Electronic Colloquium on Computational Complexity, Report No. 58 (2001)

A Note on the Minimum Number of Negations
Leading to Superpolynomial Savings

Stasys Jukna *

Abstract

In 1957 Markov proved that every circuit in n variables can be
simulated by a circuit with at most [log(n + 1)] negations. In 1974
Fischer has shown that this can be done with only polynomial increase
in size. In this note we observe that some explicit monotone functions
in P cannot be computed by a circuit of polynomial size if we allow
only logn — O(loglogn) negations.

1 Introduction

We consider Boolean circuits with And, Or and Not gates. Such a circuit
G is just a sequence gy, ...,g; of Boolean functions g¢; : {0,1}" — {0,1}
where each g¢; is either one of the input variables z1,...,z, or is obtained
from the previous functions by applying an Or, And or Not operation (such
applications are called gates). The length ¢ of this sequence is the size of the
circuit. Given a multi-output function f : {0,1}"* — {0, 1}*, we can consider
it as the sequence fi,..., fr of Boolean (i.e., single-output) functions such
that, for every input a € {0,1}", f;(a) is the i-th bit of the output f(a). A
circuit computes such a function f if all the functions fi,..., fx belong to
it.

*Universitat Frankfurt, Institut fiir Informatik, Robert-Mayer-Str. 11-15, D-60054
Frankfurt, Germany & Institute of Mathematics and Informatics, Akademijos 4, LT-2600
Vilnius, Lithuania (jukna@thi.informatik.uni-frankfurt.de)

ISSN 1433-8092



The main difficulty in proving non-trivial lower bounds on the size of
circuits is the presence of Not gates. More than 30 years ago, Markov [6]
has made an intriguing observation that every function in n variables can be
computed by a circuit with only [log(n+1)] negations.! Fischer [4] extended
this result by showing that every circuit in n variables can be simulated by
a circuit with only [log(n + 1)] negations in such a way that the increase
in size is only polynomial. Hence, if one could show that some function
in NP cannot be computed by polynomial size circuit with that number of
negations, this would imply P # NP. It is therefore natural to investigate
the power of circuits with a limited number of negations.

In fact, Markov [6] gives a surprisingly tight connection between the num-
ber of necessary negations and so-called “decrease” of the function. For two
binary vectors x = (x1,...,2,) and y = (y1,...,y,) write z < y if z; < y; for
all 7. Write also z < y if x < y and z; < y; for at least one 7. A chain in the
binary n-cube is an increasing sequence y' < y? < --- < y* of vectors. The
decrease of a function f : {0,1}" — {0,1}* on a chain Y is the number of
indices i such that f(y*) > f(y*™'). The decrease d(f) of f is the maximum
its decrease over all chains. Note that 0 < d(f) < n for every function f in
n variables, ? and d(f) = 0 if and only if f is monotone, i.e., if z < y implies

f(@) < f(y).

Theorem 1 (Markov 1957) For every function f, the minimum number of
Not gates contained in a circuit computing f is precisely [log(d(f) + 1)].

This result motivates the following question. Suppose that a function f in
n variables can be computed by a circuit of size polynomial in n (in this case
we say that f is feasable), but every circuit with M(f) := [log(d(f) + 1)]
negations computing f requires superpolynomial size. What is then the
minimal number R(f) of negations sufficient to compute f in polynomial
size? Fischer’s result only implies that this number lies somewhere between
the Markov’s lower bound M (f) and the generic upper bound [log(n + 1)].
The discrepancy between these two bounds is especially evident for functions
with M(f) = 0, i.e., for monotone functions. Berkowitz [3] and Valiant [13]
have shown that for so-called slice functions (these are monotone Boolean
functions which are non-trivial only on one slice of the n-cube) negations

LAll logarithms are base two; hence, [log(n + 1)] is the number of bits in the binary
representation of n.
2And 0 < d(f) < |(n +1)/2] for every Boolean function f in n variables.



are powerless, i.e., cannot lead to a superpolynomial savings. So, the first
natural question was whether using Not gates can lead to superpolynomial
savings in size at all?

This (long standing) problem was resolved by Razborov [9]: there exists
an explicit feasable monotone Boolean function f (corresponding to the per-
fect matching problem in bipartite graphs) such that R(f) > 0. Another
(less natural but still explcit) function, for which negations even yield expo-
nential savings, was later given by Tardos [12]. The next natural question
was: how large does R(f) actually is? Or, in other words:

How many Not gates do we actually need to achieve superpoly-
nomial savings in circuit size?

This last question was considered by many authors under additional re-
strictions on the topology and/or on the use of Not gates. In particular,
Okolnishnikova [7], and Ajtai and Gurevich [1] have shown that there exists
monotone functions that can be computed with polynomial size, constant
depth circuits, but can not be computed with monotone, polynomial size,
constant depth circuits. This implies that R(f) > 0 in the class of AC®
circuits. Moreover, it was shown by Satha and Wilson [11] that in this class
we need much more than [log(n + 1)] negations: there is a (multi-output)
function computable in constant depth that cannot be computed in constant
depth with o(n/log'*tn) negations. (Note that this result does not contra-
dict with the Markov—Fischer upper bound: their simulation requires loga-
rithmic depth.) Another line of research was to restrict the use of Not gates.
For circuits of logarithmic depth, a lower bound R(f) = Q(n) was proved by
Raz and Wigderson [8] under the restriction that all the negations are placed
on the input variables: there is an explicit monotone function (corresponding
to the connectivity problem for graphs) that can be computed with polyno-
mial size, depth O(log2 n) circuits, but can not be computed with polynomial
size, depth klogn circuits using only o(n/2F) negated variables.

But it remained unclear whether there exist feasable monotone functions
f for which R(f) = w(1), if we put restrictions neither on the depth nor
on the use of Not gates. A step in this direction was made by Amano and
Maruoka [2] who proved that the clique function cannot be computed in
polynomial size using only (1/6) loglogn negations. Unfortunately, this does
not answer the question, because the clique function itself is not feasable
(unless P = NP).



In this note we observe that, in fact, the results of Razborov and Tardos
can be used to move the threshold R(f) (of the first superpolynomial decrease
in size) quite near to the Markov-Fischer bound [log(n + 1)]: there are
(explicit) feasable monotone functions f : {0,1}" — {0, 1}" such that R(f) >
logn — cloglogn.

2 Feasable functions requiring many Not gates

Let h = h(X) be a Boolean function in m variables X = {z1,...,2n,}.
Let k = 2" and n = km. A function f : {0,1}* — {0,1}* is an r-fold
extension of h if it computes k copies of h on disjoint copies Xi,..., Xk
of X. That is, given an input (a,...,a*) with a* € {0,1} the function
outputs the sequence (h(al), .. .,h(ak)). Important here is that the i-th
output bit h(a’) is independent of inputs a’ for j # i. Note also that the
extension of monotone functions are monotone. A minterm of a monotone
Boolean function is a minimal set of variables which, if assigned the value 1,
forces the function to take the value 1 regardless of the values assigned to
the remaining variables.

Lemma 1 Let h be a monotone Boolean function, and r be a nonnegative
integer. If h cannot be computed by a monotone circuit of size t, then its r-
fold extension f cannot be computed by a circuit of size t using r negations.

Proof. Given a circuit G which computes f and has r Not gates, we eliminate
these gates one-by-one. To do this, consider the first Not gate in G, and let g
be the monotone(!) Boolean function computed at the input to this gate (i.e.,
immediately before this gate). Let ¥y and Y] be the union of the first 27!
and, respectively, the last 2"~! blocks of variables X,..., Xor. Let fo(Y))
and fi(Y7) be the corresponding (r — 1)-fold extensions of A.

Since g is monotone, all its minterms are positive (no negated literals).
Hence, we have only two possibilities: either some minterm of g lies entirely
in Y], or not. In the first case we assign constant 1 to all the variables in
Y}, whereas in the second case we assign constant 0 to all the variables in
Yy. As the function ¢ is monotone, in both cases it turns to a constant
function (constant 1 in the first case, and constant 0 in the second), and the
subsequent Not gate can be eliminated. Since YoNY; = (), the setting Y, — €
does not affect the function f;_.. Hence, we obtain a circuit which computes

4



an (r — 1)-fold extension of h, and has one Not gate fewer. Repeating this
argument 7 times we will obtain a circuit of the same (or smaller) size which
computes h and has no Not gates. O

As a corollary we obtain

Theorem 2 There exist explicit feasable monotone functions f, : {0,1}" —
{0,1}" such that R(f,) > logn — 9loglogn.

Proof. Take an explicit monotone Boolean function 7}, in m variables con-
sidered in [12]. As shown in [12], this function is feasable (can be computed
by a non-monotone circuit of size m®™")) but every monotone circuit com-
puting it requires size exponential in Q(m'/®). Let n = 2"m and consider the
r-fold extension f, of T,,. The function f, is feasable but, by Lemma 1, every

circuit with at most r Not gates computing f,, must have size exponential in

Q(m'/?) = Q ((2_’"71)1/8) =0 ((logn)g/s), as long as r < log qittss. Thus,

R(f,) > r > logn — 9loglogn. O

One may ask what happens if besides Not gates we will allow, say, mono-
tone real-valued functions ¢ : R®> — R as gates—does then the use of nega-
tions can still lead to a drastical decrease of size? The question makes sense
because it is known (see [10]) that there exist a lot of monotone Boolean
functions (slice functions) that can be computed by monotone real circuits
(no Not gates) of linear size O(n), but require Boolean circuits with And, Or
and Not gates of size 2™, On the other hand, it is shown in [5] that Tardos’
function 7}, requires also monotone real circuits of size 2%m'*) " This means
that the function f,, considered in Theorem 2 captures the role of negations
in a quite strong sense: this function is feasable but cannot be computed by
a circuit of polynomial size with fewer than logn —9loglogn Not gates, even
if we allow all monotone real-valued functions as gates.

The overall conclusion of this note is that, in the context of the P ver-
sus NP problem, it is important to understand the role of Not gates when
their number 7 is indeed very close to the Markov—Fischer upper bound of
[log(n + 1)]: moving by more than loglogn apart from this bound we esen-
tially move by logn and reach the world of monotone circuits (r = 0) where
Not gates play no role at all. It would be interesting to konw whether the
same also holds for single-output functions.



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

M. Ajtai and Y. Gurevich (1987): Monotone versus positive, J. of the ACM
34, 1004-1015.

K. Amano and A. Maruoka (1988): A superpolynomial lower bound for a
circuit computing the clique function with at most (1/6)loglogn negation
gates, in: Springer Lect. Notes in Comput. Sci., vol. 1450, 399-408.

S.J. Berkowitz (1982): On some relationships between monotone and non-
monotone circuit complexity. Technical Report, University of Toronto.

M.J. Fischer (1974): The complexity of negation-limited networks—a brief
survey, in: Springer Lect. Notes in Comput. Sci., vol. 33, 71-82.

S. Jukna (1999): Combinatorics of monotone computations, Combinatorica
19:1, 65-85.

A.A. Markov (1957): On the inversion complexity of systems of Boolean
functions, Doklady Academii Nauk SSSR, 116, 917-919 (in Russian). English
translation in: J. of ACM, 5:4 (1958), 331-334, and in: Soviet Math. Doklady
4 (1963), 694-696.

E.A. Okolnishnikova (1982): On the influence of negation on the complexity
of realization of monotone Boolean functions by formulas of bounded depth,
in: Metody Diskretnogo Analiza 38, 74-80 (in Russian)

R. Raz and A. Wigderson (1989): Probabilistic communication complexity
of Boolean relations, in: Proc. of 30th Ann. IEEE Symp. on Foundations of
Comput. Sci., 562-567.

A.A. Razborov (1985): A lower bound on the monotone network complexity
of the logical permanent, Matematicheskie Zametki, 37:6, 887-990 (in Rus-
sian). English translation in: Math. Notes Acad. of Sci. USSR, 37:6 (1985),
485-493.

A. Rosenbloom (1997): Monotone real circuits are more powerful than mono-
tone Boolean circuits, Information Processing Letters 61, 161-164.

M. Santha and Ch. Wilson (1993): Limiting negations in constant depth
circuits, SIAM J. Comput. 22:2, 294-302.

E. Tardos (1987): The gap between monotone and non-monotone circuit
complexity is exponential, Combinatorica, 7:4, 141-142.

L.G. Valiant (1986): Negation is powerless for Boolean slice functions, SIAM
J. Comput. 15, 531-535.

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’




