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Abstract

We prove lower bounds on the number of product gates in bilinear and quadratic circuits that compute the
product of two n x n matrices over finite fields. In particular we obtain the following results:

1. We show that the number of product gates in any bilinear (or quadratic) circuit that computes the product
of two n xn matrices over GF(2) is at least 3n? — o(n?).

2. We show that the number of product gates in any bilinear circuit that computes the product of two n. xn

matrices over GF (p) is at least (2.5 + —57)n” — o(n?).

These results improve the former results of [3, 1] who proved lower bounds of 2.5n.2 — o(n?).

1. Introduction

The problem of computing the product of two matrices is one of the most studied computational problems: We
are given two n x n matrices z = (; ;), vy = (v,;), and we wish to compute their product, i.e. there are n? outputs
where the (i, 7)’th output is

n
(z- y)i,j = Z Tik " Yk,j -
k=1

In 69’ Strassen surprised the world by showing an upper bound of O(n!°827) [12]. This bound was later
improved and the best upper bound today is O(n237) [5] (see also [7] for a survey). The best lower bound is
a lower bounds of 2.5n2 — o(n?), on the number of products needed to compute the function [3, 1]. Thus the
following problem is still open: Can matrix product be computed by a circuit of size O(n?) ?

The standard computational model for computing polynomials is the model of arithmetic circuits, i.e. circuits
over the base {+, -} over some field F'. This is indeed the most general model, but for matrix product two other
models are usually considered, quadratic circuits and bilinear circuits. In the quadratic model we require that
product gates are applied only on two linear functions. In the bilinear model we also require that product gates
are applied only on two linear functions, but in addition we require that the first linear function is linear in the
variables of z and that the second linear function is linear in the variables of yy. These models are more restricted
than the general model of arithmetic circuits. However it is interesting to note that over infinite fields we can
always assume w.l.0.g. that any circuit for matrix product is a quadratic circuit [13]. In addition we note that the
best circuits that we have today for matrix product are bilinear circuits.
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In this paper we prove that any quadratic circuit that computes matrix product over the field GF(2) has at least
3n2 — o(n?) product gates, and that any bilinear circuit for matrix product over the field G F (p) must have at least
(2.5 + 55:27)n? — o(n?) product gates.

From now on we will use the notation M P,, to denote the problem of computing the product of two n x n
matrices.

1.1. Known Lower Bounds

In contrast to the major advances in proving upper bound, the attempts to prove lower bounds on the size of
bilinear circuits that compute M P,, were less successful. Denote by g.(MP,) and bl.(MP,) the number of
product gates in a smallest quadratic circuit for M P, and in a smallest bilinear circuit for M P,, respectively.
We also denote by bl;,:(M P,,) the total number of gates in a smallest bilinear circuit for M P,,. In 78’ Brocket
and Dobkin proved that bl,(MP,) > 2n% — 1 over any field [10]. This lower bound was later generalized by
Lafon and Winograd to a lower bound on ¢, (M P,,) over any field [8]. In 89’ Bshouty showed that over GF'(2),
g.(MP,) > 2.5n%2 — O(nlogn) [3]. Recently Blaser proved a lower bound of 2n? +n — 3 on ¢, (M P,,) over any
field [2]. In [1] Blaser proved that bl, (M P,) > 2.5n2 — 3n over any field.

In [9] it is shown that any bounded depth circuit for M P,,, over any field, has a super linear (in n2) size. Notice
however, that the best known circuits for M P,, have depth Q(logn).

1.2. Bilinear Rank

An important notion that is highly related to the problem of computing matrix product in bilinear circuits is the
notion of bilinear rank.

A bilinear form in two sets of variables z, y is a polynomial in the variables of x and the variables of y, which
is linear in the variables of x and linear in the variables of y. Clearly each output of M P, is a bilinear form in
z = {z;;}, y = {vi;}- The bilinear rank of a set of bilinear forms { b1(z,y), ..., by(z,y) } is the smallest

number of rank 1 bilinear forms that span b1, ..., b,,, where a rank 1 bilinear form is a product of a linear
form in the z variables and a linear form in the y variables. We denote by Rg (b1, ---, by,) the bilinear rank of
{ b1, ..., by, } over the field F'. For further background see [4, 7].

We denote by Ry (M P,) the bilinear rank over F of the n2 outputs of matrix product, i.e. it is the bilinear rank
of the set {> %1 = x - yx,j }i,; OVer F.
The following inequalities are obvious (over any field).

e ¢.(MP,) <bl,(MP,) < 2¢.(MP,).
e Rp(MP,) =bl.(MP,).
e The following inequality is less obvious, but also not so hard to see.
bl (MP,) < bliot(MP,) < poly(logn) - bl.(MP,) .

l.e. up to polylogarithmic factors, the number of product gates in a smallest bilinear circuit for M P,,, over
any field F, is equal to the total number of gates in the circuit.

1.3. Results and M ethods

We prove that any quadratic circuit that computes M P, over the field GF(2) has at least 3n? — o(n?) product
gates (i.e. g.(M P,) > 3n? — o(n?) over GF(2)). We also prove that over the field G F(p) every bilinear circuit



for M P,, must have at least (2.5 + 55:%)n* — o(n) product gates (i.e. bl,(MP,) > (2.5+
GF(p)). Both of these results actually hold for the bilinear rank as well.

The proof of the lower bound over GF'(2) is based on techniques from the theory of linear codes. However,
we cannot use known results from coding theory in a straightforward way, since we are not dealing with codes
in which every two words are distant, but rather with codes on matrices in which the distance between two code
words, of two matrices, is proportional to the rank of the difference of the matrices. The reduction from circuits to
codes and the proof of the bound are given in section 4.

The proof of the second bound is based on a lemma proved by Blaser in [1]. We prove that in the case of finite

fields we can use the lemma with better parameters than those used by Bldser. This result is proved in section 5.

p%f’l )n? — o(n?) over

1.4. Organization of the paper

In section 2 we present the models of bilinear circuits and quadratic circuits. In section 3 we present some
algebraic and combinatorial tools that we need for the proofs of our lower bounds.

In section 4 we introduce the notion of linear codes of matrices, and prove our lower bound on bilinear and
quadratic circuits that compute M P,, over GF'(2). In section 5 we prove our lower bound on bilinear circuits that
compute M P, over GF(p).

2. Arithmetic M odels

In this section we present the models of quadratic circuits and bilinear circuits. These are the models for which
we prove our lower bounds. We first give the definition of a general arithmetic circuit. An arithmetic circuit over
a field F' is a directed acyclic graph as follows. Nodes of in-degree 0 are called inputs and are labeled with input
variables. Nodes of out-degree 0 are called outputs. Each edge is labeled with a constant from the field and each
node other than an input is labeled with one of the following operations { + , - }, in the first case the node is a plus
gate and in the second case a product gate. The computation is done in the following way. An input just computes
the value of the variable that labels it. Then, if vy, ..., vy are the vertices that fan into v then we multiply the
result of each v; with the value of the edge that connects it to v. If v is a plus gate we sum all the results, otherwise
v is a product gate and we multiply all the results. Obviously the value computed by each node in the circuit is a
polynomial over F' in the input variables.

We are interested in the problem of computing the product of two n x n matrices, M P,. The input consists of
two n x n matrices z, y. The output is the matrix z - , i.e., there are n? outputs, and the (4, 7)’th output is:

n
(T-Y)ij =Y Tik- Yky -
k=1

Each output (z - y); ; is hence a bilinear form in z and y.

Since each output of M P, is a bilinear form, it is natural to consider bilinear arithmetic circuits for it. A bilinear
arithmetic circuit is an arithmetic circuit with the additional restriction that product gates are applied only on two
linear functions, one function is linear in the variables of x and the other function is linear in the variables of y.
Thus, bilinear circuits have the following structure. First, there are many plus gates computing linear forms in z
and linear forms in y. Then there is one level of product gates that compute bilinear forms, and finally there are
many plus gates that eventually compute the outputs. We will be interested in bounding from below the number
of products in any bilinear circuit for M P,. This model is more restricted than the general model of arithmetic
circuits but we note that all the known upper bounds (over any field) for M P,, are by bilinear circuits.

Another model that we will consider is the model of quadratic circuits. A quadratic circuit is an arithmetic
circuit with the additional restriction that product gates are applied only on two linear functions. Notice that the



only difference between quadratic circuits and bilinear circuits is that in the quadratic model the product gates
compute quadratic forms in z, y, whereas in the bilinear model the product gates compute bilinear forms in z, y.
This model is more general than the model of bilinear circuits, but it is still more restricted than the general model.
However it is interesting to note that over infinite fields we can assume w.l.0.g. that any arithmetic circuit for M P,
is a quadratic circuit [13].

3. Algebraic and Combinatorial tools

In this section we present some algebraic and combinatorial tools that we will use.

The following lemma is an extremely weak variant of the famous Schwartz-Zippel lemma which shows that
every non zero polynomial (non zero as a formal expression) over a large enough field has a non zero assignment
in the field (see [11, 15]).

Lemmal Let P be a polynomial of degree d in z1, ..., z, over some field F', such that d < |F'|, and such that
at least one of the coefficients of P is not zero. Then we can find an assignment, p € F", to the z;’s, such that

P(pla'-'apn) 7&0

We say that two polynomials p, g in n variables are equivalent over a field F', if p(z1,...,z,) = q(z1,-..,%y)
forany z1, ..., z, € F. We denote p = ¢ if p and ¢ are equivalent over F' (we omit F' from the notation as the
field that we deal with will be clear from the context).

Lemma 2 Let P be a polynomial of degree d in the variables z,, ..., z, over a field F. If P # 0 then we
can find an assignment, p € F™, to the x;’s such that at most d of the p;’s get a nonzero value, and such that

P(pla'-'ap’n) 7&0

Proof: P is equal (as a function) to a polynomial P in which the degree of each variable is at most |F| — 1. We
call P the reduction of P. Consider some monomial M in P whose coefficient is not zero. We assign all the
variables that do not appear in M to zero. The resulting polynomial (after the assignment), is a polynomial in the
variables of M, which is not the zero polynomial as it is a reduced polynomial which has a monomial with a non
zero coefficient (M of course). Therefore according to lemma 1 there is some assignment to the variables of M,
that gives this polynomial a nonzero value. Therefor we have found an assignment which gives nonzero values
only to the variables of M (and there are at most d such variables) under which P # 0. &

The following useful lemma, which is a straightforward implication of the previous lemma, is the key lemma
in most of our proofs. The lemma deals with linear forms in n2 variables. From now on we shall think about such
linear forms as linear forms in the entries of n x n matrices.

Lemma3 Letpq, ..., u,2 ben? linearly independent linear forms in n? variables over some field F. Let P be a
polynomial of degree d in kn? variables over F, i.e. we can view P as a polynomial P(z, ..., ;) in the entries of
k matrices, z1, ..., ¢k, Of size n x n each. Assume that P # 0. Then we can find k£ matrices a1, ..., ax € M,(F)
such that P(ay, ...,ax) # 0 and such that there exist n? — d linear forms among 1, ..., 1,,2’s that vanish on all
the a;’s.

Proof: The idea of the proof is the following. Let by, ..., b,2 be the dual basis of y1, ..., y,2, i.e. it is a basis
of M, (F) satisfying Vi,j p;(b;) = d; ;. We wish to find k£ matrices, a1, ..., ax, such that P(a1, ..., a) # 0, and
such that there exist b;, , ..., b;, that span all of them. If we manage to find such matrices, then since the b;’s are the
dual basis to the u;’s we will get that n2 — d of the p;’s vanish on a1, ..., a;. The way to find such matrices that
are contained in the span of a small subset of the b;’s, is based on lemma 2.

4



So let by, ..., b, be the dual basis to p1, ..., p,2, i.e. Vi,j p;(bj) = d; ;. We now change the variables of
P. Leta;; j = 1.k, i = 1..n? be a set of kn? variables. Denote z; = D @i jbi. Thus P(z1, ...,zy) can
be viewed as a polynomial of degree d in the kn? variables a; ;. Therefore P # 0 as a polynomial in the «; ;’s.
Hence, according to lemma 2 there exists an assignment, p, to the o ;s such that at most d of them get a nonzero
value. Define a; = zgﬁl pi,jbi. Clearly P(ay,...,ax) # 0. Since at most d of the p; ;’s got non zero values,
we see that there are at most d b;’s such that all the a;’s are linear combinations of them. Since the b;’s are the
dual basis to yi1, ..., p,2 We get that there are at least n? — d of the p;’s that vanish on all the a;’s. Therefore
a1, ..., oy satisfy the requirements of the lemma. &

The next lemma will enable us to translate properties of matrices over large fields of characteristic p to properties
of matrices (of higher dimension) over GF'(p).

Lemma 4 There exist an embedding, ¢ : GF(p") — M,,(GF(p)). That is there exist a mapping ¢ : GF (p")
M, (GF(p)) such that

e ¢ is aone to one linear transformation.

e ¢(1) = I, where I is the n x n identity matrix.

e ¢ is multiplicative, i.e. Vz,y € GF(p") we have that ¢(zy) = ¢(z) - ¢(y).
This embedding also induces an embedding My (GF (p")) — M,x(GF(p)).

This lemma is a standard tool in algebra, but for completeness we give the proof.

Proof: GF(p") is an n dimensional vector space over GF(p). Each element z € GF(p™) can be viewed as a
linear transformation = : GF(p™) — GF(p™) in the following way:

Vy € GF(p") z(y)=z-y.

Clearly this is a linear transformation of GF'(p™) into itself, as a vector space over GF(p). Therefore, by picking
a basis to GF(p™) we can represent the linear transformation corresponding to each x € GF(p™) by a matrix
az € M,(GF(p)). Thus, we have defined a mapping ¢ : GF(p") — M,(GF(p)) such that ¢(z) = ay, and it
is easy to verify that this mapping is an embedding of GF(p™) into M,,(GF(p)). The way to generalize it to an
embedding of My (GF(p™)) into M,,(GF(p)) is the following. Let a = (a; ;) € My(GF(p™)) be some matrix.
Every entree of a; ; of a, is some element of GF(p™). We can now replace a; ; with the matrix ¢(a; ;). Thus the
resulting matrix will be a kn x kn matrix whose entries are in GF'(p). Again it is easy to verify that this is indeed
an embedding of My (GF(p™)) into M,,;(GF(p)). &

In addition to the algebraic lemmas we also need the following combinatorial tools.

Definition 1 Let F be a field, and let v, u be two vectors in F'™. We denote by weight(v) the number of nonzero
coordinates of v. Let dg(v,u) = weight(v — u), i.e. du(v,u) is the number of coordinates on which « and v
differ. dgz(v, u) is also known as the Hamming distance of u and v. We also denote by agree(u,v) the number of
coordinates on which » and v are equal, i.e. agree(u,v) = m — du(v, u).

The next lemma shows that if a vector space contains a set of vectors such that every pair/triplet of them don’t
agree on many coordinates (i.e. their Hamming distance is large) then it is of large dimension. There are numerous
similar lemmas in coding theory, and in particular the first part of our lemma is the famous Plotkin bound (see

[14]).



Lemma5 1. Inevery setof k vectors in GF (p)?, such that p < k, there are two vectors that agree on at least
(5 — %) coordinates.

2. Inevery set of k vectors in GF(p)?, such that 2p < k, there are three vectors that agree on at least (I% — ;’—fc)
coordinates.

Proof: We begin by proving the first claim. Let v1,...,v; be k vectors in GF(p)t. We are going to esti-
mate 3, ; agree(v;, v;) in two different ways. On the one hand this sum is at most ( ) times the maximum of
agree(v;, v;). On the other hand consider a certain coordinate. For every o e GF(P) denote by n, the number
of vectors among the v;’s that are equal to & on thls coordinate. Clearly E” _oMa = k. The contribution of this
coordinate to 3, _; agree(v;, v;) is exactly 3°F_ ( ). By convexity

=1 (ng 1 k(k k(k — p)
> (5)zra s () =157

a=0
We get that
k
<2> Igléii((agree(vz,v])) >
k(k —
Zagree(vi,vj) >t- k(k —p) .
i<j 2p
Therefore - N L
- —-bp
> — > - r__-__
max(agree(vi,0;)) 2 7 = 2 Lol = Lo

The proof of the second claim is similar. We give two different estimates to >, . agree(v;,v;,v;) (the number
of coordinates on which v;, v;, and v; are the same). In the same manner as before we get that

t k—p k—2p t 3t
gg?é(l(agree(vlavjavl)) > P . m : kE—_29 > P - ]E .
&
Corollary 1 If {0,1}* contains k vectors v1, ..., wg, such that 2 < k and Vi # j du(vi,v;) > N, then
t>2N — 42

Proof: According to lemma 5 there are two vectors, w.l.0.g. v; and v, such that agree(vy,vg) > % - % Since
du(vi,v2) =t — agree(vy, v9) We get that

t 1
D> >N
t—(5 - 1) >du(v,v) >

and the result follows. &



4. Lower bound over GF(2)
In this section we prove our main theorems.

Theorem 1 bl,(MP,) > 3n2 — O(n3) (in other words Repo)(MP,) > 3n> — O(n3)).
The second theorem that we shall prove is a lower bound for quadratic circuits.

Theorem 2 q.(MP,) > 3n? — O(n%). I.e. the number of product gates in any quadratic circuit that computes
the product of two n x n matrices over GF(2) is at least 3n? — O(n%).

Clearly theorem 2 imply theorem 1, but we first prove of theorem 1 as it is more intuitive and simple. We begin
by introducing the notion of linear codes of matrices.

4.1. Linear Codesof Matrices

Definition 2 A linear code of matrices is a mapping,
I': M,(GF(2)) — {0,1}™,
(for some m) with the following properties:
e T'is linear.
e For any matrix a, weight(T'(a)) > n - rank(a).
From the linearity of I" and the requirement on weight(I'(a)) we get the following corollary.
Corollary 2 T'is a one to one mapping, and for any two matrices a and b, dg(I'(a), (b)) > n - rank(a — b).

The following theorem shows that the dimension of the range of any linear code of matrices is large (i.e. m
must be large).

Theorem 3 LetT : M, (GF(2)) — {0,1}™ be a linear code of matrices, then m > 3n? — O(ng) .

Proof: Denote
F(CI,) = ( Nl(a), ey Nm(a) ) -

The proof is based on the following lemma that shows that we can find & = ns matrices, ai, -.., ap €
M, (GF(2)), with the following properties.

e Vi # j, a; — a; isan invertible matrix.
e There are n? — (’;)n linear forms among the y;’s that vanish on all the a;’s.

We state the lemma for every k < 2™ but we apply itonly to k& = ns.

Lemma6 For every n,k such that k& < 2", and any ui, ..., un2 linearly independent linear forms in n?
variables, over GF'(2), there are k matrices, a1, ...,a; € M,(GF(2)), such that for every i # j, a; — a; is an
invertible matrix, and such that n2 — (¥)n of the y;’s vanish on them.



Proof: Consider the following polynomial P in k& matrices:

P(ay,...,ax) = determinant (H(ai — aj)> .
i<j
Clearly a set of k matrices a1,...,ay satisfy P(ai,...,a;) # 0 iff all the matrices a; — a; are invertible. In
addition, it is easy to see that deg(P) = (’;)n Therefore if we show that P # 0 over GF(2), then according to
lemma 3 we will get what we wanted to prove.

In order to show that P £ 0 we just have to prove the existence of k matrices, such that the difference of
every two of them is invertible. Lemma 4 assures us that we can embed the field GF'(2") into M,(GF(2)).
Denote this embedding by ® : GF(2") — M, (GF(2)). We take k distinct elements in GF'(2"), =1, ..., Tk.
Their images, ®(z1), ..., ®(zx), are matrices in M,(GF(2)) such that the difference of every two of them,
®(z;) — ®(z;) = ®(x; — x;), is an invertible matrix. This is because the z;’s are distinct (i.e. z; — z; # 0), and
every nonzero element in GF'(2") is invertible. Thus, ®(z1), ..., ®(zx) are exactly the k matrices that we were
looking for. This concludes the proof of the lemma. &

We proceed with the proof of the theorem. Let &k = ns. Since I' is a one to one mapping, there are n?

independent linear forms among p1, ..., pm. Therefore we can use lemma 6 and get that there are k& matrices
ai, ..., ag such that for every ¢ # j a; — a; is invertible, and such that, w.1.0.9., ptyy—r41, ..., fm Vanish on
ar, ..., a forsomer > n2 — ¥ > n? —n3.

Since the last r linear forms vanish on all the a;’s, we are going to restrict our attention only to the first m — r
linear forms. So from now on we only consider I'(a;) restricted to its first m — r coordinates.

Since each of the differences, a; — a; (Vi # j), is an invertible matrix, we get that
du(T(a;),T(a;)) > n? Thus, ['(a1), ..., I'(ax) are k vectors contained in {0,1}™~" (we consider only
their first ., — = coordinates !) such that the hamming distance of every pair of them is at least n2. Therefore

according to corollary 1 we get that

,n2

k+2°

m—r22n2—4

Sincer >n2 —njand k = n3, we get that
m > 3n? — O(n%)

which is what we wanted to prove. This concludes the proof of the theorem. L]

4.2. Proof of Theorem 1

Assume that bl (M P,,) = m. Let C be a smallest bilinear circuit for M P,,. Let

p1(z) - my), - wm(z) - Mm(y)

be the m bilinear forms computed in the product gates of C. We will show that these bilinear forms define in
a very natural way a code on M, (GF(2)). The code thus defined, will have the property that the dimension of
the space into which the code maps M,,(GF(2)) is exactly m. Thus, according to theorem 3 we will get that
m > 3n2 — O(n3), which is what we wanted to prove.

So we begin by defining a mapping from M,,(GF(2)) to {0,1}™. LetT : M,(GF(2)) — {0,1}™ be the
following mapping.

I(z) = (ua(2), -, pm(2)) -

Notice that we ignore the 7;’s in the definition of T". The next lemma shows that T" is a linear code of matrices.



Lemma 7 T isa linear transformation with the property that for every matrix x € M,(GF(2)), weight(['(z)) >
n - rank(z).

Proof: Clearly T is a linear transformation from M, (GF(2)) to {0,1}™. So we only have to prove the claim
about the weights. Let = be a matrix of rank . Assume w.l.o.g. that pi(z) = ... = pg(z) = 1 and that
pr+1(z) = ... = pm(z) =0, i.e. weight(I'(z)) = k. We shall show that k& > nr. For every y € M, (GF(2)),
the n? entries of x - y are functions of u1(z) - 91 (y), --., pm(z) - Nm(y). Since pgi1(z) = ... = pm(z) =0,
we get that = -  is a function of 51 (y), ..., n(y). Therefore there are at most 2* different matrices of the form
x - y. Since rank(z) = r we get that there are exactly 2™" different matrices of the form z - y. Therefore & > nr.
This concludes the proof of the lemma. &

Therefore T is a linear code of matrices, so according to theorem 3 we get that m > 3n? — O(n %) which is
what we wanted to prove. This concludes the proof of theorem 1. &

4.3. Proof of Theorem 2

As in the proof of theorem 1 we will show that every quadratic circuit for M P,,, defines a code on M,,(GF(2)).
The code thus defined, will have the property that m (i.e the dimension of the space into which the code maps
M, (GF(2))) is exactly the number of product gates in the circuit. Thus, according to theorem 3 we will get that

m > 3n2 — O(n3), which is what we wanted to prove.

Let C be a quadratic circuit for M P,. Assume that the product gates of C' compute the quadratic forms
pi(z,y) - m(z,y), ..., um(z,y) - nm(z,y). Thus, each of the outputs (z - y); ; can be written as a sum of these
quadratic forms:

Z o; ) e(Z,y)

where a ) € {0,1}.

We would like to have a proof similar to the proof of theorem 1. In that proof we defined a code of matrices
using the linear transformation p1, ..., . Unfortunately this method will fail here as u; is a linear function in
both the variables of z and the variables of y and not just in the variables of z as in the proof of theorem 1. In
order to overcome this obstacle we introduce a new set of variables z = {z; ;}; j—1..n. We think about z as an
n x n matrix. Define the following m linear forms in z:

= Zagf;)z%] , k= ]_,...,m.
We get that

i pi(,y) - ne (2, ) - (2) =

Z sz a ) - bk, y) - nk(z,y) =

k=1 1,j
Zzl,j Za Nk z y nk(a;ay) = 1)
1]

Zzi,j (z-y)i; = trace(z -y - 2,



where (z");; = z;,;. The computation that we just performed shows that the ~;’s that we introduced are quite
natural. We also notice that z plays the same role in trace(z - y - z%) as z and y. These observations motivate us
to try to repeat the proof of theorem 1 using the -y;’s instead of the u;’s.

So define a linear mapping I : M,,(GF(2)) — {0,1}™ by

[(2) = (11(2), ---5 Ym(2)) -

The following lemma shows that I is indeed a linear code of matrices.
Lemma 8 T is a linear mapping and it has the property that for every matrix z, weight(I'(z)) > n - rank(z).

Proof: Clearly I is a linear mapping. So we only have to prove the claim about the weights. Let zg be a matrix of
rank r, and assume w.l.0.g. that y1(zp) = ... = x(z0) = 1 and yx11(20) = ... = Ym(z0) = 0. We wish to prove
that & > nr. From equation 1 we get that

k
trace(z -y - 20") = Y pi(z,y) - ni(x,y) -
i=1
We now consider the discrete derivatives of this equation. Let e; ; be the matrix of all zeros but 1 in the (i, j)’th
place. Define

trace(z -y - 2") def

0x;
trace((z +e; ;) -y 20") — trace(z -y - 2") .

On the one hand
trace((z +e; ;) -y - 20") — trace(z -y - 2") =

trace(e; ;- y- 2") = (20 - yt)i,j :

On the other hand we have that

trace((z +e; ;) -y - 20") — trace(z -y - 2") =

k

S (pilw + i y) - mim + eij,y) — pilz,y) - ni(z,y) =
izl

k
im1
k
+ Z i (ei7j7 0) ' ni(ei,ja O) )
izl

where the last equality follows from the linearity of the 12;’s and the n;’s. Since (2o - 4*); ; is a linear form in y, we
actually get that

(20 - yt)i,j = trace(z -y - zot) =

Zij
k

> (uilei,0) - ni(z,y) + pi(x, y) - milei;, 0))
o1

C span(u;i(z,y), ni(z,y))
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(since (zo - y');; is a linear form the third summand of equation 2 sums to 0). In the same manner we define

trace(r -y - zo") def

i,
trace(z - (y +e;;) - 20") — trace(z -y - 2") .

We get that

(2 20)ij = B -trace(z -y - 20") =
]

Z:(ui(O, eij) - mi(@,y) + pi(z,y) - mi(0, ei )

C span(ui(z,y), ni(z,y)) -
Denote by PD the set of all the discrete partial derivatives

0 0
tracea;-y-zt—tracea:-y-zt
{a% @y =), treceley )

We just proved that PD is contained in the linear span of
{ pal,), miz,) Yoo,
in the vector space of all linear forms in z, y. Therefore
dim(span(PD)) <

< dim(span{ pi(z,y), mi(z,y) }i) <2k .
We also showed that

0
trace(z -y - '), ——trace(z - y - zot)} =
i ij

0z;

— { (2" - 20)i 4, (20 -y }

Therefor, using our assumption that rank(z¢) = r, we get that

b,

dim(span(PD)) =

= dim(span{ (xt - 20)i,5, (20 'yt)i’j}ij) = 2nr .

Combining equations 3 and 4 we get that 2k > 2nr.

Theorem 2 now follows from applying theorem 3 on the linear code of matrices I'.

11
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5. Other Finite Fidds

In this section we prove the following theorem.

Theorem 4 The number of product gates in any bilinear circuit that computes the product of two n x n matrices
over GF(p) is at least (2.5 + 327)n” — O(nt) (i.e. bl (MP,) > (2.5 + Ss2p)n® — O(n1) over GF (p)).

Let C be a bilinear circuit for M P,, over GF(p). Assume that pi(z) - m1(y), ..., sm(z) - nm(y) are the
bilinear forms computed in the product gates of C'. The following lemma of Bldser is the main tool in the proof of
the theorem.

Lemma9 [1] Let [a,b] = ab — ba. If there are two matrices a, b such that [a, b] is an invertible matrix, and such

that there are ¢ linear forms among w1, --.., um, Such that each of them vanish on I, a, b then
m>t+ 1.5n2 .
We are going to prove that we can find a, b such that (1 — I%)nQ + 05— O(ng) linear forms among g1, - -, fm

vanish on I, a, b, and such that [a, b] is invertible.

Proof of Theorem 4: We begin by proving that (w.l.0.g.) many of the y;’s vanish on I. The following lemma
shows that we can always find an invertible matrix such that many of the u;’s vanish on it. As before we assume
that 441, ..., p,2 are independent linear forms.

Lemma 10 There exists an invertible matrix ¢, such that at least (1 — %)n2 + O(ng) of the u;’s vanish on

p
it, where n2 — O(ng) of the p;’s that vanish on it are among g1, ..., fy,2.
Proof: An analog of lemma 6 over GF(p) guarantees that we can find & = ns matrices, a1, ..., ax €
M,,(GF(p)), such that for i # j a; — a; is invertible, and such that n? — (’;)n linear forms among g1, - .., fin2
vanish on all of them. Denote r» = n? — (’;)n And assume w.l.o.g. that g1, ..., u,- vanish on all the a;’s.

Let us consider the following k vectors in GF (p)™":

T(a;) © (urs1(as), - imlas) , i=1...k.

As in the proof of theorem 1, we get that since Vi # j a; — a; is an invertible matrix, then dgr(I'(a;), I'(a;)) > n?.
According to lemma 5, two of these vectors agree on at least *~= — *= coordinates. Assume that I'(a;) and
I'(as) are these vectors. Denote ¢ = a; —az. We have that c is an invertible matrix, such that the firstr = n? — (’;)n
linear forms (which are independent) vanish on it, and such that all the linear forms that I'(a1) and I'(a2) agree

on, vanish on it as well. Therefore there are at least

_l_m—r m-—r
r _
p k

linear forms that vanish on c. Since 7 = n? — (5)n, and k = n3, we get that at least
(1 -2+ 2~ 0(nd)
——)n"+ ——-0(n
p p

linear forms vanish on ¢, n? — O(n%) of them are among p1, ..., p,2 (We assume for simplicity that n? < m <
10n?, as it will not change the results). This completes the proof of the lemma. &
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The lemma doesn’t tell us who c is, but using the sandwiching method we can assume that ¢ = I: We know that
x -y is computed using the bilinear forms

pr(x) - m(y)s - () - Nm(y) -

We now do the following trick: z -y = (z - ¢) - (¢! - y), therefore z - y can be computed using the bilinear forms

() -m)s -y dm(T) -1 (y)

where ot ot
fi(z) = pi(z-c) and 7(y) = mi(c - y) .
Thus, if ;(c) = 0 then we get that /7;(I) = p;(I-¢) = 0. This trick is called sandwiching, for further background
see [1, 6].
So by combining the sandwiching method and lemma 10 we get that we can assume w.l.0.g. that (1 — %)nQ +

m

- O(n%) of the y;’s, where n? — O(n%) of them are among p1, ..., uy2, vanish on I. The next lemma now
assures us that we can find two matrices a, b that satisfy the requirements of lemma 9.

Lemma 11 There are two matrices a, b such that [a, b] is an invertible matrix and such that at least (1 — ]%)nQ +
%~ O(n%) of the p;’s vanishon I, a, b.

Proof: The proof of this lemma is similar to the proof of lemma 10. Let &k = ni. The following lemma shows
that we can find & matrices such that many of the u;’s vanish on all of them and such that among their differences
there are matrices satisfying the requirements of lemma 9.

Lemma 12 For every n, k, such that p> > 4(’3“), and any p1, ..., u,2 linearly independent linear forms, in n?
variables, over GF (p), there are k matrices, a1, ..., ax, such that Vi < j < I, [a; — a;,a; — q;] is invertible,
and such that n? — 2(¥)n of the ;s vanish on all the a;’s.

Proof: Again we use lemma 3. Let P be the following polynomial.
P(ay,...,ar) = determinant H la; —ar,a; —aq] | .
i<j<l

Clearly deg(P) = 2(’§)n (as a polynomial in the entries of the a;’s). Therefore if we will prove that P # 0, i.e.
that there exist k matrices on which P is not zero, then according to lemma 3 we are done. This is guaranteed by
the following lemma.

Lemma 13 If p2 > 4(%) then there exist k matrices in M, (GF(p)), a1, ..., a such thatVi < j < I,
[ai —ap,a; — al] is invertible.

We prove the lemma only for n even. Clearly this will not affect theorem 4, as the lower bound for odd n
follows from the lower bound for even n.

Proof: Consider the following polynomial in 4k variables (i.e. it is a polynomial in & matrices over M 2 (GF(p))!

).
Q(z1, ..., xg) = determinant ( H la; — a0 — al]> .

i<j<l
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Q is a polynomial of degree d = 4(’;) over GF(p), in the entries of the a;’s. Clearly @ is not the zero polynomial
(as it is a product of non zero polynomials). Consider the field F' = GF(p%). Since d < |F'| we get by lemma 1
that there are k matrices p1, ..., pr € Mo(F') such that Q(p1, ..., px) # 0. Thatis, Vi < j <1 [p; — p1,p; — p1] IS
an invertible matrix. According to lemma 4 we can embed My (F') in M,,(GF'(p)). Therefore there are k matrices
in M,,(GF(p)) satisfying Vi < j <1 [a; —a;, a; —a;] is an invertible matrix, which is what we wanted to prove. &

This concludes the proof of lemma 12. &

We proceed with the proof of lemma 11. We now restrict our attention to the linear forms among fi,,2.41, ., fm
that vanish on I. We shall prove that three of the matrices guaranteed by lemma 12 agree on many of these linear
forms (more formally on mp;g”? - O(n%) of them). Thus, if a1, a2, a3 are these three matrices, then we get that
(1-Lm24+m— O(n%) linear forms vanish on I, (a1 — a3), (a2 — as3), and that [(a1 — a3), (a2 — a3)] is an
invertible matrix, which is what we wanted to prove.

So assume w.l.o.g. that the linear forms p,,2, 1, ..., p,24, , vanish on I (beside those among p1, ..., py,2
that vanish on it) where r > %M — O(ng). Letaq, ..., ag be the matrices guaranteed by lemma 12. Consider
the following vectors: V1 <i <k,

Uy = (Mn2+1(ai)a SRR N‘nz—f—r(a”i)) € GF(p)r .
According to lemma 5 three of these vectors, namely vy, vo, v3, agree on at least 1% — 1?;—,’; coordinates. Therefore
there are p% — 1% linear forms among (4,241, ..., Mp2y, that vanish on a; — a3 and as — a3. In addition there
are n? — 2(’§)n linear forms among yu1, . . . , 1,2 that vanish on a1, ag, a3, hence there are n? — 2(’§)n linear forms
among g1, ..., My,2 that vanish on a; —as and on as — as. Leta = a; — az, b = as — as.

We get that there are I% — 1?;—,’; linear forms among g,,2, 1, ---, Hn24, that vanishon I, a, b. Since n? — O(n%)

of the first n? y;’s vanish on I, we get that at least n? — 2(’;)7;, - O(n%) of the first n? y;’s vanish on I, a, b.
Putting it all together we get that at least

712—2<k>n—0(n%)+L2 _ar

linear forms among f41, ..., g, Vanishon I, a, b. Since r = m;”2 - O(ng), and k = ni, we get that at least
(1 - )n + 2~ 0(nt)
- —=)n — — 0O(n
P P
of the u;’s vanish on them. This concludes the proof of lemma 11. &

Putting everything together we get by lemma 9 and lemma 11 that:

1 m 7
m > 1.5n% + (1 —E)nQ-I-E —0O(n1).

Therefore
1.5 9

m > (2.5 + 1)n —O(n%).

This concludes the proof of theorem 4. &
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