

A Kolmogorov complexity characterization of constructive Hausdorff dimension

Elvira Mayordomo*

Departamento de Informática e Ingeniería de Sistemas

Universidad de Zaragoza

50015 Zaragoza, SPAIN

elvira@posta.unizar.es

KEYWORDS: Kolmogorov Complexity, Information Theory, Hausdorff Dimension, Theory of Computation

1 Introduction

Lutz [6] has recently developed a constructive version of Hausdorff dimension, using it to assign every sequence $A \in \mathbf{C}$ a constructive dimension $\operatorname{cdim}(A) \in [0,1]$. Classical Hausdorff dimension [3] is an augmentation of Lebesgue measure, and in the same way constructive dimension augments Martin-Löf randomness. All Martin-Löf random sequences have constructive dimension 1, while in the case of non-random sequences a finer distinction is obtained. Martin-Löf randomness has a useful interpretation in terms of information content, since a sequence A is random if and only if there is a constant c such that $K(A[0.n-1]) \geq n-c$, where K is the usual self-delimiting Kolmogorov complexity. Here we characterize constructive dimension using Kolmogorov complexity.

Lutz [6] has proven that $\liminf_{n\to\infty}\frac{K(A[0..n-1])}{n}\leq \operatorname{cdim}(A)\leq \limsup_{n\to\infty}\frac{K(A[0..n-1])}{n}$. Staiger [7, 8] proves similar inequalities for classical Hausdorff dimension and a restricted class of sequences.

We obtain the following full characterization of constructive dimension in terms of algorithmic information content. For every sequence A, $\operatorname{cdim}(A) = \lim\inf_{n \to \infty} \frac{K(A[0..n-1])}{n}$.

2 Preliminaries

We work in the Cantor space \mathbb{C} consisting of all infinite binary sequences. The *n*-bit prefix of a sequence $A \in \mathbb{C}$ is the string $A[0..n-1] \in \{0,1\}^*$ consisting of the first *n* bits of *A*. We denote by $u \sqsubseteq v$ the fact that a string *u* is a proper prefix of a string *v*.

The definition and basic properties of Kolmogorov complexity K(x), can be found in the book by Li and Vitányi [4].

Definition 2.1. Let $f:D\to\mathbb{R}$ be a function, where D is $\{0,1\}^*$ or \mathbb{N} . f is upper semicomputable if its upper graph $Graph^+(f)=\left\{(x,s)\in D\times\mathbb{Q}\;\middle|\; s>f(x)\right\}$ is recursively enumerable. f

^{*}This research was supported in part by Spanish Government MEC projects PB98-0937-C04-02 and TIC98-0973-C03-02. It was done while visiting Iowa State University.

is lower semicomputable if its lower graph $Graph^-(f) = \{(x, s) \in D \times \mathbb{Q} \mid s < f(x)\}$ is recursively enumerable.

We give a quick summary of constructive dimension. The reader is referred to [6] and [5] for a complete introduction and to Falconer [2] for a good overview of classical Hausdorff dimension.

Definition 2.2. Let $s \in [0, \infty)$.

- An s-gale is a function $d: \{0,1\}^* \to [0,\infty)$ that satisfies the condition $d(w) = \frac{d(w0) + d(w1)}{2^s}$ for all $w \in \{0,1\}^*$.
- We say that an s-gale d succeeds on a sequence $A \in \mathbb{C}$ if $\limsup_{n \to \infty} d(A[0..n-1] = \infty$.
- The success set of an s-gale d is $S^{\infty}[d] = \{A \in \mathbf{C} \mid d \text{ succeeds on } A\}$.

Definition 2.3. Let $X \subseteq \mathbf{C}$.

- $\mathcal{G}(X)$ is the set of all $s \in [0, \infty)$ such that there is an s-gale d for which $X \subseteq S^{\infty}[d]$.
- $\mathcal{G}_{\text{constr}}(X)$ is the set of all $s \in [0, \infty)$ such that there is a lower semicomputable s-gale d for which $X \subseteq S^{\infty}[d]$.
- The Hausdorff dimension of X is $\dim_{\mathrm{H}}(X) = \inf \mathcal{G}(X)$. This is equivalent to the classical definition by Theorem 3.10 of [5].
- The constructive dimension of X is $cdim(X) = \inf \mathcal{G}_{constr}(X)$.
- The constructive dimension of a sequence $A \in \mathbb{C}$ is $cdim(A) = cdim(\{A\})$.

3 Main theorem

Theorem 3.1. For every sequence $A \in \mathbb{C}$,

$$\operatorname{cdim}(A) \le \liminf_{n \to \infty} \frac{K(A[0..n-1])}{n}.$$

Proof. Let $A \in \mathbb{C}$. Let s and s' be rational numbers such that $s > s' > \liminf_{n \to \infty} \frac{K(A[0..n-1])}{n}$.

Let $B = \left\{ x \in \{0,1\}^* \mid K(x) \leq s'|x| \right\}$. Note that B is recursively enumerable. By Theorem 3.3.1 in [4] we have that $|B^{=n}| \leq 2^{s'n-K(n)+c}$ for a constant c and for every $n \in \mathbb{N}$.

We define $d: \{0,1\}^* \to [0,\infty)$ as follows.

$$d(w) = 2^{(s-s')|w|} \left(\sum_{wu \in B} 2^{-s'|u|} + \sum_{v \in B, v \sqsubset w} 2^{(s'-1)(|w|-|v|)} \right)$$

It can be shown that d is well defined $(d(\lambda) \leq \sum_n 2^{-K(n)+c} \leq 2^c$ by the Kraft Inequality), d is an s-gale, and d is lower semicomputable (since B was recursively enumerable). For each $w \in B$, $d(w) \geq 2^{(s-s')|w|}$. There exist infinitely many n for which $A[0..n-1] \in B$, therefore $A \in S^{\infty}[d]$ and $\operatorname{cdim}(A) < s$.

Since this holds for each rational $s>\liminf_{n\to\infty}\frac{K(A[0..n-1])}{n}$ we have proven the theorem.

Corollary 3.2. For every sequence $A \in \mathbb{C}$,

$$\operatorname{cdim}(A) = \liminf_{n \to \infty} \frac{K(A[0..n-1])}{n}$$

Proof. The proof follows from theorem 3.1 and theorem 4.13 in [6].

Using this characterization we generalize Chaitin's Ω construction [1] to obtain new examples of sequences of arbitrary dimension (provided that the dimension is a computable real number) that are computable relative to a recursively enumerable set.

Corollary 3.3. Let $s \in [0,1]$ be computable, let A be a recursively enumerable set of strings, let U be a universal Turing Machine. Let θ_A^s be the infinite binary representation of the real number $\sum_{U(p)\in A} 2^{-|p|/s}$. Then $\operatorname{cdim}(\theta_A^s) = s$.

Proof. (Sketch). Let A, s, and U be as above. Let $n \in \mathbb{N}$. It can be shown that the set $\left\{p \mid |p| \leq sn, U(p) \in A\right\}$ can be computed from the string $\theta_A^s[0..n-1]$, and at least an $x \in A$ with K(x) > sn can be computed from the same string. Therefore there is a constant c such that $K(\theta_A^s[0..n-1]) > sn-c$ for every n.

Acknowledgement

I thank Jack Lutz for very helpful discussions.

References

- [1] G. J. Chaitin. Algorithmic Information Theory. Cambridge University Press, New York, N.Y., 1987.
- [2] K. Falconer. The Geometry of Fractal Sets. Cambridge University Press, 1985.
- [3] F. Hausdorff. Dimension und äusseres Mass. Math. Ann., 79:157–179, 1919.
- [4] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its Applications. Springer-Verlag, Berlin, 1997. Second Edition.

- [5] J. H. Lutz. Dimension in complexity classes. In *Proceedings of the Fifteenth Annual IEEE Conference on Computational Complexity*, pages 158–169. IEEE Computer Society Press, 2000.
- [6] J. H. Lutz. Gales and the constructive dimension of individual sequences. In *Proceedings of the 27th Colloquium on Automata, Languages and Programming*, pages 902–913. Springer Lecture Notes in Computer Science, 2000.
- [7] L. Staiger. Kolmogorov complexity and Hausdorff dimension. *Information and Computation*, 102:159–194, 1993.
- [8] L. Staiger. A tight upper bound on Kolmogorov complexity and uniformly optimal prediction. *Theory of Computing Systems*, 31:215–229, 1998.