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Abstract

Recently, Raz [Raz01] established exponential lower bounds on the
size of resolution proofs of the weak pigeonhole principle. We give
another proof of this result which leads to better numerical bounds.
Specifically, we show that every resolution proof of PH P]" must have
size exp (€2(n/ log m)1/2) which implies an exp (Q(n1/3)) bound when
the number of pigeons m is arbitrary.

As a step toward extending this bound to the functional version of
PHP]" (in which one pigeon may not split between several holes), we
introduce one intermediate version (in the form of a PH P-oriented
calculus) which, roughly speaking, allows arbitrary “monotone rea-
soning” about the location of an individual pigeon. For this version
we prove an exp (€(n/ log? m)1/2) lower bound (exp (Q(n1/4)) for ar-
bitrary m).

1. Introduction

Propositional proof complexity is an area of study that has seen a rapid
development over the last decade. It plays as important a role in the theory
of feasible proofs as the role played by the complexity of Boolean circuits
in the theory of efficient computations. Propositional proof complexity is
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in a sense complementary to the (non-uniform) computational complexity;
moreover, there exist extremely rich and productive relations between the
two areas (see e.g. [Raz96, BP98)).

Much of the research in proof complexity is centered around the resolution
proof system that was introduced in [Bla37] and further developed in [DP60,
Rob65]. In fact, it was for a subsystem of this system (nowadays called
reqular Resolution) that Tseitin proved the first non-trivial lower bounds in
his seminal paper of more than 30 years ago [Tse68|.

Despite its apparent (and deluding) simplicity, the first exponential lower
bounds for general Resolution were proven only in 1985 by Haken [Hak85].
These bounds were achieved for the pigeonhole principle PH P! (which
asserts that (n + 1) pigeons cannot sit in n holes so that every pigeon is
alone in its hole), and they were followed by many other strong results on
the complexity of resolution proofs (see e.g. [Urq87, CS88, BT88, BP96a,
Juk97)).

Ben-Sasson and Wigderson [BW99] established a very general trade-off
between the minimal width wg(7) and the minimal size Sg(7) of resolution
proofs for any tautology 7. Their inequality (strengthening a previous result
for Polynomial Calculus from [CEI96]) says that

wr(r) < O (\/n(f) og SR(T)) , (1)

where n(7) is the number of variables. It is much easier to bound the width
wg(T) than the size Sg(7) and, remarkably, Ben-Sasson and Wigderson point-
ed out that (apparently) all lower bounds on Sg(7) known at that time can
be viewed as lower bounds on wr(7) followed by applying the inequality (1)
(although, sometimes with some extra work).

This “width method” seemed to fail bitterly for tautologies 7 with a
huge number of variables n(7). There are two prominent examples of such
tautologies. The first example is the weak pigeonhole principle PH P", where
the word “weak” refers to the fact that the number of pigeons m may be much
larger (potentially infinite) than the number of holes n. The second example
is made by the tautologies expressing the hardness of the Nisan-Wigderson
generator for propositional proof systems [ABRWO00].

Accordingly, other methods were developed for handling the weak pigeon-
hole principle PHP!™ (as long as the resolution size is concerned, the case of
generator tautologies is still completely open). [RWY97] proved exponential



lower bounds for a subsystem of regular resolution (so-called rectangular cal-
culus), [PRO0] proved such bounds for unrestricted regular resolution, and
recently Raz [Raz01] completely solved the case of general resolution proofs
for the version of the weak pigeonhole principle in which the axioms forbid-
ding pigeons to split between several holes are missing.

The main goal of this paper is to present another (and, probably, simpler)
proof of the latter result; we also get a stronger bound exp (Q(nl/ 3)) (The-
orem 2.2 below; the bound resulting from [Raz01] would be something like
exp (Q(nl/ 10))). This is already quite close to the best known upper bound

exp(O(nlogn)'/?) [BP96b]. What is, however, more important is that we
essentially show how to match some basic ideas from [RWY97, PR00, Raz01]
with the width-bounding argument from [BW99]. More specifically, our
main technical tool (Lemma 3.1, essentially borrowed from [RWY97, PROO,
Raz01]) allows us to prove some analogue of the relation (1) (Lemma 3.3,
Claim 4.2) even in certain situations when the number of variables is huge.

Neither the methods from [Raz01] nor our methods apply directly to the
functional version F'PH P;" in which one pigeon may not split between several
holes. This version of the weak pigeonhole principle appears to be at least as
natural and traditional as the “ordinary” one, and some more reasons to be
interested in it can be found in the concluding section 5. As a step toward
the goal of getting resolution lower bounds for FFPHP", we introduce an
intermediate version (in terms of the so-called monotone functional calculus)
which essentially allows arbitrary “monotone reasoning” about the locations
of any individual pigeon. For this stronger version we prove a slightly weaker
bound exp <Q(n1/4)ﬁ (Theorem 2.7).

The paper is organized as follows. In Section 2 we give necessary defini-
tions and preliminaries. In Section 3 we prove our “base result” (which is

an exp (Q(nl/ 4)) lower bound for the ordinary version): the proof is simpler

than for the better bound exp (Q(nl/ 4)), but nonetheless illustrates all basic
ideas of our approach. The two improvements of this result already men-
tioned above (Theorems 2.2, 2.7) are presented in Section 4. The paper is
concluded with a brief discussion in Section 5 that also includes several open
problems.



2. Preliminaries

Let x be a Boolean variable, i.e. a variable that ranges over the set {0,1}. A
literal of z is either z (denoted sometimes as ') or Z (denoted sometimes as
1%). A clause is a disjunction of literals. The empty clause will be denoted by
0. A clause is positive if it contains only positive literals z'. For two clauses
C',C, let C' < C mean that every literal appearing in C’ also appears in C.

A CNF is a conjunction of pairwise different clauses. For a CNF 7, let
n(7) be the overall number of distinct variables appearing in it.

An assignment to the wvariables {xi1,...,z,} is a mapping «
{z1,...,2z,} — {0,1}. A restriction of these variables is a mapping p :
{z1,... ,2,} — {0,1,x}. The restriction of a Boolean function f(z1,... ,x,)

by p, denoted by f|, is the function obtained from f by setting the value of
each = € p 1({0,1}) to p(z), and leaving each = € p () as a variable.

One of the simplest and the most widely studied propositional proof sys-
tems is Resolution which operates with clauses and has one rule of inference
called resolution rule:

C()\/LL' C’1Va_:
C

A resolution refutation of a CNF 7 is a resolution proof of the empty clause
0 from the clauses appearing in 7. The size Sg(P) of a resolution proof P is
the overall number of clauses in it. For an unsatisfiable CNF 7, Sg(7) is the
minimal size of its resolution refutation.

For n, a non-negative integer let [n] def {1,2,...,n}, and for £ < n let

()t < {1 C [n]]||1] = £}.

(CyV C; < O).

Definition 2.1 (-PHP!") is the unsatisfiable CNF in the variables
{zij | € [m], j € [n]} that is the conjunction of the following clauses:

Q. \/ 2y (i € [m));

j=1

def ,_ _ . . .
Qirizy = (Ting V Tigg) (11 # 42 € [m], j € [n]).
The first main result of this paper is the following
Theorem 2.2 Sg(—PHP!") > exp (Q(n/ log m)1/2).
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Corollary 2.3 For every m, Sg(~PHP™) > exp (Q(nl/?’)).

Proof of Corollary 2.3 from Theorem 2.2. Let Sg(—-PHP) = S.
Since a resolution proof of size S can use at most S axioms from (-PHP!"),
and these axioms involve at most 2S pigeons i € [m], we also have

Sr(-~PHP*) < 8.

Now the required bound S > exp (Q(nl/ 3)) immediately follows from Theo-
rem 2.2.m

The following normal form for resolution refutations of the pigeonhole
principle was proposed in [BP96b] (they used for it the longer name “mono-
tone resolution proof system” which we abbreviate to “monotone calculus”).

For I C [m], J C [n] let
SR AVAVEY

i€l jeJ
(these are exactly “rectangular clauses” from [RWY97]), and we will also
naturally abbreviate X7 (;; to X7; and Xy 7 to Xij.

Definition 2.4 ([BP96b]) Fix m > n. The monotone calculus operates
with positive clauses in the variables {z;; | ¢ € [m], j € [n]}, and has one
inference rule which is the following monotone rule:

C() \/XIO,j Cl VXIlyj
C

(C’OVC&SC; I()ﬂIl:@). (2)

A monotone calculus refutation of a set of positive clauses A is a monotone
calculus proof of 0 from A, and the size S(P) of a monotone calculus proof
is the overall number of clauses in it.

Proposition 2.5 ([BP96b]) Sgr(—=PHP") coincides, up to a polynomial,
with the minimal possible size of a monotone calculus refutation of the set of
azioms {Q1,Q2, ... ,Qm} from Definition 2.1.

In the rest of this section we will be discussing some modifications of the
base principle PH P". The reader interested only in the original formulation
may skip this and proceed directly to Section 3.



The (negation of the) functional pigeonhole principle (-FPHP)") is ob-
tained from (—PHP[") by adding new clauses

Qiguis = (Zijy V Tijy) (i € [m]; j1 # ja € [n)).

[BW99] also introduced the extended pigeonhole principle (-EPH P!") by al-
lowing abbreviations for arbitrary Boolean functions that depend on a single
pigeon i € [m]. EPHP™ is obviously reducible to PHP" (in the sense that
every resolution proof of PHP" leads to a resolution proof of EPH P]" that
is roughly of the same size). The reduction from FPHP™ to EPHP!" may
seem somewhat counter-intuitive but it is actually not hard (see e.g. Section
5). Thus, EPHP!™ is intermediate between PHP™ and FPHP™.

The following monotone version of EPHP)", formulated as a natural
extension of the monotone calculus, is in turn intermediate between PH P
and EPHP".

Let F;"" be the set of monotone Boolean functions in the auxiliary vari-
ables {z1,...,2,}, and let Varsmon(m, n) & {zis | f € F>}. Denote by p,
the restriction of the variables {z1, ... ,z,} that assigns z; to 0 and leaves all
other variables unassigned. For I C [m] and j € [n], let p;; be the restriction
of the variables Varsyon(m, n) defined by

def | Tip;(); 1 €T
PIj { zip, i ¢ 1.

p1; also naturally acts on clauses in the variables Varsmon(m, n).

Definition 2.6 The monotone functional calculus operates with positive
clauses in the variables Varsyon(m,n) and has the following two inference

rules:
CoVaif V...V, CiVZig V...VZ,

Cvxi,hl\/---vxi,ht
(CovCi <Ciiem]; (ivV...Vf)N(@V...Vgs) <(hiV...Vh))

and
Cy o

C
(p15,(Co) V pr,,;(C1) < C for some Iy, I such that Iy N I; =@ and j € [n]).

As always, a refutation in this calculus is a proof of 0, and the size is measured
by the number of clauses.



Our second main result is this:

Theorem 2.7 FEvery monotone functional calculus  refutation  of
{Q1, .., Qm} must have size exp (Q(n/ ]()g2 m)1/2),

By the same trick as before, we get

Corollary 2.8 For every m, every monotone functional calculus refutation
of {Q1,-..,Qm} must have size exp (Q(n1/4))_

Remark 1 The choice of inference rules for the monotone functional calcu-
lus may seem somewhat arbitrary. It is worth noting in this respect that
Theorem 2.7 holds for the semantical version as well. Namely, we may allow
arbitrary binary rules that are sound w.r.t. the set of assignments satisfying
the axioms Qil,h;j'

3. Proof of the base result

We begin with the bound Sgr(—=PHP™) > exp (Q(n1/4)). It is weaker than
both Corollary 2.3 and Corollary 2.8, but the proof is simpler and already
illustrates all the major ideas.

Fix m > n. Given Proposition 2.5, we may assume that we have a
monotone calculus refutation P of {Q, ... , @}, and we should lower bound
its size S(P). For analyzing the refutation P we are going to allow stronger
axioms of the form X;; (note that Q; = X;,)). X, will be allowed as an
axiom if |J| exceeds a certain threshold d; depending on the pigeon i. In this
way we will be able to simplify the refutation P by “filtering out” of it all
clauses C containing at least one such axiom. Our first task (Section 3.1) will
be to show that if the thresholds d; are chosen cleverly, then in every clause
C passing this filter, almost all pigeons pass it safely, i.e. their degree in C
is well below the corresponding threshold d;. This part in a sense replaces
the inequality (1), and it is inspired by the papers [RWY97, PR00, Raz01].

The pseudo-width of a clause C will be defined as the number of pigeons
that narrowly pass the filter (dy, ... ,dn). The second task (Section 3.2) will
be to get lower bounds on the pseudo-width, and this will be accomplished
by an easy adaptation of the standard argument from [BW99].



3.1. Pseudo-width and its reduction

For a positive clause C in the variables {z;; |7 € [m], j € [n]}, let
Ji(C) ¥ {j € [n]| z; occurs in C'}

and
4;(C) ¥ 1J;(0)).

Suppose that we are given a vector d = (dy, ... ,d,) of elements from [n]
(“pigeon filter”), and let 6 be another parameter. We let

I.5(C) ¥ {i e [m]| di(C) > d; — 6} (3)

and we define the pseudo-width wqs(C) of a clause C as

wa(C) € [145(C)) .

The pseudo-width was(P) of a monotone calculus refutation P is naturally
defined as max {wq4(C)|C € P}.

Our main tool for reducing the pseudo-width of a monotone calculus
proof is the following “pigeon filter” lemma which is in fact a rather general
combinatorial statement (in particular, we will use it in the same form in
Section 4).

Lemma 3.1 Suppose that we are given S integer vectors r*,r2, ..., r° of

v

length m each: r¥ = (r¥,...,r%). Then there exists an integer vector

(r1y... ,Tm) Such that r; < |logom]| for all i € [m] and for every v € [S]
at least one of the following two events happen:

1. Fi e m](ry <r;);

2. [{iem]|ry <ri+1}| < O(logS).

We postpone the proof and first show how to use this lemma for reducing
the pseudo-width.

Definition 3.2 Given a vector d = (dy, ... ,dpn), a d-aziom is an arbitrary
clause of the form X;;, where |J| > d;.



Lemma 3.3 Suppose that there exists a monotone calculus refutation P of
{Q1,...,Qum} that has size < S. Then there exists an integer vector d =
(dy,...,dy) with n/(2logom) < d; < n/2 for all i € [m] and a monotone
calculus refutation P' of a set of d-axioms which also has size < S and such
that*

Wd,n/(21ogy m) (PI) < O(log S)

Proof of Lemma 3.3 from Lemma 3.1. Fix a monotone calculus refu-
tation P of {Q1,...,Qm} with S(P) < S. Let § & n/(2log,m), and for

C € P define ©) /
ri(C) = { LMJ + 1 otherwise.

We apply Lemma 3.1 to the vectors {T(C) (1 (C),... ,rm(C)) | C € P},

and let (r1,...,7y,) satisfy the conclusion of that lemma.

Set d; & |5 —07i] +1 (so that d; is the minimal integer with the property
L%{MJ + 1 <r;). Note that since r; < |log, m], we have d; > 6.

Consider now an arbitrary C' € P. If for the vector 7(C) the first case
in Lemma 3.1 takes place, then [MJ + 1 < r; for some ¢ € [m]. This
implies d;(C) > d;; thus, C contains a subclause which is a d-axiom. We
may replace C' by this axiom which will reduce its pseudo-width wgs(C) to
1.

In the second case, {z € [m]\ [MJ < rz}‘ < O(logS). Since
i € 1;5(C) implies the inequality [M%QJ < r;, for all such C we have
wg5(C) < O(log S).

This completes the proof of Lemma 3.3m

Proof of Lemma 3.1. This lemma is proved by an easy probabilistic
argument. For r = (ry,...,7y,), let W(r) def Y, 27" It suffices to prove

the existence of a vector r such that for every v € [S]| we have:

W(rY)>2InS = Fie[m|(r) <r); (4)
W(rY)<2InS = |[{iem]|r <ri+1}| <O(logS9). (5)

!The condition d; < n/2 will not be needed in Section 3. Also, we will not need there
the upper bound on the size of the whole refutation P’, only its consequence that P’
actually employs at most S d-axioms. Both these conditions, however, will be essential
for the improvements in Section 4.



Let ¢t & |log,m| — 1 and R be the distribution on [t] given by p, def

277 (1 < r <t—1), pp & 21t Pick independent random variables

T1,-..,Tm according to this distribution. Let us check that for any indi-
vidual v € [S] the related condition (4), (5) is satisfied with high probability.
Case 1. W(r”) > 2InS.
Note that Z 27" < m - 271 < 2, therefore Z 27" >2InS — 2. On the
Ty >t ry <t
other hand, for every i with r¥ < ¢ we have P[r? < ;] > 27" and these
events are independent. Therefore,

PVi € [m](r} >m)] < [] (1 — 2—%”) < exp (— > 2—%”) <O0(S7?).
Ty <t Ty <t
Case 2. W(r") <2InS.
In this case P[r? < r; + 1] < 22777 and, therefore,

E[|{i€|m]|r’ <ri+1}[] <AW (") <8InS.

Since these events are independent, we may apply Chernoff’s bound and con-
clude that P[|{i € [m]|r? <7; +1}| > ClogS] < S72 for any sufficiently
large constant C.

So, for every individual v € [S] the probability that the related prop-
erty (4), (5) fails is at most O(S?). Therefore, for at least one choice of
T1,..., Ty they will be satisfied for all v € [S]. This completes the proof of
Lemma 3.1.m

3.2. Lower bounds on pseudo-width

Lemma 3.4 Let (di,... ,d,) be an integer vector, § be any parameter such
that § < d; for all i € [m] and A be an arbitrary set of d-axioms. Then every
monotone calculus refutation P of A must satisfy was(P) > Q(6%/(nlog|Al)).
Proof. Let wy o ﬁjw,
show that every refutation of A must have pseudo-width > wy.
For an assignment a to the variables {z;; |7 € [m], j € [n]}, let

Ji(a) ¥ {j|ay =1}.

Set £ % |6/(4wp)], and let D be the set of those assignments a for which:

where € is a sufficiently small constant. We will
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1. a satisfies all axioms Q;, iy, 1.€., Ji, (@) N J;,(a) = 0 for iy # 4s;
2. |Ji(a)| < £ for all i € [m].

For a set of positive clauses I' and another positive clause C, let I' = C
mean that every assignment a € D satisfying all clauses from I' also satisfies

C.

Fix now any proof P from the set of axioms A with wgs(P) < wy. Our
goal is to show that 0 ¢ P. Let A; consist of those axioms in A that have
the form X7, Ar def User Ai and Ac def A, s(c) (recall that I5(C) is given
by (3)). For C' € P we will show by induction on the number of steps in the
derivation of C that A¢ = C.

Base case C € A is obvious since C € Ac.

Inductive step. Ag, = Cy, Ac, = Ci and C is obtained from Cy, Cy
by a single application of the rule (2).
Since the rule (2) is sound on D, Ay, ;(co)urss(ci) = C, and also

114,5(Co) U I45(C1)| < 2wp.

Let us choose the minimal I C [m] such that A; &= C; then still |I| < 2wy.
We will show that in fact I C I;5(C), and this will obviously imply A¢ | C.

Assume the contrary, and pick up an arbitrary ig € I\ 1;4(C). Since [ is
minimal, Ap g} # C, and let a € D satisfy all clauses in A\ i, and falsify
C. Re-assigning in a all values a;; with ¢ & I\ {40} to 0 will preserve these
properties (remember that C' is positive!), therefore we may assume from the
beginning that a;; = 0 for all i ¢ I\ {io} and j € [n].

Let now

Jo% U Jila)u (0 (6)
ieI\{io}

and J; ¥ [n] \ Jo. Note that
|J1| > n— 2wyl + (diy — 0)) >n—di, +9/2. (7)

Jp is the set of holes “permissible” for the pigeon ¢: if we change a by picking
an arbitrary £-subset J of J; and letting a;, ; = 1 for j € J, then we will get
yet another assignment from D which will still falsify C. We want to show
that J can be chosen in such a way that this assignment will also satisfy

11



all axioms in A;,, and for that purpose we pick J uniformly and at random
among all £-subsets of J;. Let a be the (random) assignment resulting from
a by re-assigning all a;,; (j € J) to 1.

Take an arbitrary A € A;,. Since |J;,(4)| > d;,, by (7) we have

| Jio (A) V1| = 6/2. (8)
Now we can apply Chernoff’s bound and conclude that
P[A(a) = 1] =P[J;,(A)NJT #0] > 1 —exp(=Q(6£/n)) > 1— | A2

if the constant € in the definition of wy is small enough.

Hence, for at least one choice of @ all axioms in A;, will be satisfied. This
contradicts our assumption A; = C, and this contradiction completes the
inductive step.

We have shown that A¢ = C for every C' € P. Finally, since § < d; for
all ¢ € [m], we have I;;5(0) = 0 and Ay = 0. Therfore, Ay % 0, 0 ¢ P and
Lemma 3.4 is completely proved.m

Combining Lemma 3.4 with Lemma 3.3 (and observing that, as always,
we may assume m < 25), we get

Theorem 3.5 For every m, Sg(—PHP]") > exp (Q(n1/4))_

4. Improvements

In this section we prove Theorems 2.2 and 2.7. Each of these two improve-
ments is achieved by letting one more ingredient of the basic proof from
the previous section to depend on the candidate refutation P. To get the
numerical improvement (Theorem 2.2), we will pre-process the set of legiti-
mate assignments D according to the content of P. In proving lower bounds
for the monotone functional calculus (Theorem 2.7), the ranking function
r;(C) (cf. the proof of Lemma 3.3) will depend on P and will be constructed
dynamically.

For Theorem 2.2 we will show improved lower bounds on the pseudo-
width wgs(P). Now we do need the bound d; < n/2 promised in Lemma
3.3. Also, we need to know an upper bound on the size of the whole proof
(as opposed to Lemma 3.4 for which we only needed a bound on the number
of d-axioms).

12



Lemma 4.1 Let (dy,... ,dy) be an integer vector and § be a parameter such

that 6 < d; < n/2 for all i € [m|. Then for every monotone calculus refuta-

tion P of any set of d-azioms we have the trade-off was(P)-log S(P) > Q(9).
ef €d

Proof. Fix an arbitrary proof P from a set of d-axioms A. Set wq i Tog S(P)”

where € is a sufficiently small constant; we will show that wgs(P) > wy.

Let £ % | 305 )- Analyzing the proof of Lemma 3.4, we see that it almost
goes through with this new value of £. The only problem is that now the set
of forbidden holes U;cp g5} Ji(@) in (6) may have as many as 2(n) elements.

Thus, if we are unlucky, it may have a huge intersection with the set

T E Jiy(A)\ ;s (C) 9)

for some C € P, iy & 1,5(C), A € A,,, or even completely cover it. All this
means that we do not have any useful analogue of (8).

We take care of this by pre-processing the set D. Namely, we are go-
ing to remove from it in advance all trouble-making assignments that may
eventually contribute to the unpleasant situation described above.

Formally, let us call any set of the form (9), where C' € P, iy & 1,5(C)
and A € A;, a difference set. Notice for the record that every difference set
has size at least §, and altogether there are at most S(P)? of them.

Next, let us call J C [n] good if its intersection with every difference set
J' has size at most |J'|/(4wg). We will call an assignment a € D good if J;(a)
is good for all i € [m)].

Now, we define the main relation I' = C as the semantical implication
with respect to good assignments a € D, and literally repeat the argument
from the proof of Lemma 3.4 up to and including the definition (6) of Jy, J;.
We no longer have (7) but, using the premise d; < n/2, we can at least
observe a weaker bound

In 2n
. — > — —d; > —.
+ (d; 6)) > —di> (10)

iz - ((2“’0) ' 207;0

The most crucial observation for our improvement is that the bound (8)
still holds for any A € A;,, although for a different reason. Indeed, J;,(A) N
J1 = J'\ Uienjio} Ji(a), where J' is given by (9). Since every one of J;(a)
is good and J' is a difference set, |J' N J;i(a)] < |J'|/(4wp). This implies
|Jig(A) N J1| > |J']/2 > §/2, i.e., exactly (8).
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Similarly to the proof of Lemma 3.4, we now chose J as a random /-subset
of J; and denote by a the resulting variation of the original assignment a.
Given (8), the same calculation based on Chernoff’s bound as before shows
that with probability 1 — o(1) a satisfies all axioms in A;,. In order to
complete the proof in our case, we, however, still need to make sure that
there exists a good J with this property.

For this purpose notice that for any fixed difference set J' we have

PlJ N J| > |J'|/(4wo)] =PI N (J' N J1)[ > [T/ (4wo)]

By (10),

J R el _ 1]
| J1] ~ (2n/5) ~ 8wo’

Therefore, we may apply Chernoff’s bound and conclude that (as long as the
constant € in the definition of wy is small enough), P[|J N J'| > |J'|/(4wp)] <
S(pP)~3.

Thus, J is good with probability 1 —o(1). Fixing it in such a way that it
is at the same time good and satisfies all axioms from A4;,, we complete the
inductive step in the proof of A¢ = C.

Finally, good assignments do exist (see the above argument or simply
take the identically zero assignment). Therefore, Ay }~= 0, and this completes
the proof of Lemma 4.1.m

Theorem 2.2 now straightforwardly follows from Lemma 3.3 and Lemma
4.1.

Finally we prove Theorem 2.7. For a positive clause C in the vari-
ables Varsmen(m,n) denote by f;(C) the following monotone function in
the variables zi,...,z,: fi(C) o V{f|zif € C}. The vector f(C) o
(f1(C), ..., fm(C)) bears all the information about C necessary for our proof.
Its overall strategy once more naturally generalizes the proof of Theorem
3.5. Namely, we are going to construct an appropriate ranking function
rk : " — N, form (similarly to the proof of Lemma 3.3) the family of
integer vectors { (rk(f1(C)),... ,tk(fin(C)))|C € P}, apply to this family
Lemma 3.1, define the corresponding notion of pseudo-width, cross our fin-
gers and hope that the proof of Lemma 3.4 also goes through. And indeed
there exists a particular combinatorial choice of the ranking function rk for
which this plain strategy gives a lower bound exp (Q (nl/ 6)3. We, however,
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skip this and proceed immediately to the better bound exp (Q (nl/ 4)) whose
proof does involve some new and potentially useful ideas.

Fix a monotone functional calculus refutation P of {Q1,...,Q,} that
has size S, and let

M {£(C)|C e PYUTD, ] 2y}

j=1

Our ranking function rk will essentially depend on {9t;}. It is also natu-
ral (although, not absolutely necessary) to let it depend on i, so that we
will actually have individual ranking functions rky, ... , rk,, for every pigeon.
Moreover, rk; will be defined only on 9);.

Instead of trying to guess in advance what might be good ranking func-
tions, we will take the opposite approach and define them as “universal”
(w.r.t. My, ..., M,,) functions, by which we roughly mean “the best possi-
ble ranking function for which the inductive step in the proof of Lemma 3.4
goes through”. After that it will turn out that these universal functions in
fact possess a clean combinatorial meaning (implicit in the proof of Lemma
4.3).

Formally, let wy = C'log S, where C is the constant assumed in the right-
hand side of the second case in Lemma 3.1. Let £ be an arbitrary parameter
(to be specified later). Similarly to the proof of Lemma 3.4, define D as the
set of all assignments satisfying the axioms @), ;,;; and such that |J;(a)| < £
for all 4 € [m]. For every i € [m] we recursively construct an increasing chain
Rit € Rip € ... C Ry C ... C M, (Ryr will be the set of all functions
f € M, with rk;(f) < r, and, in sharp contrast with the proof of Lemma 4.1,
these constructions will be totally independent for different 7).

Base. R, & {Viziz;}

Recursive step. Suppose that R;, is already constructed and f € ;.
Then f € M;, .1 if and only if there exists Jy € [n]®*°9 such that every
assignment b € {0,1}" that contains < £ ones, satisfies all functions in R,
and, moreover, has the property Vj € Jy(b; = 0), also satisfies f.

It is important (and easy to see) that indeed R; C R, 11.

Claim 4.2 For any £ > 0 there exists i € [m| such that in the above con-
struction we have 0 € R |10g, m| -
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Proof. Fori € [m] and f € 9M; define rk;(f) def min {r | f € Ry, } (vki(f) def
oo if no such 7 exists). For C € P, let r;(C) & rk;(f;(C)), and let us
apply Lemma 3.1 to the set of vectors {(r1(C),...,rn(C))|C € P}. Let
r = (ry,...,rm) be the resulting pigeon filter. Define an r-aziom as an
arbitrary clause C of the form z;f V...V ;5 with 1tk;(fi V...V f;) <
ri. Let I(C) ¥ {ie[m]|rki(f)) < ri+1}, let w,(C) ¥ |1,(C)| and let
w,(P) ¥ max {w,(C)| C € P}.

Arguing as in the proof of Lemma 3.3, we come up with a monotone
functional calculus refutation P’ from a set of r-axioms A which has the
same size S and satisfies the additional property w,(P) < wo. What is
important to us (and can be easily checked) is that still f;(C) € 9; for all
CeP.

Now we only have to go through the proof of Lemma 3.4 and check that
it applies in the current situation. This is quite straightforward up to the
definition (6) of Jy, J;. Essentially the only thing to be checked up to that
point is that the rules of the monotone functional calculus are sound on D,
and this is easy.

The rest of the proof does not make sense now since there does not appear
to exist any reasonable way to define J;,(C'). What we, however, know is that
VA € Aiy(fio(A) € Riyr), where r & 7, . On the other hand, f;, (C) & Rigrs1
since 39 & I.(C). According to the definition of 2R;., this implies that for
every Jy € [n]?%09 there exists an assignment b € {0, 1}" that contains < /
ones, has the property Vj € Jy(b; = 0), satisfies all f;(A) (A € A;)) and
falsifies f;,(C). In particular, an assignment b with these properties exists
for Jo & Uien fio} Ji(a). Re-assigning the values a;, ; to b; for all j € [n], we
complete the inductive step in proving Ay, ¢y = C.

Since 0 € P, we in particular have A; ) = 0 which implies I,(0) # 0.
But i € I.(0) in turn implies 0 € R; |iog,m| since r; < |[logym|. Claim 4.2 is
proved.m

Thus, we are only left to show a lower bound on rk;(0), and this turns
out to be (relatively) easy.

Lemma 4.3 Let {0,V}_; z;} €M C F*°" and L, £ be parameters such that

M) < exp (6”) , (1)

n
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where € 1s a sufficiently small constant. Define the sets Ry C Ry C ... C
R, C ... CIM by the following recursion:

Base. R; & {ViZiz;}

Recursive step. f € R, if and only if there exists Jy € [n]* such that
every assignment b € {0,1}" that contains < £ ones, satisfies all func-
tions in R, and, moreover, has the property Vj € Jy(b; = 0), also
satisfies f.

Then 0 € Rn/(21)]-

Proof. Given f € 9, let rk(f) &of min {r| f € R, }. For every f € M with

rk(f) < oo fix once and for all some Jy = Jo(f) € [n]* witnessing the fact

[ € Ruy). Pick b at random among all assignments in {0,1}" that contain

exactly £ ones. Given (11), we may apply Chernoff’s bound and conclude
that

P|Vf € M(rk(f) < o0) (|{j€Jo(f)\bj:1}|§27M>] > 0. (12)

Fix an arbitrary b € {0, 1}" with this property.

We claim that f(c) = 1 for every f € R, and every ¢ < b that contains
at least 1+ (r — 1)% ones. The base r =1 is obvious.

Suppose that f € R,,1, ¢ < band c has at least 1+ 7"27” ones. Let d < ¢
be obtained from ¢ by re-assigning all positions in Jy(f) to 0. Since b satisfies
the condition in (12), d still has at least 1 + (r — 1)22 ones. Therefore, by
the inductive assumption, d satisfies all functions in fR,. By the definition of
R,.1, d satisfies f and, since f is monotone, c satisfies it, too. This completes
the inductive step.

In particular, f(b) = 1 for every f € R, /1) Lemma 4.3 follows.m

Theorem 2.7 is immediately implied by Claim 4.2 and Lemma 4.3. Indeed,
let £ % Cn'/2, where C > 0 is a sufficiently large constant. Then by Claim
4.2,0 € R; |10g, m for some i € [m]. On the other hand, letting in Lemma, 4.3
M X o, and L Y (26w,), we observe that the bound (11) is satisfied (if the

constant C' is large enough). Therefore, log, m > Tty = {1 ({;Z;) Theorem
2.7 follows.
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5. Conclusion and open problems

Neither techniques from [Raz01] nor our techniques can be directly applied to
the functional version F'PH P of the pigeonhole principle (in which one pi-
geon may not split between several holes). Another problem of a very similar
nature which still remains open is to construct a pseudo-random generator
G :{0,1}™ — {0,1}" with m > n® that would be hard for Resolution (see
[ABRWO00]). Lower bounds for tautologies from either of these two classes
would unconditionally imply that Resolution does not possess a poly-size
proof of NP ¢ P/poly (as formalized e.g. in [Raz98, Section 5]). At the
moment we only know that this independence result follows from the exis-
tence of one-way functions, and exponential lower bounds for the ordinary
pigeonhole principle only imply that Resolution can not efficiently prove the
stronger variant “INP is not doable by poly-size circuits of unbounded fan-in”.

Let us clarify some connections that might be useful in this respect. As we
noted in Section 2, [BW99] defined so-called extended pigeonhole principle
EPHP". In the terminology of our paper, its equivalent formulation can be
described as the result of removing in the definition of the monotone function-
al calculus all references to the monotonicity. That is, the set of variables will
be Vars(m,n) of {zif| i € [m], fis an arbitrary function in n variables},
the clauses C are no longer required to be positive, and we also restore the
resolution rule.

Somewhat counter-intuitively, EPHP" is stronger than FPHP": if we
have a refutation of =(EPH P!™), then the substitution

Ty \/{33” | f(x;) =€}

will (essentially) take it to a resolution refutation of =(FPHP™). On the
other hand, it is easy to see that the reduction from F'PH P" to the proposi-
tional statement expressing NP Z P /poly given in [Raz98, Section 5] already
works with EPH P". Moreover, it needs only the rectangular extension vari-
ables X;;. Unfortunately, in order to prove lower bounds even for this weakest
possible form of extension the methods from both [Raz01] and the current
paper yet have to be enhanced with some new ideas.

The best known upper bound on Sk(=PHP™) is exp(O(nlogn)*/?)
[BP96b], and we have shown the lower bound Sg(—=PHP™) > exp(Q(nt/?)).
That would be interesting to further narrow this gap. Specifically, what is

. 1 1 Sr(mPHPS®
the value of limsup,,_,  —&2 0g2log(n w)y
2
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Finally, in Section 4 we saw two separate improvements of our basic
technique from Section 3 that nonetheless have a similar flavour. Namely,
in the proof of Lemma 4.1 we made the set of legitimate assignments D
depend on the candidate refutation P, and in the proof of Theorem 2.7 a
somewhat similar construction is applied to the ranking function rk. Are
these two really different or we can interpret them as two partial case of a
single construction? Can one get better results (specifically, can it be useful
for solving open problems posed above) if both D and rk are constructed
dynamically?
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