishing edge <I� � � � � , � � � � � , � � ��� , �[G 0 G �
, we set B
��< �X� *�� �(-
, �9< � - �-< , 1 , thus

determining the order in which the vertices of the finishing path are traversed, allowing a time slot

! � �(-
, �-< � - �-< , R �C� � �(-�, �9< � -��9< , � � � � " of length 3, for the bypass triangle visited while traversing

� � � , � .
� For a bypass triangle with the edges * < � ��" 	 !�� ' � �" 	 !�� ' � , < �T� �'�" 	 !�� ' � � � � , � � , < � �T� � � � � , � ��" 	 !�� ' � 1 , we
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set:

B
�7< � � * � -��9< 	 R �*� �	� ��� ���D< � �*- �D< 	 R �*� �	� � � �(-�, �9< � -��9< , �	� 1 �
B
��< � � � * � -��9< 	 R �*� � �C��� ���D< � �*- �D<)	 R �*� � �C� � �(-�, �9< � -��9< , � �
1 �
B
��< � � � � * � -��9< 	 R �*� ��� ���D< � �*- �D< 	 R �*� ��� �(-
, �-< � - �-< , � 	
1 >

This means that the bypass triangle edges must be visited consecutively, and there are three possible time

slots for that:

– While traversing � 	 - � ( ��� � , before traversing � 	 - � ( � � � .
– While traversing � 	 - � ( ��� � , after traversing � 	 - � ( � � � .
– While traversing � � � , � along the finishing path.

The reduction is obviously polynomial. We now prove validity of the construction.

4 Suppose that � is satisfiable. We will show that ���F��B � is a ”yes” instance of the 3-positional Eulerian

path problem. Let � be a truth assignment satisfying � . For each clause � , , let � , �
� , � be a specific literal

occurrence satisfying � , .
We describe an Eulerian path H in � . Set H � � �(-�, �9< � -��9< , ��� � � � � , �K� � � � , � � ��� , for 0 � � �9>9>->D� � . Set

H � � - �-<A& �2� ���, & Y � �?, & � , for M � � �->9>9>?��% . For all M , if � ���
& � � True, set H ��� ��� < ���*- � < � � � � �*�, & �?, & � .
Otherwise, set H ��� ��� < � � - � < ��� �T� ���, & �?, & � .

For each literal �/# 
 & :

– If � ��� �T� True: For each � G � G - 	 , set H � � -��9< &CR$�*�PR ���T� ��" 	 !�� ' �?" 	 !�� � �
' � (see Figure 4, top).

True: ����� ��� &	��
 & 
 ����� ��� &���
�
 �

False: ��� "
�#��� � "
��� &���
 & 
 � � � �#	
��� "
�#��� � "
��� &���
�
 �

Figure 4: Either a clause triangle or a bypass triangle must be traversed upon visiting a special vertex " 	 !�� ' , due

to time constraints. Edge positions in case � is assigned True (False) are shown at the top (bottom).

We further distinguish between two cases:
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� If � �
� �T� � , �
� , � for the clause � , � � �
� ����� � �
� � ����� � � �
� � � � in which � �
� � occurs, then set H
to visit the edges of the clause triangle of � , as follows:

H � � -��9< 	 R �*� � � � � ��" 	 !�� ' �?" 	 � !�� � ' � �
H � � -��9< 	 R �*� � ��� � ��" 	 � !���� ' ��" 	 � � !���� � ' ���

H � � -��9< 	 R �*� � � ��" 	 � �#!�� � � ' ��" 	 !�� ' ��>

Furthermore, in this case we set H to visit the edges of the bypass triangle of � �
� � as follows:

H � � �(-�, �9< � -��9< , � 	 � � � � � � , �K��" 	 !�� ' � �
H � � �(-�, �9< � -��9< , � � � � ��" 	 !�� ' � �" 	 !�� ' ���
H � � �(-�, �9< � -��9< , � � � � �'�" 	 !�� ' � � � � , ����>

� Otherwise, � �
� ���� � , �
� , � for the clause � , in which � ��� � occurs. In this case we set H to visit

the edges of the bypass triangle of � �
� � as follows:

H � � - �-< 	 R �*� ��� � � ��" 	 !�� ' �
�" 	 !�� ' ���
H � � - �-< 	 R �*� � ��� � �'�" 	 !�� ' � � � � , � ���

H � � -��9< 	 R �*� � � � � � � , �K��" 	 !�� ' ��>

– If � ��� �T� False: For each � G � G�- 	 , set H ��� ��� < � � - � < 	 R �*�VR ��� � ��" 	 !�� ' ��" 	 !�� � �
' � . Furthermore,

in this case we set H to visit the edges of the bypass triangle of � �
� � as follows (see Figure 4, bottom):

H ��� ��� < � � - � < 	 R �*� �	� � � ��" 	 !�� ' �
�" 	 !�� ' ���
H ��� ��� < � � - � < 	 R �*� � ��� � �'�" 	 !�� ' � � � � , � ���

H � � ���D< � �*- �D< 	 R �*� � � � � � � , �K��" 	 !�� ' � >

It is easy to see that H is a permutation of the edges, and if H � � �T� ��,Q�?" � , H � � R ���T� ��,�����"�� � then " �[,�� .
Hence, H is an Eulerian path. Furthermore, by our construction H is compliant with ���F��B � , proving that

���X�AB � is a ”yes” instance.

� Let H be an Eulerian path compliant with ���X�AB � . We shall construct an assignment � satisfying � . In

order to determine � ��� & � we consider the edge H � � -��9< & R ��� . By construction, H � � - �-< & R ���T� ��, & ��" 	 ! � ' �
for ��# 
 & . We therefore set � ��� �X� True (and of course � � � �E� False). We observe that for any
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other edge < � � ��" 	 !�� ' �?" 	 !�� � �
' � along � 	 - ��( ��� � , we must have H � � - �-<A& R/� � R ���'� < � if and only if

� � � �T� True.

We now prove that � satisfies each clause � , � � � �
� � �&� � � ��� � � � � � �
� � � of � . Consider the clause

triangle of � , : *=< � � ��" 	 � !�� � ' ��" 	 � !�� � ' � , < � � ��" 	 � !�� � ' ��" 	�
 !�� 
 ' � , < � � ��" 	 
 !�� 
 ' �?" 	 � !�� � ' �A1 . Denote � 	 �
� -��9< 	 � R/� � 	 � � . By the positional constraints, there exists some �XG � G 	 for which H ��� 	 �'� < 	 .

The edge < preceding < 	 in H must have � 	 � �'� � -��9< 	 ��R � ��� 	 � ��� R � #XB
��< � . The only such edge

entering " 	 � !�� � ' is the literal path edge ��" 	 � !�� � Y �
' ��" 	 � !�� � ' � . Therefore, � ��� 	 �T� True, satisfying � , .

This proves that � is satisfiable if and only if ���X�AB � is a ”yes” instance, completing the proof of Theorem 7.

Observe that the graph constructed in the proof of Theorem 7 has in-degree and out-degree bounded by � ,

giving rise to the following result:

Corollary 2 3-PEP is NP-complete, even when restricted to graphs with in-degree and out-degree bounded by

4 .

Henceforth, we call this restricted problem (3,4)-PEP. We comment that a slight modification of the con-

struction results in a graph whose in-degree and out-degree are bounded by 2.

5 3-Positional SBH is NP-Complete

We show in this section that the problem of sequencing by hybridization with at most 3 positions per spectrum

element is NP-complete, even if each element in the spectrum is unique. The proof is by reduction from (3,4)-

PEP.

Theorem 8 The 3-PSBH problem is NP-complete, even if all spectrum elements are of multiplicity one.

Proof: It is easy to see that the problem is in NP. We reduce (3,4)-PEP to 3-PSBH. Let �7� � �������
�A��B � be an

instance of (3,4)-PEP. Let �L� � ���
���Z� �!� �ZR�� , 	X� 	 � R � and 0O� 	 R � . In order to construct an instance of

3-PSBH we first encode the edges and vertices of � . In the following, we denote string concatenation by � . We

let � � � ’A’, � � � ’C’, � � � ’G’ and � � � ’T’.

To each "F#$� we assign a distinct string in � 	 Y � . We add a leading ’T’ symbol and a trailing ’T’ symbol

to this string, and call the resulting � -long string the name of " . We also assign the string ’A. . . A’ of length �
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to encode a space. Each vertex is encoded by a 	 � -long string containing two copies of its name separated by

a space. We denote the encoding of " by < � ��" � . Each edge ��,0��" � # � is encoded by two symbols chosen as

follows: Let %54�698���, ��� *9" � �9>->9>��?"�� 1 , where "!�J"-& for some M , and ��G[� . Let %3& ( ��" � � *9, � �->9>->���,��91 , where

,$� , � for some � , and �FG:� . Then ��,0��" � is encoded by �
&�� � � , and we denote its encoding by < � ��,Q�?" � . We

call � % ��,Q��" � �[< � ��, �9� < � ��,Q��" �9� < � ��" � the representative string of ��,0��" � (see Figure 5).

A A ATT

The name of �

TT

The name of �

unique sequence

space

unique sequence

����� ����'� � � ���'� � �

Figure 5: The encoding of vertices and edges into representative strings.

We now construct a 3-PSBH instance, i.e., a spectrum � with position constraints � , as follows: For every

edge ��,Q�?" � #I� the set � contains all 	 -long substrings of the ��	 -long string � % ��,0��" � ( 0 substrings in total).

Let � & ! 6 $ 1 ' denote the M -th such substring, M � � �9>9>->D� 	 . Let B
����,0��" ���'��*	� � �9>9>->���� � 1 , �$G � G 	 , be the set

of allowed positions for ��,Q�?" � . Then we set � ��� & ! 6 $ 1 ' �O� *�0 ��� � � ��� R\M��->9>9>D�/0 ��� � � ���0R M?1 for all M (note that

substring positions are numbered starting at zero).

Lemma 9 Each of the 	 -long substrings in � is unique.

Proof: Suppose that � & ! 6 $ 12' � �
� !	��$ 
 ' . By construction, either � & ! 6 $ 12' contains a complete space, or begins with

a (possibly empty) suffix of a space. The position of the space in the first case, or the length of the suffix in the

second case, uniquely determines M , which implies that MP� � . Furthermore, � & ! 6 $ 12' contains a name of a vertex

plus a unique symbol identifying an edge entering or leaving that vertex, implying that ��,0��" �Q� ��U � � � .

We now show validity of the reduction.

4 Suppose that H � ��"  ��" � �K� ��" � ��"�� � �9>9>->D� ��"-@ Y � �?"9@ � is a solution of the (3,4)-PEP instance. We claim that


 � < � ��"  �-� < � ��"  ��" � �-� < � ��" � �9� < � ��" � ��"�� �9� < � ��"�� �9�K>->9>�� < � ��"-@ Y � �9� < � ��"-@ Y � ��"-@ �9� < � ��"9@ � is a solution of

the 3-PSBH instance. By Lemma 9, each 	 -long substring of 
 occurs exactly once in 
 . As H visits all

edges in � , we have that � is the 	 -spectrum of 
 . The fact that position constraints are satisfied follows

directly from the construction.
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� Let 
 be a solution of the 3-PSBH instance. Consider the � substrings of length 	 , whose starting

positions in 
 are integer multiples of 0 . By the position constraints, the � -th such substring is an encoding

of some vertex " � , followed by a symbol �
& � . Denote by U � the M � -th out-neighbor of " � . We prove that

H � ��" � �?U � �K�9>->9> , ��"9@ ��U�@ � is an Eulerian path compliant with ���F��B � .

Since each string in the 	 -spectrum of 
 is unique, H is a permutation of the edges in � . To prove that

H is a path in � we have to show that U � � " � � � for � � �C�->9>->���� � � . Let � be the 	 -long substring

of 
 starting at position � � � ��� 00R�� � . We observe that � must begin with the last � symbols of < � ��" � � ,
which compose �*-
�X< ��" � � , followed by � & � , some symbol, and the first � � � � symbols of < � ��" � � � � ,
which contain �*-��X< ��" ��� � � . The uniqueness of �*-
�X< ��" � � , �*-��X< ��" � � � � and the index M � among the out-

neighbors of " � , implies that U � � " � � � . The claim now follows, since position constraints are trivially

satisfied by H .

6 Interval PSBH is NP-Complete

In this section we study the complexity of Interval PSBH. In [Hannenhalli et al., 1996] it was proved that the

related Interval PEP problem is NP-complete, but the complexity of Interval PSBH was left open. We show

below that this problem is NP-complete.

Theorem 10 The Interval PSBH problem is NP-complete, even if all sets of allowed positions are intervals of

equal length.

Proof: The Interval PEP problem is NP-complete, even if each vertex has in-degree and out-degree at most

two, and the sets of allowed positions are intervals of equal length [Hannenhalli et al., 1996]. We reduce this

restriction of Interval PEP to Interval PSBH, analogously to the reduction used in the proof of Theorem 8. In

the following, we use the same notation as in the proof of Theorem 8.

Let ����� �����A�
�K��B � be an instance of Interval PEP, with each vertex having in-degree and out-degree at

most two. Recall, that � % ��,0��" � denotes a � 	 -long representative string of an edge ��,0��" �O#$� (see Figure 5).

We now construct an Interval PSBH instance ���T��B�� � . The spectrum � is the same as in Theorem 8, containing

the 	 -long substrings � & ! 6 $ 12' of � % ��,Q��" � , for each ��,Q��" � #X� . Note, that this construction of � requires that the

in-degree and out-degree of each vertex in � will be at most four, a condition which is satisfied by the above
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restriction of Interval PEP. The set of allowed positions for each substring is defined as follows. Let ��,Q�?" � be

an edge of � , and suppose that B
����,0��" ���Q� ! � � 4 � ��� � &�� � " . Then, for all M , we set the interval of allowed positions

B � ��� & ! 6 $ 12' � to ! 0 ��� � 4 � � ��� R M���0 ��� � &�� � � ��� R M " .
It is enough to show that if 
 solves the Interval PSBH instance � �T��B�� � , then there is an Eulerian path

compliant with ���F��B � . The proof of the other direction follows immediately from that of Theorem 8.

We first claim that for any ��,Q��" �$# � the string � % ��,Q�?" � occurs exactly once along 
 . Let � be a

� 	 � ��� -long substring of � % ��,0��" � , which is neither a prefix, nor a suffix of � % ��,0��" � . By construction of

� % ��,Q�?" � , either � contains the name of , and an identification of the outgoing edge to " , or � contains the name

of " and an identification of the incoming edge from , . Therefore, similarly to the proof of Lemma 9, we have

that � occurs only once in � % ��,Q�?" � , and does not occur in any other representative string. As �
 ! 6 $ 12' �9>->9>D� � � ! 6 $ 1 '

are the 	 -long substrings of � % ��,0��" � , there exists a unique index M #[*�� �9>9>->�� 	 � ��1 such that � is a suffix

of � & ! 6 $ 12' and a prefix of � & � �! 6 $ 1 ' . Since 
 is a valid solution to the Interval PSBH instance, it contains exactly

one copy 
 ��>->9> 
 � ��� Y � of � & ! 6 $ 12' . Since M'N 	 , the positional constraints B � assure that 
 is not terminated at


 � � � Y � . Hence, 
 � � � >9>9> 
 � � � is a spectrum element whose prefix is � , and therefore, must be a copy of � & � �! 6 $ 12' .
We conclude, that for each �!G[MOG 	 � � , the occurrence of � & ! 6 $ 1 ' is immediately followed by the occurrence

of � & � �! 6 $ 12' . The claim follows.

Let � % ��, � ��" � �K�9>->9>D��� % ��, @ ��"-@ � be the order of occurrence of representative strings along 
 . For every

� G � N � , � % ��, � ��" � � and � % ��, � � � �?" � � � � do not share any 	 -long substring (see Lemma 9). Consequently,

their overlap along 
 is of length at most 	 � � . But � 
 � � � � 	 R � �SR 	 � � , implying that for all � G � N � ,

� % ��, � ��" � � and � % ��, � � � ��" � � � � have a � 	 � ��� -long overlap. Hence, < � ��" � � � < � ��, � � � � and " � � , � � � .

Therefore, denoting "  �[, � , the string 
 has the form


 �:< � ��"  �9� < � ��"  ��" � �9� < � ��" � �9�K>->9>�� < � ��"9@ Y � �9� < � ��"-@ Y � �?"-@ �9� < � ��"9@ �

It is easy to see, that H � ��"  �?" � �K�->9>9>D� ��"-@ Y � �?"-@ � is an Eulerian path compliant with ���F��B � .

7 A Parameterized Algorithm for Interval PSBH

Hannenhalli et al. have given a linear-time algorithm to solve the parametric version of the Interval PEP (and

hence, the Interval PSBH) problem, where the parameter � is an upper bound on the sizes of the intervals

of allowed positions for each edge [Hannenhalli et al., 1996]. We provide a faster algorithm for the problem,

17



which uses the same basic idea as in [Hannenhalli et al., 1996], and runs in
� ��� ����� �?��	�� time, improving upon

the
� ��� � � ���
� �
� 	 � time bound of [Hannenhalli et al., 1996].

For simplicity, we shall describe our algorithm when all allowed intervals have length exactly � . Let ��� �
�����A� � ��B � be the input positional graph, where B
�7< ��� ! �

�
� �
�

R � � � " for every < #E� . For every � G/M G\�
define M �������S*9M � � R �
�	��1 and M ��� �	� *-MVR �
� �C���E1 . For every � G\MZG/� define 
A& � *=<5#X� . �

�
� M�1

and �5& �J*=<'#F� . MZ#FB
��< �A1 . That is, � & is the set of edges for which position M is allowed.

The naive approach to the problem would be to try all possible Eulerian paths in � , and test for each one

whether it is compliant with B . However, the number of Eulerian paths in � might be exponential (in � ).

Instead, we iteratively construct for every M � �C�9>->9>D���/R � , a list 5 & of pairs ��"�� � � , such that " is the last vertex

of some path of length M � � , and � is the list of edges that may extend the path from " . The size of each list 5 &
can be at most exponential in � , and this leads to the improved bound. The algorithm is summarized in Figure 6.

Compute 
A& for all M .
If for some M , � 
A&���� � then return False.

Initialize 5 � 
 * ��"���
 � ��.
�
U � ��"V�?U � #�
 � 1 , 5 @�� � 
 3 .
Initialize � � 
�
 � , M 
 � .
While 5 & ���3 and MZG � do:

M�
 MSR � .
�5& 
��5& Y � ��
A& ��
A& Y � .

If � �5&������ � then return False.

5 & 
 * ��U ��� ��
 & �O* ��"V�?U � 1��0. ��"�� � �T# 5 & Y � � ��"���U �T#�� � ����
 & Y � �[* ��"���U �A1�1 .

If 5 @�� � �� 3 then return True.

Else return False.

Figure 6: An algorithm for Interval PEP.

The following lemma, which is mentioned in [Hannenhalli et al., 1996], is crucial for the analysis of the

algorithm. The subsequent theorem proves the correctness of the algorithm.

Lemma 11 If ���F��B � has a compliant Eulerian path, then � �5&��
G�� �
� � for all M .

Proof: Let H be an Eulerian path compliant with ���F��B � . Then �5& � *KH ��M �K�->9>->��DH � M �A1 for all M .

Theorem 12 The algorithm returns True if and only if there is an Eulerian path compliant with ���F��B � .
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Proof: Let us call a pair ��U ��� ��M -valid if there exists a path *9U � �9>->9>��?U�& �[U51 in � such that:

1. � #XB
� ��U � ��U � � � ��� for all � G � N M .

2. �$� �5& �O* ��U � ��U � �K�->9>9>D� ��U�& Y � �?U�& �A1 .

3. � & Y �� �
� 

� �[* ��U � �?U ���K�->9>->�� ��U & Y � �?U�& �A1 .

Intuitively, (1) ensures that all edges in the path occupy allowed positions, (2) ensures that the next ( M -th) edge

is both allowed for position M , and was not used already, and finally, (3) ensures that any edge that had to be

used before position M , was indeed used. We first prove by induction on M , that 5 & is the set of all M -valid pairs.

The case M � � is obvious. Suppose the claim holds for M � � . By the induction hypothesis, 5P& Y � is the set of

all ��M �
� � -valid pairs. By definition, 5 & � * ��U ��� � 
A& �5* ��"V�?U � 1�� . ��"�� � �'#�5 & Y � � ��"���U �O# � � � � 
A& Y � �
* ��"���U �A1�1 . The claim follows.

If H is an Eulerian path compliant with ���X�AB � , then H ��M � # �5& for all � G M�G � , and therefore, ��"���3 � is an

��� R � � -valid pair for the vertex " at which H ends. On the other hand, if ��"���3 � is an ��� R � � -valid pair, then

there exists a path in � which traverses all edges and satisfies the positional constraints.

We now analyze the complexity of the algorithm. Define � & ��* � . �
U � ��U � � � # 5 &D1 and � & ��*-"/.
� �T� ��"V��� �T# 5 & 1 .

Lemma 13 For each M there exists a constant � & , such that all sets � #�� & satisfy � �O� � �A& .

Proof: The proof is by induction on M . Correctness for M � � is obvious. Suppose the claim holds for M � � .
Then by definition, for each � #�� & , there exists a set � � #�� & Y � such that � �O�T� � � � ��R � 
A&�� � � . Hence,

� & � � & Y � R:� 
 & � � � , which proves the claim for M .

Corollary 3 For all M , ��� & � � � � �
��
	 � .

Proof: Every set � #�� & satisfies � � � & . Hence, using Lemma 11 ��� & �
G	��
 � � 

 ��� G	� � 	 Y �	 � � � � �
��
	 � .

Theorem 14 The algorithm can be implemented in
� ��� � �?� � � 	 � time and

� ��� R � ��� � � 	 � space.

Proof: The initialization of 
A& for all M takes
� ��� � time and space, since � @& � � � 
A&?� � � . We sort all edges in �

according to their first allowed position, breaking ties arbitrarily, and renumber the edges < � �9>->9>��A<A@ in this order.

This takes
� ��� � time using bucket sort. We also compute in

� ��� � time the numbers � ��<A& � � M � � ��� � �
� ��� ,
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for each <A& # � . Hereafter, we assume that � � &?� N � � for all M , as otherwise the algorithm aborts returning a

negative answer. A key property of the numbering � � � � is that for each � & , if <
��< � # �5& then � �7< � �� � ��< � � .
This follows since the edges in �5& must appear contiguously in the order < � �->9>-> �A<A@ , and � �5& � G � �
� � .

We use the following data structure to keep �5& and 5 & :

� Let " � �->9>9>?��"-( be an arbitrary ordering � of the vertices in � . �5& is kept as a linked list of edges, sorted

lexicographically such that ��� � ������� N ��� � �����	� if and only if ��������� , or ��� ����� and � � ��� � .

� For each "L#X� & we keep a linked list � & ��" � containing all sets � #�� & such that ��"�� � � # 5 & . We represent

a subset � � � & �J*=< &
� �9>->9>D��< &


 � � 
 1 by a �(� � � ��� -bit vector 0 & ��� � , whose � ��< &� � -th bit is one if and only if

< &� #�� .

The initialization of 5 � requires constructing
� � � � linked lists, each containing the �(� � � ��� -bit vector

0 � ��� � � . This takes
� � � � � time. The computation (and sorting) of �5& � � from � & takes

� � � ����� � � time.

The construction of 5P& � � from 5P& can be done as follows: We consider the edges in �5& one at a time

according to their lexicographic order. Recall, that these edges are sorted so that edges ending at the same vertex

occur consecutively. Thus, for each U #E� & � � we can consecutively traverse all edges in � & that enter U . Note,

that we do not know � & � � exactly, but only use the simple fact that � & � � �[*-U . �
"�� ��"���U �T# � & 1 .

We now construct the linked lists �0& � � ��U � for every U #/� & � � . For each ��"V�?U �5# �5& and for each � ��#
�0&���" � we add �$� � ��� 
A& � � � * ��"���U �A1 to � & � � ��U � if and only if ��"V�?U � #�� � and � � � 
A& �[* ��"V�?U � 1 . In order to

add � , we compute the bit vector 0?& � � ��� � in
� � � � time. To prevent generating duplicate pairs ��U ��� � in �0& � � ��U � ,

we keep an auxiliary � � 	 Y � -bit vector � which is initialized to zero in the beginning of the algorithm (in
� ��� 	 �

time). We add 0?& � � ��� � to �0& � � ��U � if and only if � , ��� � !
	�' � � , and in this case we also set � , ��� � !
	�' � � . When

we finish constructing � & � � ��U � , we traverse its elements and reset the corresponding bits in � to zero. If no set

was added to any linked list during the iteration, we declare that the graph has no compliant Eulerian path and

halt. Since � �0&���" �9� � � ����� &�� � for each " # � & , 5 & � � can be computed in
� ��� �5&�� � ��� &�� � � � time. By Lemma 11

and Corollary 3, this amounts to
� � � �?� � � 	 � time.

We conclude that the time complexity of the algorithm is
� ��� R � � RJ� 	 RJ� � ����� �!R � � �?� � � 	 �$�

� ��� ����� ���
	�� . To save space, we reuse the storage area of 5P& and �5& once 5 & � � and � & � � have been computed.

Hence, the space complexity of the algorithm is
� ��� R � ��� � � 	 � .

We note, that the algorithm can be modified to generate also one (or all) of the compliant Eulerian paths,

e.g., by keeping a record of the last edge(s) leading to each M -valid pair. We also note, that our algorithm can be
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extended to handle the PEP problem even when the sets of allowed positions for each edge need only be subsets

of fixed-length intervals.
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