Electronic Colloquium on Computational Complexity, Report No. 65 (2001) e TaTs

Approximation Schemes for Preemptive Weighted Flow Time

Chandra Chekuri * Sanjeev Khanna!
August 14, 2001

Abstract

We present the first approximation schemes for minimizing weighted flow time on a single machine with
preemption. Our first result is an algorithm that computes a (1 + €)-approximate solution for any instance
of weighted flow time in O(nC(n WinP/€%)) time; here P is the ratio of maximum job processing time to
minimum job processing time, and T is the ratio of maximum job weight to minimum job weight. This result
directly gives a quasi-PTAS for weighted flow time when P and W are poly-bounded, and a PTAS when
they are both bounded. We strengthen the former result to show that in order to get a quasi-PTAS it suffices
to have just one of P and W to be poly-bounded. Our result provides a strong evidence that the weighted
flow time problem has a PTAS. We note that the problem is strongly NP-hard even for bounded P and W.
We next consider two important special cases of weighted flow time, namely, when P is bounded and W is
unrestricted, and when the weight of a job is inverse of its processing time referred to as the stretch metric.
For both cases we obtain a PTAS by combining a novel partitioning scheme with our PTAS for the case of
bounded P and V.

*Bell Labs, 600 Mountain Ave, Murray Hill, NJ07974. E-mail: chekur i @ esear ch. bel | -1 abs. com
*Dept. of CIS, University of Pennsylvania, Philadelphia, PA 19104. E-mail: sanj eev@i s. upenn. edu. Supported in part by an
Alfred P. Sloan Research Fellowship and by an NSF Career Award CCR-0093117.

ISSN 1433-8092

1 Introduction

In this paper we address a fundamental optimization problem in scheduling: given jobs that arrive over time, find
a schedule that minimizes the sum of their weighted flow time. The flow time of a job is the overall time it spends
in the system including its waiting time and the processing time. Weights model the varying priorities that jobs
might have. Weighted flow time is a natural and at the same time flexible (because of the arbitrary choice of
weights) measure of performance for a system serving jobs. Special cases such as the total flow time and total
stretch [11] have applications in databases, scheduling requests at web servers [6], operating systems [7] and so
on.

Despite substantial interest in this problem, progress on good upper bounds has been slow to come by. When
no preemptions are allowed, it is hard to obtain a good approximation even for the unweighted case. Kellerer et
al. [8] showed that single machine scheduling to minimize flow time is NP-hard to approximate within a factor
better than Q(n%‘e). But the approximability of the preemptive weighted flow time problem stayed wide open
until very recently. Even for the related metric of sum of completion times which is relatively more tractable,
good approximation algorithms were discovered only in last several years. Scheduling to minimize (weighted)
sum of completion times is equivalent to minimizing (weighted) sum of flow times in the exact case (they differ
by an additive term), but the former measure is easier to approximate. The sum of completion times metric has
been very well explored in the last several years leading to a good understanding of the approximability of many
variants including constant factor approximations and polynomial time approximation schemes [5, 1]. However,
the techniques for approximating completion time do not seem to carry over to approximating flow time. For
instance, linear programming relaxations [5] that provide good bounds for completion time scheduling are also
valid relaxations for flow time but are not easily amenable to analysis for flow time.

Given the intracatability of the non-preemtive problems, the focus has been on algorithms for the preemptive
versions. Further, in many applications preemption is natural, desirable, and results in better overall system
throughput. It is easy to show examples where the gap between non-preemptive and preemptive flow time for
a given instance is quite large. In the unweighted case, a folklore result states that the online algorithm that
schedules the job with the shortest remaining processing time (SRPT) gives the optimal total flow time on a
single machine. Leonardi and Raz [10] analyzed SRPT for the multiple processor case and showed that it is
O(min{log P, log ;- }) competitive in the online setting; here P is the ratio of maximum and minimum job
processing times, and n and m denote the number of jobs and machines respectively. This is also the best offline
approximation algorithm for the problem.

In contrast to the unweighted problem, the problem with weights is known to be strongly NP-hard on a single
machine [9]. Until recently no non-trivial approximation algorithms or online algorithms were known for this
problem. Chekuri, Khanna, and Zhu [4], very recently obtained several results. In particular they give a semi-
online algorithm for a single machine that is O(log? P)-competitive. The algorithm is semi-online only in that it
assumes that the parameter P is known in advance. This also results in an O(log? P)-approximation algorithm.
They also give a quasi-polynomial time (2 + ¢)-approximation for the case when the weights and processing
times are polynomially bounded. A special case of the weighted flow time problem is the problem of minimizing
total stretch. The stretch of a job is ratio of its flow time to its processing time. Hence minimizing total stretch
is the same as minimizing weighted flow time where the weight of a job is the inverse of its processing time.
Muthukrishnan et al. [11] showed that SRPT is 2-competitive and hence a 2-approximation algorithm for stretch
on a single machine. They also showed that SRPT is O(1)-competitive for stretch on multiple machines. Further
improvements and simplifications for minimizing stretch on multiple machines have been developed by Becchetti
et al. [3] and Chekuri et al. [4].

Results: In this paper we further extend the understanding of the approximability of weighted flow time by
presenting the first approximation schemes for the preemptive problem on a single machine. We present an algo-

rithm that computes a (1 + €)-approximate solution for any instance of weighted flow time in O(n (0 W In P/e%))
time; here W is the ratio of maximum job weight to minimum job weight. As immediate corollaries of this result,
we get a quasi-PTAS for weighted flow time when P and W are poly-bounded, and a PTAS when they are both
bounded®. We then show that in fact, if either one of P or W is poly-bounded, then the other parameter can
be effectively reduced to a poly-bounded range as well. Thus we get a quasi-PTAS whenever one of P or W is
poly-bounded. Our result provides strong evidence that the weighted flow time problem has a PTAS. We next
consider two natural restrictions of the problem. The first restriction is the case when P is bounded but there is
no restriction on W, that is, the weights are arbitrary. The second restriction is the case when weight of a job
is inversely related to its processing time, i.e. the stretch metric. We show that for both cases, we can obtain a
PTAS by using a partitioning scheme that reduces them to the case with bounded processing times and weights.

To put our results in perspective we note that no constant approximation algorithm was known even for the
case when P and W are both bounded. Note that the problem is strongly NP-hard even for this case. Approx-
imating weighted flow time is a difficult problem even for very restricted cases because of the sensitivity of
the metric to small variations in processing time. However, our results indicate that with appropriate care even
approximation schemes can be obtained. We hope that these results and techniques will spur further work on
weighted flow time and related problems leading to a better understanding of their approximability.

Techniques: The basic paradigm underlying our approximation schemes is to show existence of near-optimal
schedules that are “well-structured”. We can then use dynamic programming to search for good schedules in this
restricted space. A natural approach for generating structured schedules is to not distinguish between jobs with
similar characteristics and thus consider that they can be processed in some canonical order (say, in the order of
arrival). Unfortunately, the flow time metric is very sensitive to even slight changes in the job sizes. In particular,

it is easy to create instances where a small relative change in the size of a single large job may greatly increase
the optimal flow time value. This is in contrast to the completion time metric where it is straightforward to show

that small perturbations in job sizes affect the optimal value only slightly. However, we establish the following
relaxation that serves as a building block for our results. There exist near-optimal schedules such that jobs with
“similar” processing times and weights can be executed “almost” in the order of arrival. Specifically, we show
there exists a (1 + €)-approximate schedule such that when the ith job in a set of similar jobs is being executed,
only O(1/¢) jobs among the first ; jobs are still alive.

The above result naturally leads to a dynamic programming based approximation scheme that runs in time
O(nOnWinFp/ 63)). Several additional ideas are necessary for obtaining a PTAS for the two restrictions that we
consider, namely bounded processing times (unrestricted weights) and stretch. At a high-level, our approximation
schemes for both these cases rely on showing that we can partition any instance into a collection of instances of
bounded processing times and weights such that the interaction between them is resolved by a simple priority
based rule. We assign a distinct priority to each instance, and at any time execute a job from the highest priority
instance. Our partitioning scheme makes use of randomization in a crucial way to ensure that in an expected
sense, weight of any job in a higher priority instance strongly dominates the weight of any job in a lower priority
instance. This dominance effectively allows us to “charge” the cost of preempting jobs from the lower priority
instances to jobs of higher priority.

In related work Bender, Muthukrishnan, and Rajaraman [2] have independently obtained a PTAS for the
special case of minimizing stretch on a single machine. We note that their approach is different from ours in that
they do not rely on an algorithm for weighted flow time.

Organization: We present our quasi-PTAS in Section 2. In Section 3 we describe our partitioning scheme and
the use of randomization in the scheme. We build upon these ideas to give a PTAS for the case of bounded P in
Section 4 and for stretch in Section 5.

*Note that bounded does not imply that the quantitiesin question are integers. The distinction isimportant.

1.1 Notation

We call a schedule busy if no idle time is introduced while jobs are waiting. Without any loss of generality, we
restrict our attention to busy schedules. For a job = we use p(z) and w(x) to denote its processing time and
weight respectively. For a given schedule o the quantity pf(x) denotes the remaining processing time of z at
time ¢ in o. The queue of a schedule o at time ¢ denoted by Q7 () is the set of all the jobs that are alive in o at
time ¢. If o is clear from the context we drop it from the superscripts. For simplicity of notation we will assume
for the rest of the paper that 1/e is an integer. We denote by P the ratio of the maximum processing time to the
minimum processing time and by W the ratio of the maximum weight to the minimum weight. Without loss
of generality we assume that the minimum processing time is 1 and that the minimum weight is 1. This allows
us assume that p(z) € [1, P] and that w(z) € [1,W]. Note that we are not assuming that processing time and
weights are integers. For a schedule o, let |o| denote the value of the schedule - the sum of weighted flow times
of jobs in o.

2 A QPTASfor Preemptive Weighted Flow Time

In [4] the notion of arrival ordered schedules was used to obtain a (2+¢) quasi-polynomial approximation. In this
paper we develop a substantial refinement to the notion of arrival ordered schedules to obtain an approximation
scheme. We start with a technical lemma that is at the heart of our schemes. The lemma allows us to simplify
the space of e-approximate schedules substantially. We assume w.l.0.g. (by breaking ties arbitrarily) that no two
jobs are released at the the same time.

Definition 2.1 A schedule o is k-arrival ordered with respect to a set of jobs G if at all times ¢ the following
condition is true. If z € G is the job with the largest release date to be completed by ¢ then the number of jobs in
G that have arrived before x and are still alive at ¢ is at most k.

The advantage of a k-arrival ordered schedule is captured by the following lemma.

Lemma 1 Let o be a k-arrival ordered schedule with respect to G, and let SZ(¢) denote the subset of G that is
completed by o by time ¢. The set S&(t) can be specified by (k + 1) log |G| bits. Hence the number of distinct
subsets of G that are alive at any time in & is O(|G|**1).

Proof. We order jobs in G in increasing order of their arrival (release time). The set SZ(¢) can be specified
by giving the following information: £, the largest index among the completed jobs, and up to % indices, each
less than ¢, that specify the jobs that arrived before £ but have not been completed. The definition of a k-arrival
ordered schedule makes it clear that this information is sufficient. O

Let nZ,(t) denote the number of jobs from a set G that are alive at time ¢ in schedule . Consider a set of jobs
that have the same weight and similar processing times. Our lemma below indicated that there exist near optimal
schedules where the jobs are k-arrival ordered for a small value of k.

Lemma 2 Let G be a subset of the jobs such that %ﬁ}f&) < (1 4+ €). For any schedule ¢’ there exists a

corresponding schedule ¢ that is (1 + 2/¢)-arrival ordered with respect to G and such that n(t) < (1 + 2e) -

Fix a schedule o’. We modify the schedule o' to create a (1+2/¢)-arrival ordered schedule o with the claimed
property. We say that a job = € @ is critical if there exists a time ¢ such that z € Q7 () and ng’ (t) < 1/e.
A job = becomes critical at time ¢ if ¢ is the earliest time when ng (t) < 1/e and z € Q7 (t). Note that even
though a job = may become critical at some time much later after its release, we will consider it to be a critical

job from the moment it arrives in the system. We construct the schedule o as follows. At all times ¢ where o’
executes a job not in G, o mimics ¢’. However, within G, o will use a (possibly) different order for executing
jobs. Consider a time ¢ when ¢’ is executing a job from G.

1. If attime ¢, o’ is executing a critical job z, then o executes the same job. Thus o and ¢’ completely agree
in the execution of critical jobs.

2. Otherwise, o executes the earliest unfinished job from G that is not critical.
Lemma 3 Atany time ¢, ' has at most 2/e critical jobs from G.

Proof. Suppose that at some time ¢, the schedule ¢’ has a set S of more than 2/ critical jobs from G. Partition S
into two sets S; and Ss such that S7 contains the jobs that have already become critical by time ¢ and S5 contains
jobs that will become critical at some later time after ¢. We claim that S; and S, each must contain at most 1/e
jobs each.

Suppose |S1| > 1/e. Consider the job z € S; that is the last job to have become critical, say at some time ¢'.
Then every other job in S must be already present at time ¢’, contradicting that = became critical at time ¢’

Now suppose |Sz| > 1/e. Then consider the first job z € S, to become critical at some time ¢ after time ¢.
Every other job in S5 must still be alive in the system, contradicting that z becomes critical at time ¢ . |

Thus o needs to track at most (1 + 2/¢) partially executed jobs at any time. We now argue that nZ(t) <
(1+ 2¢)ng (t). Consider a time ¢ such that n% (¢) < 1/e. Then each job in Q7 (¢) is critical. The schedule o at
must completely agree with o’ in the execution of critical jobs and neither schedule carries any non-critical jobs at
time ¢, hence the number of jobs is identical in both schedules. Otherwise for any time ¢ such that n% (t) > 1/e,
define ¢ as the latest time before ¢ when ¢’ had at most 1/¢ jobs.

Let a(t) and 3(t) be the number of non-critical and critical jobs at time ¢ in o. Similarly let o/(¢) and 5'(¢)
be the number of non-critical and critical jobs at time ¢ in o’. Then we know that 5(¢t) = ('(¢). Further, at ¢;,
o had no non-critical jobs and neither did ¢’ so a(t;) = &/(t;) = 0. In the interval [¢;,t), o spends the same
time as o’ in non-critical jobs. Moreover, o never has more than one partially executed non-critical job. The
processing times in G are within a factor of (1 + €), hence we can claim that «(t) < [(1 + €)a’(¢)]. Thus if
o/ (t) + B'(t) > 1/e it follows from above that

nG(t) = ot)+6(t)
< 1+ (1+ed(t) +6'(1)
< (1+426)((t) + B'(1))

(1 + 2€)ng (t).

This completes the proof of Lemma 2.
We use Lemma 2 to show the existence of near-optimal schedules with good structure. Let G;; be the set of
jobs z such that w(z) € [(1 + ¢€)?, (1 + €)**1) and p(z) € [(1 +)7, (1 +)7 F).

Lemma 4 There exists a (14+O(e))-approximate schedule o such that o is (1+2/¢)-arrival ordered with respect
to each G;.

Proof. Let o* be an optimal schedule for the given instance. Note that the sets G;;s partition the set of jobs. We
apply Lemma 2 repeatedly to o* to create a schedule that is (1 4 2/¢)-arrival ordered with respect to each G;.
Let o be the resulting schedule. Let W*(¢) and W (¢) denote the weight of the jobs at time ¢ in the queue’s of o*

and o respectively. We have the following:

W) < Y (1+e*'ng,
2%
< >+ 1+ 200,
,J
< (142090146 (1+9'ng,
< (420014 W)

In the first inequality we are upper bounding the weight of jobs in Gj; by (1 + €)**! and in the third inequality
we are lower bounding the weight by (1 + €)?. The second inequality follows from Lemma 2. O

The number of distinct sets, G;;, is bounded by O(In W In P/€®). In Subsection 2.1 we show that for any
partition of the jobs into £ sets there is an algorithm that computes an optimal schedule among schedules that are
k-arrival ordered with respect to each of the £ sets, in time n°®*% . From this and Lemma 4 we get the following.

Theorem 1 Given an instance I with parameters P and W, a (1 + ¢)-approximate schedule can be computed
for preemptive weighted flow time in time nO(nWinP/¢) time,

2.1 Computing k-arrival ordered schedules

LetG1,Go,. .., Gy be apartition of the job set in to £ sets. We are interested in finding a schedule that is k-arrival
ordered with respect to each of the sets. We describe a dynamic programming based algorithm to find an optimal
schedule among such schedules that runs in time n©9 time.

The dynamic program maintains a table 7' of optimal schedule values for subsets of jobs specified by tuples
fromaset V. Each tuple v € V is of the form (4, Y1, Y3, ..., Yy) with the following interpretation: for 1 <3 < ¢,
Y; isasubset of G;, and j = Y-, ;. |Yi| is the total number of jobs in the sets Y;. The table entry T'[o] stores the
value of an optimal k-arrival ordered schedule for the job set U¢_, ¥;. We cannot of course compute table entries
for all possible subsets since that would require computing values for 2™ tuples. Instead we take advantage of the
fact that in a k-arrival ordered schedule the set of jobs that are completed at any time can be specified compactly.
From Lemma 1, the distinct number of tuples in V is O (n{k+1)¢),

For a tuple o = (4,Y1,Ys,...,Ys) let || denote 5, then number of jobs completed. Suppose we have
computed T'[v] for all tuples v € V with |g| < j. Leta = (5 + 1, X3, Xo, ..., X,) be atuple in V. We compute
T'[u] as follows. Let X = UleX,-. For each job £ € X let o, be an optimal k-arrival ordered busy schedule
for X where z is the last job to finish in X. Note that o, might not be a feasible k-arrival ordered schedule in
which case we set its value to oo. It follows that T'[u] = min, |o,|. To compute o, we find the optimal schedule
value for the set X \ {z} using the table 7. If X \ {z} is not a valid tuple in V" we set |o,| = oco. We obtain
the completion time of z in ¢, by constructing a busy schedule for X in which we give z the least priority (since
x is supposed to finish last among X). If = does not finish last in the schedule constructed above we make g
invalid by setting || to co. From the above discussion we see that 7'[u] can be computed from prior values in
T in O(n?logn) time.

Theorem 2 An optimal k-arrival ordered schedule with respect to sets G1,Ga,..., Gy can be computed in
n2®0) time.
2.2 Reductionsto Poly Bounded I nstances

Theorem 1 yields a quasi-polynomial time approximation scheme when both P and W are poly-bounded. We
show here that if either P or W is poly-bounded then we can reduce the whole instance in an approximation

preserving fashion to a poly-bounded instance. Thus it is sufficient for one of them to be poly-bounded.

Our first reduction considers the case when P is poly-bounded. Let J; be the subset of jobs from J whose
weight is less than W/(n2P), and let J; be the remaining jobs. We claim that a schedule for .J; is a good
approximation for J. Let o’ be a schedule for J;. We create a schedule for J by merging o’ with an arbitrary
busy schedule for J,. In the merging we always give preference to o’. The completion time of any job in J; is
the same in o and ¢’. The completion time of a job from J; in o is at most n.P, hence the total contribution of
Js to o is bounded by W/n. Since W is a lower bound on the optimal schedule value the contribution of J; is
negligible. Further it is easy to see that the ratio of weights in .J; is at most n? P, hence if P is poly-bounded the
ratio of weights in J; is poly-bounded as well.

Next we consider the case when W is poly-bounded. Let J; be the set of jobs from J whose processing times
are less than P/(n3W), and let J; be the remaining jobs. Let o, be an arbitrary busy schedule for J;. Let o;
be an optimal schedule for J;. We create a busy schedule ¢ for J by merging o, and o; where we always give
preference to 0. The contribution of o is at most P/n. A job in J; can be delayed in o because of jobs in J; by
at most n.P/(n3W) = P/(n?W). Hence the contribution of the delay to the value of o is at most P/n. Since P
is a lower bound on the optimal schedule value this is negligible. In J; the ratio of processing times is O(n3W)
which is poly-bounded if W is poly-bounded.

3 Instance Partitioning

We develop here a basic framework that will be used in subsequent sections for obtaining a PTAS for two special
cases of weighted flow time that we mentioned. Informally speaking, the idea is to partition an instance I with
jobs of unbounded weights into a collection of instances I, I, ..., I} such that each I; has jobs of bounded
weights as well as bounded processing times. The interaction between these instances is limited to the simple
priority rule, namely, at any time ¢ we execute a job from Z; only if there are no alive jobs in I; for any j > 4. We
use this rule to identify blocks of time available for executing jobs in each instance I, and then use the following
variant of Theorem 1 to compute a near-optimal schedule for each Z; in polynomial time.

Theorem 3 Given an instance I with parameters P and W, and a sequence of O(n) intervals that specify the
blocks of time excluded for executing jobs in I, a (1 + €)-approximate schedule can be computed for preemptive
weighted flow time in time nOC W nP/e%) time,

As a final step, we simply merge together the schedules for 4, ..., I;. For this to work we need to establish
the existence of near-optimal schedules of this form.

3.1 Randomized Grouping

Let G = (G1,Ga,...,Gy) be an ordered partition of the given job set. We call G1,..., Gy groups. For a job
x we use g(x) to denote the index of the group that contains it, hence g(z) = 7 iff z € G;. Let ¢(x) be a real
valued parameter associated with a job z. For our purposes g(z) will either be w(z) or p(x). The partitions we
are interested in are based on grouping jobs according to geometrically separated ¢ values. Given a parameter
a > 1 we partition jobs in to (G4, ..., Gy) where G; is the set of all jobs z with ¢(z) € [a*,a*t!). It will be
advantageous for our purposes if jobs in two groups G; and G differed in their ¢(z) values by a factor of
roughly a. This is of course clearly infeasible since two values a* — € and a* + € fall in adjacent groups but differ
by very little. We use randomization to achieve an expected separation that will be exponentially smaller than a
but will suffice for our purposes.

Given a parameter a we randomize the geometric grouping procedure as follows. Pick a number r € [1,a) at
random according to the probability distribution with density function f(¢) = ~-. A job z with value g(z) is

tlna

in group Gy, if g(z) € [ra®,rak*1). The group of z, g(z), is now a random variable that takes two values, either
|log, q(z)]| or |log, g(z)] + 1. The following claim is elementary.

Claim 1 The expected value of -4 is &1 and that of ra9(*)+1 js (e-Llalz),
rad\® na na
We note that the randomized geometric grouping has been used in several contexts earlier. We will use the
notation G, to denote the partition induced by geometrically increasing values of a with shift . The parameter
g(z) will be clear from the context. We make one more observation that will be useful.

Proposition 1 For a fixed a the number of distinct partitions induced by choosing » randomly in the interval
[1,a) is at most n.

This allows us to derandomize algorithms based on randomized geometric grouping in a fairly simple and
obvious way.

3.2 Prioritized Schedules

Given a partition G = (G1,Go,...,Gy) we call a schedule o G-prioritized if at any time ¢ the job processed
at ¢ by o is from the highest indexed group among alive jobs at ¢. If we restrict our attention to G-prioritized
schedules, the problem of scheduling the given instance can be partitioned into k separate instances I, I, . .., Iy
where the instance I; is restricted to jobs in G ;. To get instance I;, we compute an arbitrary busy schedule o4
for jobs in UijHGi. This partitions the time interval [0, 00) in to disjoint time intervals. In each of these
intervals some job from UijHGi is alive and is being processed by o;1. It is clear that in a G-prioritized
schedule, no job from G can be processed in the time intervals when o is processing a job. The instance
I; consists of scheduling jobs in G; subject to the constraint that no jobs are scheduled in the excluded time
intervals given by o;1. The number of excluded time intervals for any instance I; is bounded by n + 1.

Thus prioritized schedules allow us to partition the problem in to smaller and more manageable instances. In
addition if the partition is induced by geometric rounding for some constant a, we have the advantage that each
G, has jobs with ¢ values that differ by at most a factor of a. This allows us to reduce general instances with
arbitrary ¢ values to instances with bounded ¢ values and excluded time intervals. We can now invoke Theorem 3
to compute (1 + ¢)-approximate schedules in polynomial time.

4 A PTASfor Bounded P

In this section we give a PTAS for the case when W is unrestricted but P is bounded. A slight modification to the
NP-hardness for arbitrary P and W [9] shows that the problem remains strongly NP-hard for any fixed P > 1
and bounded W. In fact it is not known whether the case of P = 1 (that is all processing times are the same) is
polynomial time solvable or not!

Our PTAS for this case is based on G -prioritized schedules where the grouping is based on the weights of
jobs. To obtain a (1 + €)-approximation we use a = e9(P/) The intuition behind our approach is as follows.
Suppose the weights of jobs are “well separated”, say by a factor larger than P (i.e. for any two distinct weights
w > w', we have w/w' > P). Since the processing times are between 1 and P, between two jobs, the job
of the larger weight has a better weight to processing time ratio irrespective of its processing time. Thus, by
giving preference to larger weight jobs, we are giving preference to jobs with better weight to processing time
ratio. However, when release dates are present, always giving preference to the best ratio job can lead to very
poor schedules. Our goal will be to show that, when P is bounded and weights are well separated relative to
P, this rule leads to schedules that are not too far from optimal. Substantial complications arise because our
given instance does not have well separated weights. G7 -prioritized schedules with a = e9(P/9) and r chosen

randomly, allow us to assume that the weights in adjacent groups are, in the expected sense, separated by a factor
of roughly Ina = O(P/e). However, jobs within the same group have to scheduled between themselves with
care. Integrating the intuition of well separated weights with that of handling of jobs within a group requires
some non-trivial ideas. We now present the technical details.

The main claim is that when r is chosen according to the distribution in Section 3.1 the expected value of
an optimal G’ -prioritized schedule is within a (1 + ¢) factor of the optimum. This claim is a corollary of the
technical lemma below, and the rest of the section is devoted to its proof.

Lemma5 Leto* be an optimal schedule. Then there exists a G -prioritized schedule o such that at any time ¢

Y. w@) < Y (w@)+

z€Q(t) z€Q*(t)

4P . ra9(@)+1
a—1)-

Corollary 1 For a = ¢*”/< and r chosen according to the distribution in Section 3.1, the expected value of an
optimal G -prioritized schedule is at most (1 + €)OPT.

Proof. For fixed r and a, let g, be a schedule guaranteed by Lemma 5. Then it follows that

|oa|—z 2 w@)<y 3 (w

zeQa(t) bt zeQ(®)

4P - ra9(@+1
a—1

Taking expectation on both sides with respect to the distribution on r and using Claim 1 we obtain that

E[loy]] <; Z +mw <Z Z)(1+¢€) < (1+€)OPT.
z€Q*(t) t ze@*(t)

a

The proof of Lemma 5 relies on transforming an optimal schedule o* to a G7 -prioritized schedule o. In this
process jobs from a given group G; can get delayed because of jobs from U;~;G;. We rely on a charging scheme
to account for this delay. Ideally we would like to charge at most P jobs from G to each job in U;~;G;. This
appears to be feasible because the processing times are bounded by P. However, we are also concerned with jobs
that might be in a partial state of execution whose remaining processing times could be much smaller than 1. We
establish the following lemma that shows that even among the partially executed jobs the rate at which an optimal
schedule finishes weight is upper bounded by roughly 2. Let (J;(¢) denote the set of partially executed jobs in
the queue of o* at time ¢. Hence, for ¢’ > t, Q%(t) \ Q% (t') is the set of jobs from Q% (¢) that have been finished
in the interval [¢,¢'] by o*. The best weight to processing time ratio of any job in the system is W. The lemma
below shows that even among the partially executed jobs the rate at which an optimal schedule finishes weight is
upper bounded by roughly 2W'.

Lemma 6 Let o* be an optimal schedule for an instance with processing times bounded by P and weights
bounded by W. Then for ¢’ >, 3=, cox)\ @z (1) w(z) < 2W [erQ;(t)\Q;(t,)pt(x)J + 2W. The lemma holds
even when the instance has excluded time intervals.

Proof. We can assume that Q%(t) \ Q%(¢') is non-empty. Suppose the claim is false for some pair of times ¢ and
t't <t Let|Qi(t) \ Qi(t')| = k and let Jy, Jo, . .., Ji be the jobs ordered in reverse order of arrival. This is
the order in which they will finish in ¢* since they are in a preemption chain. We claim that there exist indices
iand j, 1 <i < j <k, such that Ei§£<y w(Jg) > W and 3=, o< pe(Je) < 1. This will suffice to contradict
the optimality of o*, as follows. Since J; is in Q(¢) it must have been preempted by some job z that finishes

before J;. However we know that p(z) > 1 and w(z) < W. We can modify o* by swapping the execution of
with that of the remaining processing times of J; to J; and it is clear that this will strictly improve the schedule
contradicting the optimality of o*.

Now we prove the claim. Lety = 3>, - pi(z). For any integer a such that 0 < a < [y] leti, = min{h |
Yi<s<npt(Jy) > a—1}andlet j, = max{h | 1< <, pt(Jy) < a}. Fromour assumption on the falsity of the
lemma it follows that there exists an a’ such that ZiaISESJ}u w(Jy) > 2W. Since the weight of job is at most W,
Zia,dﬁa, w(Jg) > W. Further, from the definition of 4 and j,/, we get that Eia/<€§ja' pe(Je) < 1, providing
the indices for the contradiction above. O

We now prove Lemma 5. Let (G4, Go, . .., Gy) be the partition of jobs in G7. Given an optimal schedule o*
we create a G -prioritized schedule o iteratively from s = k down to 1. Let A; = U;?:iGj denote the set of jobs
in G; to G.. Suppose we have already created a schedule o, for jobs in A; ;. We create a schedule o; for A;
as follows. Since o; needs to be prioritized, the jobs in G; can be scheduled only in the time intervals in which
no job in A;; is alive. We order jobs in G; by their completion time in ¢* and schedule them preemptively in
the gaps left in 0,11 where at any time ¢, the earliest alive job in the ordering of o* is executed. Note that in o;
jobs from G; need not finish in same order as in ¢*. It is easy to see that o = o7 is G -prioritized.

9(z)
Claim 2 Atany time ¢inthe schedule oy, > w(z) < Y (w(z) +4P) rd).
z€Qri(t) TEQ*()NA; j=i+1

Lemma 5 follows in a straightforward fashion from the above claim by setting « = 1. We prove the claim by
induction on ¢ as it goes down from & to 1. From the construction of oy, it is not difficult to see that P*(¢) C
Q*(t). This establishes the base case. Assuming that the claim is true for 7 + 1, we prove it for . Let B}(¢) =
Q*(t) N G; be the set of jobs from G; that are alive in o* at t. Let B;(t) = Q% (t) N G; be the set of jobs from
G; that are alive at ¢ in o;. From the construction it follows that Q% (t) N G; = B;(t) for all j < 4. Therefore

Z w(z) = Z w(z) + Z w(z).

)
z€Q7i(t) z€Q7i+1(t) zE€B;(t)

We bound }°,c gei+1 (4 w(z) by the induction hypothesis for ; 4 1. Hence we need to bound 3°,c g, sy w(z). In
particular we need to bound 3- ¢ p, () w(iv)—zweB; (¢) w(z). We do this by bounding the quantity ZzeBi(t)\BZ (1) w(T)-
Recall that we order the jobs in G; by their completion times in o*. Without loss of generality let Jy, Ja, ..., Jp

be the ordering of jobs in G;. Let £(t) be the number of jobs that are finished by o* by ¢ from G; and let f(¢) be

the index of the first job from G; that is not completed in ¢; at time ¢. It follows that

Y. w@< Y wJy.

zeB;(t)\B; (t) F)<i<L(t)

We now bound the rhs in the above inequality. Let ¢ be the last time before ¢ when o; either executes a job that
is later in the order than f(¢) or is empty in jobs. If there is no such time then we set ¢’ to 0. A couple of facts
that are true at . First, there are no jobs from A, at ¢’ in the queue of o;, hence also in o;,1. This is true
because o; is prioritized. Second, there is no job from {.J1, ..., Jg«} that is in the queue of o; at time ¢ since
in o; we give preference to lower indexed jobs from G;. From this latter fact it also follows that ¢’ is before the
arrival time of J;. Let V denote the difference in the total time that o; spent and o* spent in the interval [t', 1)
on jobs in A;;1. We claim that V' > 0. Suppose not. Then, in the interval [t',t) o; processed only those jobs
from Jy, ..., Jg that have arrived after t'. Since we process jobs in the order of o* we must have finished 0
by ¢ as o* did. However, by the definition of f(¢), ¢; did not finish Jy,y at ¢ — a contradiction. Since job sizes
are bounded by P and at time ¢’ there are no jobs from A;; in o;, we get the following.

Claim 3 There are at least [V/P] jobs from A, alive at ¢ in o* (that is in Q*(¢)).

The main ingredient of our proof is the following. Let W; = ra**!, the maximum weight of jobs in G;.
Claim 4 Zf (t)<j<e(t) ’U)() < 2W V + 2W

Proof. Let Q}(t') denote the set of preempted jobs ino* attime t'. Let X = {J; | 1 < j < f(¢), J; arrived after ¢'}
be the set of jobs in G; that arrived after ¢’ but were finished by both ¢* and ¢; by time ¢. Let X' = {J; | 1 < j <
£(t), J; arrived after ¢'} be those jobs from G; that arrived after ¢' and were finished by o*. Therefore, X' \ X
is the set of jobs that arrived after ¢’ but were finished by ¢* and not by o; by time ¢. Let V' = D re X'\ X p(x)
be the amount of processing time that o* spent in excess over o; in the interval [¢',) in jobs from G; that arrived
after ¢'. V' is the total time that o* spent in excess over ¢; in the interval [¢',t) in jobs from G;. It follows that o*
spent V' =V — V' +pi(Jy)) — p(Jf(r)) time in processing jobs from Y = Q3 (¢') N {J1, ..., Jyy)}. Note that
Y is the set of preempted jobs from G; that are alive at ¢’ in Q*(t). Since py(J()) — p(Jy()) < 0 it follows that
V"<V =V Letwr = ¥exnx w(z) and wo = 3 oy w(z). We claim that wi < W; V" since each job in
X \ X' has a processing time of at least 1 and was fully processed in the interval [¢',¢). Invoking Lemma 6 we
see that wy < 2W,; V" + 2W;. Therefore we conclude that wy + we < 2W;V + 2W;. O

Now we are ready to finish the induction step. We charge the excess weight in g; at time ¢ which is at most
2W;V + W, to the [V/P] jobs in 4,1, that are alive at ¢. We charge each job in A;,1 with a weight of at most
4PW;. We omit details of the calculations that formally prove the induction hypothesis. This finishes the proof
of Claim 2 and Lemma 5.

Theorem 4 A (1 + ¢)-approximation for the weighted flow time can be found in time n©(PP/<") " Hence for
fixed P we obtain a PTAS.

Proof. From Lemma 5 we conclude that if we choose a to be e*”/€ and pick r according the distribution in
Section 3.1, then the expected value of a prioritized schedule is at most (1 + €) times the optimal schedule value.
For the chosen r and a we compute a (1+¢) approximate G/ -prioritized schedule. This involves finding a (1+¢)-
approximate schedule for each group G; in the partition. However jobs in a group have max to min processing
time at most P and max to min weight at most a. We use Theorem 3 to obtain the running time that we claim. O

5 A PTASfor Stretch

The stretch metric is a special case of weighted flow time where the weight of a job z with processing time p(z)
is 1/p(z). Note that neither the weights nor the processing times are bounded for a general instance of stretch
and hence ideas from Section 4 do not apply directly. However, by taking advantage of the special structure of
the stretch weight function we show that prioritized schedules with respect to weight based partitions provide
good approximations.

We start with a lemma that establishes the quality of prioritized schedules as a function of the grouping
parameter a. For the stretch metric it is more natural to work with the processing times rather than the weights.
Let G! = (G1,Ga,...,Gy) be the partition induced by grouping jobs based on their processing times. However,
we want to give priority to jobs with larger weights. Since weights are inversely related to processing times,
this implies that lower indexed groups in G have higher priority. For the rest of this section a schedule o is
Gr-prioritized if at any time ¢, o processes the job from the lowest indexed group from G that has alive jobs at ¢.

Lemma 7 The optimal stretch of a g’“ -prioritized schedule is at most OPT + _45 Zw mg(w>+1 Choosing r ac-

cording to the distribution f(¢) = in [1,a) the expected value of an optlmal G’ -prioritized schedule is at
most OPT + .

tlna

10

For the proof of the above lemma we need the following simple property of optimal schedules for stretch.

Proposition 2 Let o* be any optimal schedule for total stretch on a single machine. For any two jobs z and y
with p(z) < p(y), if there is a time ¢ such that y is being executed at ¢ and = € Q(¢), then p;(y) < pi(z).

Fix r and a. We prove Lemma 7 by induction on &, the number of groups in the partition G. We will prove
the stronger hypothesis that there is a G -prioritized schedule of value at most oPT + Y~ p(z) Zf:g(m)ﬂ %
The claim is clearly true for £k = 1. Assuming it is true for all j < k, we prove it for k£ + 1. Let I be an instance
with & + 1 groups in the partition and let o* be an optimal schedule for I. If o* is prioritized with respect to
(U;?:lGj, G+1), by induction, the claim is true for k£ 4+ 1. Suppose not. Then there exists an earliest time ¢ and
a job z € Gy being processed at ¢ such that z is not preempted by a job z’ that arrives at ¢ and g(z') < k.
We first claim that p(z) < rak*! for otherwise from Proposition 2, z would have been preempted at ¢ by z’.
We claim that x is the first job in G that finishes after ¢ in o*. Suppose not. Let y be a job from G4, that
finishes before z in ¢*. Then, y could not have been alive at ¢, hence must have arrived at or after ¢. If z was
not preempted by z’ it follows that = finishes before #, hence y finishes before 2. However, this is impossible
since y is larger than z’ and arrives no earlier. Let ¢’ be the first time when o* executes a job from Gy after
completing z. If there is no such ¢’ then let ¢/ = T, the time at the end of the schedule.

From the discussion above, in the time interval [t, '), o* executes either z or a job from U¥_, G;. Let S be
the set of jobs that are processed by o* in [t,¢') other than z. We claim that every job in S is completed by ¢', or
in other words there is no job from S that is partially executed at ¢’. We prove the claim below.

Claim 5 At ¢’ there is no preempted job whose group is less than & + 1.

Proof. If # = T we are done. Let y the the job from Gy 1 scheduled by o* at ¢'. We consider two cases based
on whether y was partially executed before ¢ or not. Suppose y was not processed before ¢. Then it must be that
py(y) = p(y) and hence o* would not schedule y at ¢’ if there was a smaller job available with group & or less.
Suppose y was processed before ¢ and the claim is false. Let z € Q*(¢') be a job with g(z) < k and such that it

has been partially executed before #'. From the choice of ¢ there were no jobs at ¢ from G4, ..., Gk, therefore z
arrived at ¢ or later. Since y was alive before ¢ it implies that z was processed while y was alive, and at t', ¥ is
processed while z is alive. This contradicts the optimality of o*. O

We modify the schedule o* in [t,¢') as follows. We find the best prioritized schedule ¢ for G restricted to
S. This step is feasible since S is completely processed in [¢,t'). We schedule z in the gaps left by o’. Since
the maximum group index in S is k, we can apply the induction hypothesis to upper bound the value of o’. To
complete the proof we need to account for the delay in the processing of . Whenever z is in the queue while
o’ is processing a job from S we charge the weight of z, which is at most mk% to the job in S that is being
executed. After the modification the schedule is prioritized in the interval [0,). The state of the schedule at ¢/
after the modification is exactly the same as in ¢*. Further, the modification charged extra weight only to jobs in
S, which are completed before ¢'. Therefore by continuing the process on the portion of * in the interval [/, T']
we can change it into a prioritized schedule while charging only those jobs that finish after #. Easy calculations

verify the induction hypothesis.

Theorem 5 For a = e'/¢ there is a (1 + ¢)-approximate G -prioritized schedule.

Proof. Follows from Lemma 7 and the fact that oPT > n for total stretch. O
From the above we obtain a PTAS for stretch.

Theorem 6 A (1 + ¢)-approximation for stretch on a single machine can be found in nO0/¢) time.

11

Proof. From Theorem 5 the expected value of prioritized schedules with ¢ = e'/€ is within (1+¢) of the optimal.
Therefore, we can partition the problem in to several instances where each instance has processing times, and
hence weights also, bounded by a. We find a (1 + ¢)-approximation to such instances using Theorem 3 in time
nO(n”a/€*) time. There are at most n such instances which gives us the desired running time. O

References

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis, M. Queyranne, M. Skutella,
C. Stein, and M. Sviridenko. Approximation schemes for minimizing average weighted completion time
with release dates. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science,
1999.

[2] M. Bender, S. Muthukrishnan, and R. Rajaraman. Stretch Scheduling: Concepts, Algorithms and Complex-
ity. Manuscript, 2001.

[3] L. Becchetti, S. Leonardi, and S. Muthukrishnan. Scheduling to minimize average stretch without migration.
In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 548-57, 2000.

[4] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for weighted flow time. To appear in Proceedings of the
33rd ACM Symposium on Theory of Computing, 2001.

[5] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion time:
Offline and online algorithms. Math. of Operations Research, 22:513-544, 1997.

[6] M. Harchol-Balter, N. Bansal, and B. Schroeder. Implementation of SRPT Scheduling in Web Servers.
Technical Report, Carnegie Mellon University, CMU-CS-00-170, 2000.

[7] R.Jain. The Art of Computer Systems Performance Analysis. John Wiley, New York, 1991.

[8] H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and nonapproximability results for mini-
mizing total flow time on a single machine. In Proceedings of the 28th Annual ACM Symposium on Theory
of Computing, pages 418-426, May 1996.

[9] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling problems. Annals
of Discrete Mathematics, 1:343-362, 1977.

[10] S. Leonardi and D. Raz. Approximating total flow time on parallel machines. In Proceedings of the 29th
Annual ACM Symposium on Theory of Computing, pages 110-119, 1997.

[11] S. Muthukrishnan, R. Rajaraman, R. Shaheen, and J. Gehrke. Online scheduling to minimize average
stretch. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, pages
433-43, 1999.

ftp://ftp.eccc.uni-trier.de/pub/eccc

ECCC ISSN 1433-8092
12 http://www.eccc.uni-trier.de/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

