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1 Introduction

Lutz [6] has recently developed a constructive version of Hausdorff dimension, using it to assign
every sequence A € C a constructive dimension cdim(A4) € [0,1]. Classical Hausdorff dimension [3]
is an augmentation of Lebesgue measure, and in the same way constructive dimension augments
Martin-Lof randomness. All Martin-L6f random sequences have constructive dimension 1, while in
the case of non-random sequences a finer distinction is obtained. Martin-Lof randomness has a useful
interpretation in terms of information content, since a sequence A is random if and only if there
is a constant ¢ such that K(A[0..n — 1]) > n — ¢, where K is the usual self-delimiting Kolmogorov
complexity. Here we characterize constructive dimension using Kolmogorov complexity.

Lutz [6] has proven that liminf, w < ¢dim(4) < limsup,,_, o W' Staiger
[7, 8] proves similar inequalities for classical Hausdorff dimension and a restricted class of sequences.

We obtain the following full characterization of constructive dimension in terms of algorithmic
K(A[0..n—1])

information content. For every sequence A, cdim(A) = liminf,, -

2 Preliminaries

We work in the Cantor space C consisting of all infinite binary sequences. The n-bit prefix of a
sequence A € C is the string A[0..n — 1] € {0,1}" consisting of the first n bits of A. We denote by
u C v the fact that a string u is a proper prefix of a string v.

The definition and basic properties of Kolmogorov complexity K(z), can be found in the book by

Li and Vitanyi [4].

Definition 2.1. Let f : D — R be a function, where D is {0,1}" or N. f is upper semicom-
putable if its upper graph Graph™*(f) = {(w,s) eDxQ ‘ s> f (a:)} is recursively enumerable. f
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is lower semicomputable if its lower graph Graph~(f) = {(a:, s)eEDxQ ‘ s<f (x)} is recursively
enumerable.

We give a quick summary of constructive dimension. The reader is referred to [6] and [5] for a
complete introduction and to Falconer [2] for a good overview of classical Hausdorff dimension.

Definition 2.2. Let s € [0, 00).

e An s-gale is a function d : {0,1}" — [0, 00) that satisfies the condition d(w) = % for
all w € {0,1}".

e We say that an s-gale d succeeds on a sequence A € C if limsup,,_,,, d(A[0..n — 1] = oc.

e The success set of an s-gale d is S®[d] = {A eC ‘ d succeeds on A}.

Definition 2.3. Let X C C.

e G(X) is the set of all s € [0,00) such that there is an s-gale d for which X C S°°[d].

® Geonstr(X) is the set of all s € [0,00) such that there is a lower semicomputable s-gale d for
which X C S°°[d].

e The Hausdorff dimension of X is dimp(X) = inf G(X). This is equivalent to the classical
definition by Theorem 3.10 of [5].

e The constructive dimension of X is cdim(X) = inf Geopstr (X)-

e The constructive dimension of a sequence A € C is cdim(A) = edim({A}).

3 Main theorem

Theorem 3.1. For every sequence A € C,

cdim(A4) < liminf M

n—oe n

Proof. Let A € C. Let s and s’ be rational numbers such that s > s’ > liminf,,_, w.

Let B = {a: € {0,1}"

[4] we have that |B="| < 25'»=K(n)+¢ for a constant ¢ and for every n € N.

K(z) <s |a:|} Note that B is recursively enumerable. By Theorem 3.3.1 in

We define d : {0,1}" — [0,00) as follows.

d(w)zg(s—S')\W\ Z 9—s'lul 4 Z 9(s"=1)(Jw|-|v)

wu€EB vEBwCw



It can be shown that d is well defined (d(\) < Y, 27K+ < 2¢ by the Kraft Inequality), d is
an s-gale, and d is lower semicomputable (since B was recursively enumerable). For each w € B,
d(w) > 2(s=s)1l There exist infinitely many n for which A[0..n — 1] € B, therefore A € $°°[d] and
cdim(A4) < s.

Since this holds for each rational s > liminf,,_, W we have proven the theorem.
O
Corollary 3.2. For every sequence A € C,
K(A[0.n -1
cdim(A4) = liminf K(A[Q-n = 1))
n—oo n
Proof. The proof follows from theorem 3.1 and theorem 4.13 in [6]. O

Using this characterization we generalize Chaitin’s Q construction [1] to obtain new examples of
sequences of arbitrary dimension (provided that the dimension is a computable real number) that
are computable relative to a recursively enumerable set.

Corollary 3.3. Let s € [0,1] be computable, let A be a recursively enumerable set of strings, let
U be a universal Turing Machine. Let 6% be the infinite binary representation of the real number
2 U(p)ea 2-IPl/5. Then cdim(8%) = s.

Proof. (Sketch). Let A, s, and U be as above. Let n € N. It can be shown that the set
{p ‘ lp| < sn,U(p) € A} can be computed from the string 6%[0..n — 1], and at least an z € A with

K(x) > sn can be computed from the same string. Therefore there is a constant ¢ such that
K(65[0..n — 1]) > sn — ¢ for every n. O
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