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1 Introduction

Lutz [7] has recently developed a constructive version of Hausdorff dimension, using it to assign
every sequence A € C a constructive dimension dim(A) € [0,1]. Classical Hausdorff dimension [3]
is an augmentation of Lebesgue measure, and in the same way constructive dimension augments
Martin-Lof randomness. All Martin-Lof random sequences have constructive dimension 1, while in
the case of non-random sequences a finer distinction is obtained. Martin-Lof randomness has a useful
interpretation in terms of information content, since a sequence A is random if and only if there
is a constant ¢ such that K(A[0..n — 1]) > n — ¢, where K is the usual self-delimiting Kolmogorov
complexity. Here we characterize constructive dimension using Kolmogorov complexity.

Lutz [6] has proven that liminf, w < dim(4) < limsup,_,o w. Staiger
[9, 10] and Ryabko [8] study similar inequalities for classical Hausdorff dimension and for computable
martingales.

We obtain the following full characterization of constructive dimension in terms of algorithmic

information content. For every sequence A, dim(A) = liminf,,_, o, M.

2 Preliminaries

We work in the Cantor space C consisting of all infinite binary sequences. The n-bit prefix of a
sequence A € C is the string A[0..n — 1] € {0,1}" consisting of the first n bits of A. We denote by
u C v the fact that a string u is a proper prefix of a string v.

The definition and basic properties of Kolmogorov complexity K(z), can be found in the book by

Li and Vitanyi [4].

Definition 2.1. Let f : D — R be a function, where D is {0,1}" or N. f is upper semicom-
putable if its upper graph Grapht(f) = {(m,s) eDxQ ‘ s> f (a:)} is recursively enumerable. f
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is lower semicomputable if its lower graph Graph~(f) = {(a:, s)eEDxQ ‘ s<f (x)} is recursively

enumerable.
Let s be a real number. s is upper (lower) semicomputable if the constant function f(n) = s Vn € N

is upper (lower) semicomputable.

We give a quick summary of constructive dimension. The reader is referred to [7] and [5] for a
complete introduction and historical references and to Falconer [2] for a good overview of classical
Hausdorff dimension.

Definition 2.2. Let s € [0, c0).

e An s-supergale is a function d : {0,1}" — [0, 00) that satisfies the condition
d(w) > 27° [d(w0) + d(w1)] (*)

for all w € {0,1}".

An s-gale is an s-supergale that satisfies (x) with equality for all w € {0,1}".

A martingale is an 1-gale.

We say that an s-supergale d succeeds on a sequence A € C if limsup,,_, ., d(A[0..n — 1] = oo.

The success set of an s-supergale d is S*[d] = {A €eC | d succeeds on A}.

Definition 2.3. Let X C C.

e G(X) is the set of all s € [0,00) such that there is an s-gale d for which X C S*°[d].

~

e G(X) is the set of all s € [0,00) such that there is an s-supergale d for which X C S°°[d].

° é\constr(X ) is the set of all s € [0, 00) such that there is a lower semicomputable s-supergale d
for which X C S*°[d].

e The Hausdorff dimension of X is dimg(X) = inf G(X) = inf G (X). This is equivalent to the
classical definition by Theorem 3.10 of [5].

e The constructive dimension of X is cdim(X) = inf gconstr(X ).

e The constructive dimension of a sequence A € C is dim(A) = cdim({A4}).

3 Main theorem

Theorem 3.1. For every sequence A € C,

dim(A) < liminf M

n—oo n



Proof. Let A € C. Let s and s’ be rational numbers such that s > s’ > liminf,,_, w. Let

B = {m €{0,1}" | K(z) < s’|x|} Note that B is recursively enumerable. By Theorem 3.3.1 in [4] we

have that |B="| < 25'»~K(m)+e for a constant ¢ and for every n € N. We define d : {0,1}* — [0, 00)
as follows.

d(w):2(575’)‘w‘ Z 9—s'lul 4 Z 9(s"=1)(Jw|—[v)

wu€EB vEBwCw

It can be shown that d is well defined (d(\) < Y, 27K(m+e < 2¢ by the Kraft inequality), d is
an s-gale, and d is lower semicomputable (since B was recursively enumerable). For each w € B,
d(w) > 266=5)w There exist infinitely many n for which A[0.n — 1] € B, so it follows that

A € 5%°[d] and dim(A) < s. Since this holds for each rational s > liminf,_, w we have
proven the theorem. O
Corollary 3.2. For every sequence A € C,
K(A[0.n -1
dim(A) = lim inf K(A[0.n — 1))
n—oo n
Proof. The proof follows from Theorem 3.1 above and Theorem 4.13 in [6]. O

Using this characterization we generalize Chaitin’s 2 construction [1] to obtain new examples of se-
quences of arbitrary dimension (provided that the dimension is a lower semicomputable real number)
that are computable relative to a recursively enumerable set.

Corollary 3.3. Let s € [0, 1] be lower semicomputable, let A be an infinite recursively enumerable
set of strings, and let U be a universal Turing machine. Let 6% be the infinite binary representa-
tion (without infinitely many consecutive trailing zeros) of the real number } ;) 4 2-17l/s. Then

dim(6%) = s.

Proof. We prove that there are constants ¢, d such that for each k € N, sk — ¢ < K(65[0..k — 1]) <
sk +d.

Let A, s, and U be as above. Let k¥ € N. The finite set X = {p‘ lp| < sk,U(p) € A} can be

computed from the string 6%[0..k — 1], since 05[0..k — 1] < 05 < 6%[0..k — 1] + 27%. From X}, we
can compute an xy € A with K (zy) > sk. Therefore there is a constant ¢ such that

sk < K(zy) < K(65%[0.k —1]) + ¢

and sk — ¢ < K(65[0..k — 1]) for every k.

For the other inequality, note that for each k € N, the string 6%[0..k — 1] can be computed from
the cardinal of the set X = {p| lp| < sk,U(p) € A}, therefore there is a constant d such that
K(65[0..k — 1]) < sk +d.

By Corollary 3.2, dim(6%) = s. O
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