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Abstract

This paper gives two distinct proofs of an exponential separation between regular resolution
and unrestricted resolution. The previous best known separation between these systems was
quasi-polynomial.

1 Introduction

Propositional proof complexity is a currently very active area of research. In the realm of the theory
of feasible proofs it plays a role analogous to the role played by Boolean circuit complexity in the
theory of computational complexity.

The motivation to study the complexity of propositional proof systems comes from two sides.
First, it was shown in the seminal paper of Cook and Reckhow [7] that the existence of “strong”
systems in which all tautologies have proofs of polynomial size is tightly connected to the NP vs.
co— N P problem. This direction explains the considerable efforts spent in proving super-polynomial
lower bounds for proof systems that are as strong as possible.

The second motivation concerns automated theorem proving. The main goal is to give some
theoretical justification for and investigate the efficiency of heuristics for testing satisfiability. It
turns out that the more sophisticated our propositional proof system is the harder it is to find
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proofs of size close to optimal. The most thoroughly studied and oldest class of algorithms for
satisfiability is based on simple proof systems such as resolution, or even on restricted subsystems
of resolution. This partially explains why it is of interest to study such simple and weak proof
systems and investigate how they relate to each other.

A lot of recent research was concentrated on the separation between different variants of res-
olution. In a series of papers [9], [10], [4],[2] the following relationships were studied: tree-like
resolution vs. resolution, Davis-Putnam resolution vs. general resolution, regular resolution vs.
general resolution. For all pairs except the latter exponential gaps have been produced.

The regularity restriction was first introduced by Grigory Tseitin in a ground-breaking article
[15], the published version of a talk given in 1966 at a Leningrad seminar. This restriction is
very natural, in the sense that algorithms such as that of Davis, Logemann and Loveland [8] (often
described as the “Davis-Putnam procedure” and the prototype of almost all satisfiability algorithms
used in practice today) can be understood as a search for a regular refutation of a set of clauses.
If refutations are represented as trees, rather than dags, then minimal-size refutations are regular,
as can be proved by a simple pruning argument [16, p. 436].

The main result of Tseitin’s paper [15] is an exponential lower bound for regular resolution
refutations of contradictory CNF formulas based on graphs. Subsequently, some authors tried
to extend Tseitin’s results to general resolution by showing that regular resolution can simulate
general resolution efficiently. The results of Goerdt [10] and the present paper show that these
attempts were doomed to failure. However, it remains an open question whether this simulation
might not hold for some special cases. In the conclusion of the paper, we make a conjecture to the
effect that for the formulas of Tseitin, as well as other well-known families of examples, there is
always a minimal-size regular refutation.

The first example of a contradictory CNF formula whose shortest resolution refutation is ir-
regular was given by Wenqi Huang and Xiangdong Yu [11]. Andreas Goerdt [10] gave the first
super-polynomial separation between regular resolution and unrestricted resolution by constructing
a family of formulas that have polynomial-size resolution proofs, but require quasipolynomial-size
regular resolution refutations.

In this paper, we present two new families of formulas, and prove that they have simple
polynomial-size resolution refutations, but require exponential-size regular resolution refutations.
Our first example is technically simpler, and results in a stronger lower bound, but looks like a
cheating trick designed especially for the separation. The second example is far more natural, and
the corresponding lower bound is of interest in itself.

The paper is organized in the following way. Section 2 contains definitions necessary for both
examples. We give these examples independently in Sections 3 and 4-5.

2 Preliminaries

The resolution principle says that if C' and D are clauses and z is a variable, then any assignment
that satisfies both of the clauses C'V z and DV —x also satisfies C'V D. The clause C'V D is said to
be a resolvent of the clauses C'V z and D V —x derived by resolving on the variable . A resolution
derivation of a clause C' from a CNF formula F' consists of a sequence of clauses in which each
clause is either a clause of F, or is a resolvent of two previous clauses, and C is the last clause
in the sequence; it is a refutation of F' if C is the empty clause A. The size of a refutation is the



number of resolvents in it. We can represent it as a directed acyclic graph (dag) where the nodes
are the clauses in the refutation, each clause of F' has out-degree 0, and any other clause has two
arcs pointing to the two clauses that produced it. The arcs pointing to C'Vz and DV —x are labeled
with the literals x and —z respectively. It is well known that resolution is a sound and complete
propositional proof system, i.e., a formula F' is unsatisfiable if and only if there is a resolution
refutation for F'.

A resolution refutation is regular if on any path from A to a clause in F (in the directed acyclic
graph associated with the refutation), each variable is resolved on at most once along the path.

An assignment for a formula F' (sometimes we call it also a restriction) is a Boolean assignment
to some of the variables in the formula; the assignment is total if all the variables in the formula
are assigned values. If C is a clause, and o an assignment, then we write C[o for the result of
applying the assignment to C, that is, C[o = 1 if o(I) = 1 for some literal [ in C, otherwise, C[c is
the result of removing all literals set to 0 by o from C' (with the convention that the empty clause
is identified with the Boolean value 0). If F' is a CNF formula, then F[o is the conjunction of all
the clauses C[o, C a clause in F.

If R = C4,...,Cy is a resolution derivation from a formula F, and ¢ an assignment to the
variables in F', then we write R[o for the sequence C;|a,...,Ck[o.

Lemma 2.1. If R is a regular resolution deriwation of C from a formula F, and o an assignment,
then there is a subsequence of R[o that is a regular resolution derivation of C[o from F|o.

Proof. This is a straightforward induction on the length of the derivation from F'. O

Every regular resolution refutation can be represented by a read-once branching program [12].
Although we prefer to speak in terms of refutations rather than branching programs, we nevertheless
need some ideas from the latter framework. A path in a resolution refutation can be considered
as determined by the answers to a series of queries. That is to say, starting at the root of the
refutation, let us follow a path in the proof according to the following recipe. If a node v in the
refutation is labeled with a clause C'V D derived from clauses C'V 2 and D V -z, then we say that
the variable z is queried at v. If we extend the path to the node labeled with C'V z, then we say that
we have answered the query with “z,” while in the other case, we have answered with “—z.” Thus
every path 7 in the refutation from the root to a node in the proof corresponds to a set of literals
constituting the set of answers to the queries in the path; conversely the set of literals constituting
the answers uniquely determines the path. The assignment defined by setting all of the literals in
this set to 0 falsifies all the clauses labeling nodes in the path.

For any node in a regular refutation we can define an important set of forgotten variables:

Definition 2.2. For every node v in a regular refutation labeled with a clause C, we say that a
variable is forgotten at v if it does not occur in C, but is queried on some path from the root to v.

The intuition behind this definition is given by the following lemma:

Lemma 2.3. If a variable is forgotten at a node v then it is also forgotten at all successors (that
go after v on a path from the root).

Proof. Assume that a variable z is forgotten at the node v. By definition there exists a path from
the root to v on which this variable is queried and the clause labeling v does not contain z. All we



need to prove is that the clauses labeling successors of v do not contain x either. This follows from
the regularity condition; if some successor contains x then this variable has been resolved twice on
the path from the root. O

Corollary 2.4. If the variable x is forgotten at a node v in a reqular refutation, then no axiom
reachable from v can contain z. In particular, the clause labeling v must be inferred from initial
clauses that do not contain x.

Clearly this result only applies to the case of a regular refutation. This corollary will be a
central point in our lower bounds for regular resolution. Our strategy will be to find a node v with
a forgotten variable z and show that all initial clauses free of x do not imply the clause C, even

semantically; to show this we produce an assignment o that is falsified only on clauses containing
z and C,[o = 0.

3 First example: G7, formulas

Our first example is based on the ordering principle first considered by Krishnamurthy[13].

Definition 3.1. Let X be the set of variables x;; for i,j € [n], i # j. The contradiction GT,
consists of the following azioms:

Tij = TLj; 1<i1<j3<n

Tiyin N Tigig — Tiyig for any distinct i1, 12,13 € [n]
\VAET j € [n]

k€[n], k#j

This contradictory principle can have several semantical interpretations, our proof will essen-
tially depend upon the following one. Consider the variable z;; as a predicate ¢ > j. The first two
groups of axioms assure that > is a total linear ordering on the set [n]. The principle GT,, claims
that any such ordering never has a maximum. This contradiction was used by Bonet and Galesi
[3] to show the optimality of size-width relationship. It was shown there that:

Theorem 3.2 (Bonet and Galesi [3]). There ezist polynomial-size regular resolution refutations

of GTy,.

We modify GT,, to make it harder for regular resolution, but preserve its unrestricted resolution
complexity. For that we replace some axioms C with a pair C V z¢, C' V =x¢. The variable z¢
should be chosen in a certain precise way to simplify our lower bound.

Definition 3.3. Let X be the set of variables z;; i,j € [n], i # j; clearly the cardinality of X is
less than n%. Let us fiz an arbitrary enumeration (with repetitions) of X as a pair of functions
i(r),7(r) so that X = {z;() i 7 €[0...n* —1]}.

The set of clauses GT,, consists of the following azioms:
Tij = TZji 1<i<j<n

\/ Tk j J € [n]

ke[n], k#j



Ty iy V TTigis V TTigiy V Tir) j(r) for any distinct i1,12,13 € [n] and
r=n(i; +ip) + i1 + i3 (mod n?)
iy iy V TTigig V Tigiy V T (r) for any distinct i1,19,13 € [n] and

r=n(iy +d2) + 41 + i3 (mod n?)

Thus GT}, is defined up to an arbitrary enumeration of the set X. It is more convenient to
us to write the axioms z;, ;, A Tsyi; — Tiyiy in the symmetric form —z;, i, V 2%y, V 7Tig4,, these
representations are equivalent modulo axioms z;; = —xj;.

Corollary 3.4. There is a polynomial size refutation of GT), in general resolution.

Proof. 1t is easy to see that the principle GT,, can be inferred from G7T] in general resolution in a
polynomial number of steps. Hence, the Corollary follows by Theorem 3.2. O

The refutation of the preceding corollary is irregular. By contrast, the main theorem of this
section shows that any regular refutation of GT,, has exponential size. Before proving this lower
bound, we require some definitions and lemmas.

Definition 3.5. For an assignment o on X let Supp(c) be the set of all i € [n] such that o assigns
a value to either x;; or x;; for some j.

Recall the notion of critical assignment for GT,, [3]. We generalize it to the case of partial
critical assignments:

Definition 3.6. For a subset of vertices S C [n] a partial critical assignment for S is an arbitrary
assignment o that gives values to all variables x;j, i,5 € S and for any clause C of the original
principle GT,, Cla £ 0.

Thus an assignment is critical iff it does not violate the properties of the linear ordering (recall
that we associate variable z;; with a predicate ¢ > j). Hence partial critical assignments « are in one-
to-one correspondence with all linear orderings on the set Supp(a). This semantical interpretation
is essential and we will use it throughout the proof.

Lemma 3.7. Assume that « is a critical partial assignment with |Supp(a)| < n—2 and the variable
zij is unassigned by o. Then for any € € {0,1}, a can be extended to a critical assignment o' with
|Supp()| < |Supp(a)| + 2 such that o (z45) = €.

Proof. The proof becomes trivial after the decoding of the definitions: we have a linear ordering on
a set S with |S| < n — 2. We need to extend this ordering on one or two new elements (depending
on whether ¢ or j is already contained in S). Clearly we can set ¢ < j as well as 7 > j and extend
our ordering in the correct way. O

Lemma 3.8. Assume that « is a critical partial assignment with |Supp(a)| < n/5+1 and i1,19,13
are distinct elements from [n] \ Supp(a). Then a can be extended to a total assignment for X so
that all azioms of the original principle GT,, except the aziom z;, i, N Tipiys — Tiyis are satisfied.

Proof. We need to extend the linear ordering on Supp(a) to some total (contradictory) ordering
on [n]. For that we extend « to some arbitrary partial critical assignment on [n] \ {i1,72,%3}, then
set i1 = 49 > i3 > 11 and make i1, 19,43 greater than the rest of the vertices. |



Lemma 3.9. Assume that S is a (“bad”) subset of [n] of the size at most n/5 + 1. Then for any
r €10...n? — 1] there exist three distinct elements iy,49,i3 € [n]\ S such that n(iy +is) + i1 +i3 =
r (mod n?).

Proof. Consider some © € [0...n? — 1]. Let us first assume that § = (. Clearly the equation
n-i+7 = r(mod n?); i,j € [0...2n — 1] can have at most 4 solutions. Thus there exist at least
n — 12 triples of distinct i1, i9,43 € S such that n(i; +i2) + 141 +i3 = r (mod n?). Whenever we add
an element ¢ to S we throw away at most 4 solutions. O

Theorem 3.10. Any regular resolution refutation of GT,, has size greater than on/10,

Proof. Let R be a regular resolution refutation of GT,. We will single out a particular set of
distinct paths in the refutation, and then show that this set has exponential size. These paths are
defined by successive extensions; at each node v along these paths we define an auxiliary critical
assignment ¢, that falsifies the clause in v.

Initially we start with a single path at the root and « is empty. Now assume that we have
defined [ distinct paths up to the nodes v1,...,1;. For each node v}, with |Supp(a,,)| < n/5 we
extend the corresponding path in the following way:

e If a variable z;; is queried at v and its value is already defined by o then we extend our path
according to this value; @ does not change.

e If a variable z;; is queried at v4 and either ¢ or j does not belong to Supp(a,, ) then vy is a
branching node and we proceed in the following way. Assume that the answer 0 to z;; leads
to the vertex v, and 1 to vg,. We extend the existing path up to both vy, and v}, . For each
€ € {0,1} we extend a,, by Lemma 3.7 to an arbitrary partial critical assignment c,,_such
that ay, (23;) = ¢ and |Supp(a, )| < |Supp(an, )] +2.

We use this strategy to extend paths till every path leads to a node with |Supp(a)| > n/5.
Since the value of |Supp(a)| can increase at most by 2 in branching nodes, every path has at least
n/10 branching nodes, hence there are at least 2n/10 distinct paths. It is left to show that they do
not intersect each other.

For the sake of contradiction, assume that two distinct paths diverge in the node v; and then
merge again in the node vo. Assume that the variable z;; is queried in 1. The key observation
is that z;; is forgotten in v, (because the clause in v, cannot contain both literals z;; and —z;;).
Choose any 7 such that ¢« = i(r) and j = j(r) (see Definition 3.3). By Lemma 3.9 we can choose
three vertices i1, 99,43 & Supp(ay,) such that n(i; +is) +141 +4i3 = 7 (mod n?2 —1). Now let us set by
Lemma 3.8 the rest of variables so that all axioms of GT, except Ay = —%i i, V "Tigiz V Tigiy V Tij
and Ay = 4, V Ty, V TTig4, V 01 are satisfied. We produce a total assignment that falsifies
the clause C,, labeling v, (because it is an extension of «,,) and all violated clauses contain the
forgotten x;;. The contradiction with Corollary 2.4 proves the Theorem. O

In the end of this section we remark that the same procedure can be applied to the set of clauses
MGT, that results from GT,, if we replace all wide clauses with equivalent 3-CNF’s, thus yielding
a bounded width separation between regular and general resolution.



Namely, the set MGT,, as defined by Bonet and Galesi [3] contains, instead of the clauses
szl,k# Ty j, the following axioms over the auxiliary variables yo j, ..., Yn,;:

n
“yoi A N\ WiV iV ig) Ayn -
i=1,i#j

Let us substitute 0 for all yo; so that in all we have a set Y of n? auxiliary variables. Now
we replace each axiom C = —;, ;, V Tiyi, V 7Tiys, With a tuple C'V zf! V y2, where r = n(i +
i) + i1 + i3 (mod n?). Obviously the resulting principle M GT/, has a polynomial-size refutation in
resolution, and its hardness for regular resolution can be shown essentially in the same way as in

the proof of Theorem 3.10.

4 Second example: the stone formulas

4.1 Definitions

Our second example will be a generalization of the implication graph formulas, first introduced by
Raz and McKenzie [14], and also used in subsequent papers [2, 4, 5]. Let G be a directed, acyclic
graph, with fan-in 2, n vertices, and a single sink vertex; we shall call a graph satisfying these
conditions a pointed graph. We shall use the phrase “decorated graph” to refer to a pair (G,U),
where G = (V, E) is a pointed graph, and U is a subset of V' not containing the sink.

The implication graph formulas encode the following contradictory statement: “All of the source
vertices and the vertices in U are colored red, the sink is colored blue, and if both the predecessors
of a vertex are red, so is the vertex itself.” In order to make the formulas difficult for regular
resolution, we express this statement somewhat indirectly, so that instead of speaking directly of
colored vertices, we introduce extra variables speaking of the placement of colored stones on the
vertices.

The decorated graph (G,U) can be viewed as a board for a board game such as Go or Hex.
Additionally we assume that we have a set S of m > n stones that are to be placed on the board,
each of which can be colored red or blue. (The reader might picture these stones as similar to the
discs in the game of Othello, being red on one side and blue on the other; thus they can be red or
blue depending on which side is up.)

Our “stone formulas,” Stone(G,U, S), are defined as follows. Let (G,U) be a decorated graph,
where G = (V,E), |[V| =n, and S is a set of m > n stones. Let Sources(G) be the source vertices
of G. The variables of the formula are P, ;, i € (V \U) and j € S, and R;, j € S. The variable
P, j says “Vertex i contains stone j,” or “Stone j is placed on vertex 4,” while R; says “Stone j
is colored red,” and —~R; says “Stone j is colored blue.” We call a variable P; ; an edge variable,
and a variable R; a stone variable. For a vertex 1 € V, and a stone t € §, let D;; be 1 if ¢ € U,
otherwise, D;; is the formula (P;; A R;). The clauses are as follows.

(i) V{Pilj € S}, i € V\U. These clauses express the fact that every vertex contains some
stone (the vertices in U should be thought of as containing a particular red stone).

(ii) For all vertices k € Sources(G) \ U and stones j, (P ; — R;).

(iii) For the sink vertex s and stone j, (P ; — —R;).
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(iv) For all vertices 4, j, k such that (,k) and (4, k) are edges in G, where k € V \ U, and for all
stones t,u,v, (D;3 ADj, APy, — Ry). That is, if the stones ¢, u, v are placed on the vertices
1,7,k, and t and u are both red, then the stone v must also be red. Since this clause expresses
an induction rule, we shall refer to it as an “induction clause” associated with the vertex k.

We write Stone(G, S) for the special case of the stone formulas where U = (). It is not hard to
check that the number of variables in Stone(G, S) is (n + 1)m, and the number of clauses in the
formula is O(m3n).

Lemma 4.1. For all m and all directed acyclic graphs G, Stone(G,S) has a resolution refutation
of size O(m3n).

Proof. For a vertex k with predecessors 7 and j, we will say that k is colored red if we have derived
all clauses of type (ii) for k. The refutation proceeds inductively from the source vertices to the
sink, deriving all clauses of type (ii) for every k in the graph.

Let us assume that both predecessors < and j of a vertex k are colored red. We first derive all
of the clauses (—P;; V —Pj, V =P, V R,) for t,u,v € S, by resolving clauses of type (ii) against
appropriate induction clauses. There are m3 such clauses, and each can be derived in two steps, so
this part of the proof takes O(m?) steps. Next, we derive all clauses of the form (=P;,V-Py,V Ry,),
by resolving the previously obtained clauses against clauses of type (i). There are m? such clauses,
each of which takes m steps to obtain, so this part of the proof also takes O(m3) steps. We then
repeat this pattern to derive all clauses of the form (=P, V R,), in O(m?) steps, completing the
induction step.

Finally, when the sink s is colored red, we can derive the empty clause from R; and —R; in
O(m) steps. The entire refutation takes O(m?3n) steps. O

The refutation constructed in the preceding lemma is highly irregular, since at each induction
step, we resolve on all the stone variables, so that there are paths in the derivation in which a stone
variable is resolved on over and over again. The regularity restriction rules out a refutation of this
type, and (as we shall see below), any regular refutation has to be exponentially large.

4.2 Graph Pebbling

In order to prove an exponential lower bound for the stone formulas, we will need to begin with a
graph G with high pebbling number. The next definition describes a slight generalization of the
usual concept of pebbling number.

Definition 4.2. Let (G,U) be a decorated graph. A configuration is a subset of V. A legal pebbling
of a vertex v from U in G is a sequence Cy,C1,...,Cy of configurations, with Cy =0 and v € Cy,
in which each configuration Cjy1 follows from C; by one of the following rules:

1. Any vertez u € U U Sources(G) can be added to Cj, i.e. Ciy1 = C; U {u}.

2. A vertez u can be added to C; to get Ciy1 = C; U {u}, if all immediate predecessors of u are

3. Vertices can be removed, so that C;11 C C;.



The complexity of a legal pebbling of v from U is the mazimal size of any configuration in the
sequence. The pebbling number Peb(G,U) of a decorated graph (G,U) is the minimal number n
for which there exists a legal pebbling of the sink of G from U with complexity n. The pebbling
number Peb(G) of a pointed graph is the pebbling number of the decorated graph (G,0).

Lemma 4.3. There is a constant 8 > 0 such that for all sufficiently large n, there is a pointed
graph G with n vertices that has pebbling number Peb(G) > fBn/logn.

Proof. Graphs satisfying these conditions are constructed in a paper by Celoni, Paul and Tarjan
[6]; their proof is based on an earlier construction of Valiant. O

The following definition is useful in describing the effect of restrictions on stone formulas.

Definition 4.4. For a pointed graph G = (V, E) and v € V, let G[v] denote the induced subgraph
of G on those vertices u from which v is reachable, i.e. there is a directed path from u to v.

The next lemma shows that if we add a new “free” vertex to a decorated graph with high
pebbling number, then we can always find a subgraph with high pebbling number.

Lemma 4.5. Let (G,U) be a decorated graph with pebbling number p+ 1, and ¢ an vertex of G not
in U. Then either (G,U U {i}) or (G[i],U N G[i]) has pebbling number at least p.

Proof. Assume that both (G,UU{i}) and (G[i], UNG[i]) have pebbling number at most p—1. Then
there is a legal pebbling Cy,...,C; = {i} of G[i] from U N G[i] and a legal pebbling Dy, ..., D,, of
G from U U{i} each of complexity at most p— 1. Then Cy,...,C;, D1 U{i},..., D, U{i} is a legal
pebbling of (G,U) from U of complexity at most p, contradicting the assumption that (G,U) has
pebbling number p + 1. U

The next definition picks out a type of vertex that plays a central role in the restrictions
described in the following subsection.

Definition 4.6. Let (G,U) be a decorated graph. A vertex v € G is important if there is a path
from v to s not containing any vertex in U, otherwise v is unimportant.

Lemma 4.7. If Peb(G,U) = p, then there exist at least p — 2 important vertices in G.

Proof. We prove the lemma by showing that if (G,U) is a decorated graph, then there is a legal
pebbling of the sink of G from U in which at most two unimportant vertices occur in every con-
figuration. Let Cy,...,Cy be a legal pebbling of the sink s from U, and Dy,..., D, the sequence
obtained by setting D; = (C; \ J), where J is the set of unimportant vertices in the pebbling.
We argue by induction, proceeding backwards from Dy to Dy, that the resulting sequence can
be converted into a legal pebbling of s from U, by adding at most two vertices from U to each
configuration in the sequence.

By definition, s is important, so we only need to examine the case where C; is obtained from
C; by an appropriate rule. Let us suppose that C;;1 was obtained from C; by the second rule
in Definition 4.2, and that the vertex u is important, but one or both of the predecessors of u is
unimportant. This can only happen if the predecessor in question is in U. Hence, we can obtain
D;1q from D; by one or two applications of Rule 1 in Definition 4.2, followed by an application of
Rule 2. O



4.3 Critical assignments for stone formulas

In the remainder of the paper, we concentrate on certain special assignments for the formulas
Stone(G,U,S). These assignments are determined by two items, a mapping from (some of the)
vertices to stones, and a coloring of some of the stones.

Definition 4.8. Let G = (V, E) be a pointed graph, and S a set of stones, where |S| > |V|. A
restriction p = (u, ) for (G, S) is determined by

1. A bijective map u from a subset of V to S;

2. A coloring k assigning colors from the set {R, B} to a subset of S (i.e., we assign the colors
red and blue to some of the stones).

The assignment ¢ determined by p is defined by setting:

o o(P,j) = 1if (i,5) € u, o(Piy) =0 if i or j are in Dom(u) U Ran(u), but (i, j) & p;
e o(Rj) =11 k(j) = R, o(R;) =0 if K(j) = B;
e If j is in the domain of k, but not in the range of u, then P; ; =0, for alli € V.

If \p| = v and |k| = s, then we say that o is a restriction with parameters r and s. To simplify
notation, we shall identify a restriction with the assignment that it determines.

There are two special types of restrictions that are important in what follows. The first type
is one in which none of the stones placed on vertices are assigned colors, that is to say, Ran(u) N
Dom(k) = @}, and furthermore, the parameters r and s are equal. In this case, we shall describe
p = (i, k) as an r-restriction. The second special type of restriction is one in which all of the stones
placed on vertices are assigned colors, that is, Ran(y) C Dom(k). This second type of restriction,
we call a clamping.

Definition 4.9. Let (G,U) be a decorated graph, k a vertex in G, and x a partial coloring of G,
that is, x is a map from a subset of V to {R, B}. We say that x is a k-based coloring of (G,U) if
the following conditions hold:

1. If i € U, then x(i) = R;

2. There is a path © in G from k to the sink of G so that the vertices in the path are exactly
those to which x assigns the color blue;

3. If a vertez i is not in G[k] U m, then x(i) = R.

We say that x is k-critical if it is a total coloring of G.

Lemma 4.10. If (G,U) is a decorated graph and k an important vertex of G, then there is a
k-critical coloring of (G,U).

Proof. By assumption, there is a path from k to the sink not passing through any vertices in U.
Color all the vertices in this path blue, and all other vertices in G red. Since k is the only blue
vertex in G, all of whose predecessors are colored red, this is a k-critical coloring of (G, U). O
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If x is a coloring of a decorated graph (G, U), then a clamping p = (u, k) is said to be compatible
with x if Dom(x) = Dom(y), and for any vertex in Dom(yx) = Dom(u), x(u(i)) = x(2). If x is a
k-based coloring, then we say that p is a k-based clamping, and that it is k-critical if it is compatible
with a k-critical coloring. The reader can easily check that if p is a k-critical clamping of (G,U),
then it forces all the clauses in Stone(G,U, S) to true, except for a single induction clause, which
is forced to false. In addition, we say that a restriction is compatible with a k-based coloring y if
it can be extended to a clamping compatible with x.

The next two lemmas, which are straightforward to prove, are used repeatedly in the rest of
the proof.

Lemma 4.11. Let (G,U) be a decorated graph, and x a coloring of G = (V,E). In addition,
let S be a set of stones with |S \ Dom(k)| > |V|, and p = (u, k) a restriction for (G,S) so that
Dom(p) C Dom(x), and k(u(2)) = x(2), whenever i € Dom(u) N Dom(x) and k(u(i)) is defined.
Then p is compatible with x.

Proof. Extend p to a bijection u' from Dom(x) to S\ Dom(k), and then set the colors of stones
in the range of u' by setting x'(u(i)) = x(i) for all i € Dom(x) = Dom(u'). Then p’' = (u', ') is a
clamping compatible with . O

Lemma 4.12. If p = (u, k) is a k-based clamping of Stone(G,U, S) with parameters r, s, then
Stone(G,U, S)[p = Stone(G[k],U’, S"),

where U' = G[k] N (U U Dom(p)) and S = S\ Dom(k).

Proof. This follows readily from the definitions. O

Lemma 4.13. Let p = (u, k) be an r-restriction for (G, S), where G has pebbling number N, and
|S| > |V|. Then there is a vertez k € G and p’' = (u, k') so that:

1. p' = (u,r') is a k-based clamping of (G, S), with k C r';

2. (G[k], G[k] " Dom(u)) has pebbling number at least N — r.

Proof. We construct p’ by first constructing an appropriate k-based coloring x of G, with Dom(x) =
Dom(u), and then using Lemma 4.11 to find the required k-based clamping. At each stage in the
construction, we are given a designated vertex k € G, and a k-based coloring x of G. Initially, no
vertices in G are assigned colors, and we choose the root as the designated vertex. In successive
stages, we choose a new designated vertex k' € G, and a new coloring x’, and we make these choices
in such a way as to maximize the pebbling number of the decorated graph (G[k'], GIK'|NU(K', x")),
where U(k', x') is the set of vertices in G[k'] mapped to R by x'.

To be more precise, let us suppose that we have u(7) = ¢, and that the stone ¢ has not yet been
assigned a color. Let U = U(k, x). Compare the two values

p1=Peb(GIK],UU{i})  and  ps = Peb(G[i],UNG)) .

If p > po, then set k' = k, extend x by setting x'(:) = R and x'(¢') = R for all i’ that are
unimportant in (G[k],U U {i}). If p1 < py then set k' = i, choose a path in G from i to k, and
extend x to an i-based coloring of (G,U N G[i]).
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Let k£ and x be the designated vertex and k-based coloring produced at the end of this process,
that is, when Dom(x) = Dom(u). By Lemma 4.11, p is compatible with x, so that there is a
a k-based clamping p' = (u,x’) compatible with x. By Lemma 4.5, (G[k], G[k] N Dom(u)) has
pebbling number at least N — r. U

5 The lower bound for stone formulas

The general structure of the proof of the lower bound is similar to that of Beame and Pitassi’s
[1] simplified lower bound proof for the pigeonhole principle. That is, we will assume for the
sake of contradiction that we have a short (sub-exponential) refutation of a stone formula. We
will first show that we can apply a restriction to some (but not too many) of the variables such
that the resulting refutation, after the restriction, is still a refutation of a stone formula on a
reduced set of variables, that contains no complex clauses. Secondly, we argue separately that any
regular resolution refutation of the formula must contain a complex clause, and thus we reach a
contradiction.

Definition 5.1. A clause C is called d-complex if one of the following holds:

1. C contains at least d distinct stone variables, or

2. There is a matching of size at least d from vertices to stones such that C contains the negative
edge literals =P, ; for each pair (i,j) in the matching.

3. There is a subset W of at least d vertices, such that for all i € W there is a subset P; of at
least d stones, such that all variables P;;, i € W, j € P; are present in C.

There are three parameters in our lower bound, v, §, and €. The lower bound is of the form
20n/(log ”)3; the parameter associated with a complex clause is en/ logn and the size of the restriction
is yn/logn.

Lemma 5.2 (Restriction Lemma). Let v, 6, € be constants less than 1 such that 36/¢2 < v < ¢/2,
and let R be a resolution refutation of Stone(G,S), |S| = 3n, of size at most S = 20n/(log ") Then
there exists a restriction p of size r = yn/logn, such that R[p has no (en/logn)-complez clauses.

Proof. We will divide up the complex clauses into those of the first type and those of type two
or three. For those of type two or three, we will greedily choose a matching between vertices and
stones that forces all complex clauses of these types to true.

The total number of pairs in G x S to choose from is 3n?; each complex clause of the third type
can be forced to true by choosing a P; ; from (en/logn)? pairs; each complex clause of the second
type can be forced to true by choosing a P, j from (e(3n — 1)n)/logn > (en/logn)? pairs. Thus,
by averaging, there exists a P;; such that at least S(en/logn)?/3n? > S(e?/3(logn)?) complex
clauses of the second and third type are forced to true.

Hence to force all the complex clauses of these types to true we need to choose a matching of
size

log S < én / (logn)? 3on n
€2 — 2 1 2
log (1/(1 - 558m)) ~ €/ 3(gm)

IN

e2logn ~ logn
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Now for the clauses of the first type, notice that there are 3n — yn/logn > 2n stones left that
are untouched by the matching chosen above, and any complex clause of the first type still contains
(e —y)n/logn > en/2logn literals corresponding to these stones, since v < €/2.

Since the refutation has size at most S, there are at most S clauses of the first type, each
containing en/2logn distinct stone variables that have not been set by the restriction already
chosen. Each of these is thus set to one by en/2logn out of at least 4n choices of stone literals.

By averaging, there must be one stone literal that forces S(e/8logn) of the complex clauses of
type one to true. Thus to force all complex clauses of this type to true we need to set
1 1 3
og S <(5n/(ogn) < 86n yn

<
€ - - 2 =
log (1 /(1- 810gn)> €/8logn e(logn) logn

stone literals. O

Our last lemma shows the existence of a complex clause for any initial graph with sufficiently
large pebbling number. This is the only part of the proof in which the regularity restriction is used.

Lemma 5.3 (Complex Clause Lemma). Let (G,U) be a decorated graph with Peb(G,U) = N =
Q(n/logn), where G has n vertices. Then for |S| = m = 2n, and n sufficiently large, any regular
resolution refutation of Stone(G,U,S) contains an (N/16)-complex clause.

Proof. Let R be a regular resolution refutation of Stone(G,U, S). We will follow a particular path
7 partway through the refutation; this path will be determined by giving a strategy for answering
queries. The path is defined by successive extensions; at each stage in the definition, we define
three auxiliary objects. First, at each stage, we single out a designated vertez k in G, second, we
define a k-based coloring x of G, third, we define a restriction p compatible with y. The answers
given along the path at each stage are compatible with p, that is to say, if the literal [ occurs as a
label on the path, then p(I) = 0. At each stage, the designated node k and the coloring x determine
the subgraph G[k] of G, together with a subset U of G[k], consisting of the vertices ¢ of G[k] with
x(i) = R.

Initially, we start the path at the root, the designated vertex is the sink s of G, x(u) = R for
u € U, and x(s) = B. Now assume that we have defined the path up to a node v, together with
a designated vertex k, a k-based coloring x and a restriction p compatible with y. In addition,
let (G,,U,) be the decorated graph (G[k],U), where U is the set of vertices in G[k] colored red
by x. We want to extend the path by providing an appropriate answer to the variable queried at
the node v; we need also to define a new designated vertex k', a new k’-based coloring x' and a
new restriction p’ compatible with x’. In each case, the answers to the queries will be given as an
extension of the current restriction p — unless the current restriction answers the query already, as
can happen in the last case below.

e If a stone variable R; is queried at v and it is not currently placed on a vertex, i.e. for no
vertex ¢ do we have p(P; ;) = 1, then extend p by coloring j red or blue arbitrarily. Set &' = k,

X' =x-

e If a stone variable R; is queried at v, and it is already placed on a vertex 4, i.e. p(P; ;) = 1,
then we answer as follows:
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— If i is colored by x then answer accordingly. That is, if x(i) = R, then set p(R;) = 1,
and if x(i¢) = B, then set p(R;) = 0. Then set k' =k and x' = x.

— If 4 is not assigned a color by yx, but is not important with respect to (G, U, ), then set
p(R;) = 1. Extend x by setting x'(:) = R, and set k' = k.

— Otherwise, answer to maximize the pebbling number of the associated decorated graph.
That is, compare the two values

p1=Peb(G,,U, U{i})  and  py = Peb(G,[i], U, N Gi)) .

If p; > po, then set k' = k, extend x by setting x'(i) = R and x'(¢') = R for all i’ that
are unimportant in (G,, U, U {i}), and set p(R;) = 1.

If py < py then set G¢ = G, [i], choose a path in G, from i to k, extend x to an i-based
coloring of G, and set p(R;) = 0.

e If an edge P, ; is queried at v, but p(P; ;) is not defined, then set p(P; ;) = 1. Set k' = k and
!
X =X-

The so defined path can only end in an initial clause of type (i) or an induction clause of type
(iv). The former case can only occur if all the stones have received colors, and thus all stones
must have been queried. In the latter case, note that at the root, we have Peb(G,,U,) = N, by
Lemma 4.5 the pebbling number decreases by at most 1 with each answer to a query, and only at
nodes where a stone is queried. But when we reach an induction clause, the pebbling number has
decreased to 0. Therefore the path followed by the above strategy will not finish until at least IV
stones are asked about.

Thus, there is some node ¢ on the path where exactly N/2 stones are queried. The pair (G¢, Ug)
associated with ¢ has pebbling number at least N/2. This follows from the fact that the pebbling
number decreases by at most 1 at each stone query, and we have queried exactly N/2 stones. By
Lemma 4.7, there are at least N/2 — 2 important vertices in (G¢, Ug).

We will now show that the clause C¢ attached to the node { must be N/16 complex. Let I be
the set of important vertices in (G¢, Ug). If at least N/8 of the vertices in I are mapped by p and
the mapping is remembered, i.e., the corresponding edge variables set to 1 by p occur negated in
C¢, then C¢ is an N/8-complex clause of type two. Hence, in the remainder of the proof, we shall
assume that there is a subset I’ C I of at least N/8 vertices that are either unmapped by p or are
mapped by p but all of the edge variables corresponding to this part of the mapping are forgotten.

There are several cases. We will introduce some terminology to help with these cases. Let
p =< u,k > be the restriction associated with £&. We partition the set of N/2 stones queried on
the path to £ into the free stones, F', and the attached stones, A. F' consists of those stones queried
along the path to € that are not in the range of u; A are those stones queried on the path to £ that
are in the range of u.

There are two general cases to consider. The first case (which is slightly easier) is when |F| >
N/4 and the second case is when |A| > N/4.

Assume first that [F| > N/4. We will show that the clause C¢ attached to the node ¢ must
be N/16-complex. The first subcase is when at least N/8 of the stones in F' occur in C¢. In this
case, C¢ is an N/8-complex clause of type one. If this subcase does not occur, then at least N/8 of
the stones in F are forgotten at the node &. Let F' C F be this set of at least N/8 forgotten free
stones.
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Now we claim that for every ¢ € I’ and ¢t € F', the variable P;; must occur in C¢, and thus C¢
is an N/8-complex clause of type three.

Suppose that P;; does not occur in Cg¢ for some i € I', t € F'. Then we can modify the
restriction p to p’ by mapping 7 to ¢, and if p(i) = u, where u # ¢, then we assign a color to
u, if it was not colored already. Since we have not tampered with any of the variables in C, it
follows that p'(Ce¢) = 0. Since ¢ is important, there is an -based coloring extending the coloring x
associated with ¢, and this i-based coloring can be extended to an i-critical coloring. Let ¢ be an
i-critical clamping compatible with this coloring, extending the restriction p’, in which o(P;;) =1
and o(C¢) = 0. The only initial clause falsified by ¢ is an induction clause associated with i,
containing the variable R;. However, by Corollary 2.4, C¢ was inferred from clauses none of which
contain the forgotten variable R;. This is a contradiction, so it follows that C; must contain the
variables P ;.

We will now argue the second case, when |A| > N/4. Let B be the subset of vertices that are
mapped by p to stones in A. Clearly, |B| = |A|. The first subcase, 2a, is when at least N/8 of the
stones in A are remembered. In this case, C¢ is an N/8-complex clause of type one.

The second subcase, 2b, is when for at least N/16 of the vertices ¢ in B, the mapping of i into
A is remembered, i.e., the negative edge literal —~F; ; where j = pu(i) occurs in C¢. In this case, C¢
is an N/16-complex clause of type two.

The third subcase, 2c, is when for at least N/16 of the vertices i in B, at least N/2 zero-edges
containing 7 are remembered. That is, the edge variable P; ; occurs in C¢ for at least N/2 distinct
j’s. In this case, C¢ is an N/16-complex clause of type three.

If none of the subcases 2a, 2b or 2c occur, then there are sets B’ C B and A’ C A each of size
exactly N/8 such that p defines a mapping from B’ to A’ but the mapping is forgotten; the color of
each stone in A’ is forgotten, and for every i € B’, at most N/2 zero-edges out of i are remembered
at £. We claim that for every ¢ € I' and ¢ € A', the variable P;; must occur in Cg.

Suppose that this is not the case and let P;; be some variable that does not occur in C¢, where
1€ I',t € A" and let i’ € B’ be the vertex that is mapped to ¢ by p. Then we will modify the
restriction p to obtain p’ as follows. First, p’ will map i to t. Secondly, p’ will map i’ to some
unqueried stone # such that the edge from i’ to ¢ has not already been remembered to be 0.
Further, the color associated with ¢ will be chosen to be the same as the color given to ¢ by p;
that is, the underlying coloring of the graph will be the same for p and for p'. It will still be the
case that p'(C¢) = 0 since we have not tampered with any of the variables that are remembered
(i.e., that occur in C¢.) Now as in Case 1, we will extend p’ to an é-critical coloring, o, extending
the restriction p'. Since the only initial clause falsified by o contains the variable R;, and R; is
not remembered, we have reached a contradiction, and thus C¢ must contain all such variables P ;,
showing that it is an N/8-complex clause of the third type.

This completes the proof of the complex clause lemma. U

We are ready to state the main theorem of this section.

Theorem 5.4. Let G be a pointed graph with n vertices and pebbling number N = Q(n/logn).
Then any regular resolution refutation of Stone(G,S), where |S| = 3n requires size 22(n/(108 n)*).

Proof. We start with a pointed graph G with n vertices and pebbling number Peb(G) > fn/logn,
in accordance with Lemma 4.3. Set ¢ = 3/32, v = ¢/2 = (/32 and § = €/6 = 33/199608, so
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that we have 36/¢> < v < ¢/2. Now assume that there is a regular resolution refutation R of
Stone(G, S), with size at most § = 207/(1°g")° By Lemma 5.2 (the Restriction Lemma), there is a
restriction p of size r = yn/logn, such that R[p has no (en/logn)-complex clauses.

By Lemma 4.13, there is a vertex k € G and p' = (u,r') so that p’ is a k-based clamping of
(G,S), with k C £/, and (G[k], G[k] N Dom(y)) has pebbling number at least N —r > N/2. By
Lemma 5.3 (the Complex Clause Lemma), the refutation R[p must contain a (8n/32log n)-complex
clause, contradicting the conclusion of the previous paragraph. U

6 Open problem

The present paper gives a separation between regular and general resolution that is essentially
optimal. Nevertheless, there are still mysteries surrounding the exact effect of the regularity re-
striction. As mentioned in the introduction, it was widely believed in the early years of research on
the complexity of resolution that optimal proofs are always regular. This belief would be justified,
in a sense, if the conjecture formulated below were proved to be true.

The most deeply investigated family of tautologies are those based on matchings in graphs, of
which the best known are the pigeonhole formulas. These examples are based on graphs G for
which no perfect matching exists; the corresponding contradictory CNF formula F(G) asserts that
G has a perfect matching. For example, the pigeonhole formula PHP, can be understood as the
formula F'(H), where H is the complete bipartite graph K(n,n — 1). Other well-studied examples
are the graph-based formulas of Tseitin [15]. For both of these families of examples, the shortest
known resolution refutations are regular.

Conjecture 6.1. For contradictory formulas expressing matching principles in graphs, and also
for the graph-based examples of Tseitin, there is always a regular refutation of minimal size.

A proof (or disproof) of this conjecture would shed light on the question of exactly when the
regularity restriction helps in searching for short refutations.
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