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Abstract. We study k-partition communication protocols, an extension of the standard
two-party best-partition model to k input partitions. The main results are as follows.

1. A strong explicit hierarchy on the degree of non-obliviousness is established by proving
that, using k + 1 partitions instead of k may decrease the communication complexity
from 2(n) to 2(log k).

2. Certain linear codes are hard for k-partition protocols even when k may be exponen-
tially large (in the input size). On the other hand, one can show that all characteristic
functions of linear codes are easy for randomized OBDDs.

3. It is proven that there are subfunctions of the triangle-freeness function and the function
⊕ CLIQUEn,3 which are hard for multipartition protocols. As an application, truly ex-
ponential lower bounds on the size of nondeterministic read-once branching programs
for these functions are obtained, solving an open problem of Razborov [19].
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1 Introduction

The communication complexity of two-party protocols was introduced by Yao [22]. The ini-
tial goal was to develop a method for proving lower bounds on the complexity of distributed
and parallel computations. In the meantime, communication complexity has been successfully
applied as a tool for proving lower bounds in various other models of computation (see, e. g.,
[9, 14] for a survey).

Let f : {0, 1}n → {0, 1} be a Boolean function defined on a set X of n Boolean variables, and
let 5 = (X1, X2) be a balanced partition of X , i. e., a partition with −1 6 |X1| − |X2| 6 1.
A deterministic two-party communication protocol P for f according to 5 is an algorithm
by which two players, called Alice and Bob, can evaluate f as follows. At the beginning of
the computation, Alice obtains an input x : X1 → {0, 1} and Bob an input y : X2 → {0, 1}.
Then the players communicate according to P by exchanging messages. The players may use
unbounded resources to compute their messages. At the end, one of them has to output f (x, y).
A nondeterministic protocol allows each player to access a (private) string of nondeterministic
bits as an additional input. It is required that there is an assignment to the nondeterministic bits
such that the protocol outputs 1 if and only if f (x, y) = 1.

The complexity of a nondeterministic protocol P is the maximum of the number of exchanged
bits taken over all inputs, including the nondeterministic bits. The nondeterministic communi-
cation complexity of f according to 5, ncc ( f,5), is the minimum complexity of a nondeter-
ministic protocol according to 5 which computes f . Finally, the (best-partition) nondetermin-
istic communication complexity of f , ncc ( f ), is defined as the minimum of ncc ( f,5) over all
balanced partitions 5 of the set of input variables of f .

A protocol is oblivious because it uses only one partition of the set of input variables for all
inputs. Most applications of communication complexity are therefore restricted to oblivious
models of computation. However, Borodin, Razborov, and Smolensky [5] succeeded in deriv-
ing exponential lower bounds for the non-oblivious model of computation of (syntactic) read-
k-times branching programs. Their approach leads, from the perspective of communication
protocols, to the following notion of multipartition communication protocols [10]:

Definition 1. Let f be a Boolean function defined on a set X of Boolean variables, and let k
be a positive integer. A k-partition protocol P for f is a collection of k nondeterministic (sub-
)protocols P1, . . . , Pk , each Pi with its own balanced partition of X , such that f = P1 ∨ P2 ∨
· · · ∨ Pk , where we use Pi also to denote the function computed by protocol Pi . If mi is the
number of all-1 submatrices of Pi (i. e., mi is the number of 1-leaves in the protocol tree of Pi ),
then the complexity of P is dlog

(
∑k

i=1 mi
)

e. The k-partition communication complexity of f ,
k-pcc ( f ), is the minimum complexity of a k-partition protocol computing f . The multipartition
communication complexity of f is mpcc ( f ) := min{k-pcc ( f ) | k ∈

�
}.

To better understand the model of multipartition communication, we compare mpcc ( f ) with the
best-partition nondeterministic communication complexity ncc ( f ). Let f : {0, 1}n → {0, 1} be
a Boolean function, A ⊆ f −1(1), and let 5 be a partition of the variables of f .
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Define the distribution µA on {0, 1}n by µA(x) := |A|−1 if x ∈ A, and µA(x) := 0 other-
wise. Define B1

A,5( f ) := log
(

1/ maxM µA(M)
)

, where the maximum extends over all all-1
submatrices M of the communication matrix of f according to 5.

We have ncc ( f,5) = maxA⊆ f −1(1) B1
A,5( f )+ O(log n) by the proof of Theorem 2.16 in [14],

and consequently

ncc ( f ) = min
5

max
A⊆ f −1(1)

B1
A,5( f ) + O(log n),

where the minimum extends over all balanced partitions 5 of the variables of f . A similar
argument yields:

Lemma 1. For every Boolean function f : {0, 1}n → {0, 1},

mpcc ( f ) = max
A⊆ f −1(1)

min
5

B1
A,5( f ) + O(log n).

When dealing with multipartition communication complexity, the notion of rectangles as in-
troduced by Borodin, Razborov, and Smolensky [5] is useful. Let X be a set of n variables
and let 5 = (X1, X2) be a balanced partition of X . A function r : {0, 1}n → {0, 1} defined
on X is called a rectangle (with respect to 5) if it can be written as r = r 1 ∧ r2, where the
functions r i depend only on variables from X i , i = 1, 2. Given a Boolean function f defined
on X , its rectangle complexity R( f ) is the minimal number t for which there exist t rectangles
r1, r2, . . . , rt (each with its own partition of the variables in X ) such that f = r1 ∨ r2 ∨ · · · ∨ rt .
The k-partition rectangle complexity Rk( f ) of f is the minimal number of rectangles needed to
cover f under the restriction that these rectangles may use at most k different partitions. Note
that

Rk( f ) = min
f1, f2,..., fk

R1( f1) + R1( f2) + · · · + R1( fk),

where the minimum is taken over all k-tuples of Boolean functions f1, f2, . . . , fk with
f1 ∨ f2 ∨ · · · ∨ fk = f . Furthermore, R( f ) = mink Rk( f ). We obtain:

Proposition 1. For all Boolean functions f ,

dlog Rk( f )e = k-pcc ( f ), and dlog R( f )e = mpcc ( f ).

The measure R( f ) can also be used to prove lower bounds on the size of nondeterministic
read-once branching programs (1-n.b.p. for short): Borodin, Razborov, and Smolensky [5]
have shown that every Boolean function f requires a 1-n.b.p. of size at least R( f )1/4. In
fact this lower bound is R( f )/(2n) for n-input functions f due to an observation of Okol-
nishnikova [17].

The goal of this paper is to develop lower bounds for the fundamental measures mpcc ( f )

and R( f ), resp., and apply these results to branching programs. In the following, we give
an overview on the paper.
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1. In [10], an exponential gap between ncc ( f ) = 1-pcc ( f ) and 2-pcc ( f ) has been shown. In
Section 2 (Theorem 1), we prove that for infinitely many n and for all k = k(n), there is an
explicitly defined function fk,n : {0, 1}n → {0, 1} such that,

k-pcc ( fk,n) = �(n), and (k + 1)-pcc ( fk,n) = O(log k).

Thus, a small increase of the degree of non-obliviousness can result in an unbounded de-
crease of communication complexity.

2. In Section 3, we observe that an argument from [11, 17] yields a linear lower bound on the
multipartition communication complexity of the characteristic function of a random linear
code. Moreover, mpcc (BCHn) > log R(BCHn) = �

(

n1/2
)

for the characteristic function
of a BCH-code of length n and designed distance d = 2t + 1 with t ≈ n1/2 (Theorem 2).

On the other hand, we prove that the characteristic function of the complement of a linear
code can be computed by small randomized OBDDs with arbitrarily small one-sided error
(Theorem 3). Thus we obtain the apparently best known tradeoff between randomized and
nondeterministic branching program complexity.

3. In Section 4, we consider the problem of determining whether a given graph has no triangles.
The corresponding triangle-freeness function 1n has n =

(m
2

)

Boolean variables (one for
each potential edge) and accepts a given graph G on m vertices if and only if G has no
triangles. We prove that there is a subfunction 1′

n of 1n with R(1′
n) = 2�(n) (Theorem 4).

Although this result does not imply a lower bound on the rectangle complexity (and thus
the multipartition complexity) of the triangle-freeness function 1n itself, the result has
an interesting consequence for nondeterministic read-once branching programs. Razborov
([19], Problem 11) asks whether a truly exponential lower bound holds for the function
⊕ CLIQUEn,3 on n =

(m
2

)

variables which outputs the parity of the number of triangles in
a graph on m vertices. In the case of deterministic read-once branching programs, such a
lower bound for ⊕ CLIQUEn,3 has been proven by Ajtai et al. in [2]. We solve this problem
by proving that nondeterministic read-once branching programs for ⊕ CLIQUEn,3 and for
the triangle-freeness function 1n require size at least 2�(n). The only other truly exponential
lower bounds for nondeterministic read-once programs have been proven for a class of func-
tions based on quadratic forms in [3–5]. In the deterministic case, the recent celebrated result
of Ajtai [1] gives a truly exponential lower bound for a function similar to ⊕ CLIQUEn,3 even
for linear time branching programs.

2 A Strong Hierarchy on the Degree of Non-Obliviousness

The goal of this section is to prove that allowing one more partition of the input variables
can lead to an unbounded decrease of the communication complexity for explicitly defined
functions.
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Theorem 1. For infinitely many n and all k = k(n), there is an explicitly defined function
fk,n : {0, 1}n → {0, 1} such that,

k-pcc ( fk,n) = �(n), and (k + 1)-pcc ( fk,n) = O(log k).

Furthermore, the upper bound can even be achieved by using (k + 1)-partition protocols where
each protocol is deterministic.

We describe how the functions used in the proof of Theorem 1 are constructed. The idea is
to take some function h which is known to be “hard” even if arbitrarily many partitions are
allowed. From h, a new function fk is constructed which will be “easy” for (k + 1)-partition
protocols, but “hard” for k-partition protocols.

For h : {0, 1}m → {0, 1}, the respective function fk is defined on vectors of variables x =
(x1, . . . , x2m), y = (y0, . . . , y`−1), and z = (z0, . . . , z`−1), where ` := dlog(k + 1)e. We use a
fixed set P = {5∗

1, . . . ,5
∗
k+1} of balanced partitions of the x-variables (described later on). For

a given value i from {1, . . . , k + 1} represented by the y-variables, the vector x is divided into
two halves x1(i), x2(i) of length m according to the partition 5∗

i . The function fk is defined by
fk(x, y, z) := h

(

x1(i)
)

. (Observe that the z-variables are only used for “padding” the input.)

It is obvious that fk has (k + 1)-partition protocols of small complexity:

Proof of Theorem 1 – Upper Bound. The protocol for fk uses k + 1 partitions which divide the
x-vector according to the partitions in P , and which give all y-variables to the first player and
all z-variables to the second player. In the i th subprotocol, the first player outputs h

(

x1(i)) if i
is the value represented by the y-variables, and 0 otherwise. The second player does nothing.
The complexity of the whole protocol is obviously dlog(2(k + 1))e = dlog(k + 1)e + 1. 2

In the following, we can only give an outline of the proof of the lower bound. We first describe
the main combinatorial idea. If we can ensure that all the sets occurring as halves of partitions
in P (where |P| = k+1) are “very different,” then the partitions in P cannot be “approximated”
by only k partitions, as the following lemma shows.

Lemma 2. Define the (Hamming) distance between two sets A, B ⊆ {1, . . . , n} by d(A, B) :=
|A ∩ B| + |A ∩ B|. Let A and B be families of subsets of {1, . . . , n} with |A| = n/2 for all
A ∈ A, D 6 d(A, A′) 6 n − D for all different A, A′ ∈ A, and

∣

∣|B| − n/2
∣

∣ 6 D/4 for
all B ∈ B. If |A| > |B| + 1 then there exists an A0 ∈ A such that |A0 ∩ B| > D/8 and
|A0 ∩ B| > D/8 for all B ∈ B.

Proof. We first show that there is an A0 ∈ A such that D/2 6 d(A0, B) 6 n − D/2 for all
B ∈ B. Assume to the contrary that for each A ∈ A there is a B ∈ B such that d(A, B) < D/2
or d(A, B) = n − d(A, B) < D/2. Since |A| > |B| + 1, the pigeonhole principle implies that
there exists B ∈ B such that d(S1, B) < D/2 and d(S2, B) < D/2 for some S1 ∈ {A1, A1},
S2 ∈ {A2, A2} and A1, A2 ∈ A, A1 6= A2. But then d(S1, S2) 6 d(S1, B) + d(B, S2) < D, a
contradiction.
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For any two sets A and B, we have d(A, B) = |A| + |B| − 2|A ∩ B|. Thus, for the above A0

and all B ∈ B,

|A0 ∩ B| =
1

2
(|A0| + |B| − d(A0, B)) >

1

2

(

n

2
+

n

2
−

D

4
−
(

n −
D

2

))

=
D

8
.

Analogously, we get |A0 ∩ B| > D/8 for all B ∈ B. 2

In order to meet the requirements of Lemma 2, we choose P such that the characteristic vectors
of the 5∗

i form a code C ⊆ {0, 1}2m with the following properties: (i) All x ∈ C have exactly
m ones and m zeros, i. e., C is a so-called balanced code. (ii) Any two different codewords have
Hamming distance at least D = 2δm and at most 2m − D = 2(1 − δ)m, δ > 0 a constant.
To construct a code with these properties and exponentially many codewords, we start with a
Justesen code (see, e. g., [15]), which is a linear code with appropriate lower and upper bounds
on the weight of its codewords, and then “balance” the codewords by “padding.”

Let 5∗
i = (5∗

i,1,5
∗
i,2), for i = 1, . . . , k + 1. Let 5i = (5i,1,5i,1), for i = 1, . . . , k,

be arbitrary balanced partitions. We apply Lemma 2 to A = {5∗
i,1 | i = 1, . . . , k + 1} and

B = {X ∩ 5i,1 | i = 1, . . . , k}, where X = {x1, . . . , x2m}. This yields an index i0 such that
the first half of the partition 5∗

i0
has at least D/8 variables on both sides of all partitions 5i ,

i = 1, . . . , k. It is now easy to prove the following.

Lemma 3. Let β := D/(8m) = δ/4. There are partitions 5′
1, . . . ,5

′
k of the variables of h

which are β-balanced, i. e. |5′
i,1|, |5

′
i,2| > bβmc for i = 1, . . . , k, and a k-partition protocol

for h with these partitions which has complexity at most k-pcc ( fk).

To obtain the desired lower bound for fk , we require an explicitly defined function h which has
large multipartition complexity even if the given partitions are only β-balanced for some small
constant β > 0. A linear lower bound of this type is contained, e. g., in the results of Beame,
Saks, and Thathachar ([4], Lemma 4) or in [13].

3 The Multipartition Communication Complexity of Linear
Codes

A (binary) code of length n and distance d is a subset of vectors C ⊆ {0, 1}n for which the
Hamming distance between any two vectors in C is at least d . The following lemma is implicit
in [11, 17], where a stronger version has been used to show that linear codes are hard for read-
k-times branching programs:

Lemma 4 ([11, 17]). Let C ⊆ {0, 1}n be a code of distance 2t + 1. Let P be a mul-
tipartition protocol computing the characteristic function of C. Then P uses at least

log
(

|C| ·
(bn/2c

t

)2 · 2−n
)

bits of communication.
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The number of codewords and the distance of random linear codes are known to meet the
Gilbert-Varshamov bound [15]. As a consequence, the above lemma gives linear lower bounds
for the characteristic functions of such codes. To give a constructive example, we consider
binary BCH-codes with length n = 2m − 1 and designed distance d = 2t + 1; such a code has
at least 2n/(n + 1)t vectors and distance at least d . Let BCHn be the characteristic function of
such a BCH code with t ≈ n1/2. Using Lemma 4, we obtain:

Theorem 2. Each multipartition protocol for BCHn has complexity at least �
(

n1/2
)

.

On the other hand, all linear codes have small randomized communication complexity even in
the fixed-partition model (we omit the easy proof):

Proposition 2. Let fC be a characteristic function of a linear binary code of length n. Then
the two-party fixed-partition one-round bounded error communication complexity of fC is O(1)

with public coins and O(log n) with private coins.

The characteristic functions fC of linear codes are known to be hard for different models of
branching programs, including k-n.b.p.’s – nondeterministic read-k-times branching programs
where along any path no variable appears more than k times [11], and (1,+k)-b.p.’s – deter-
ministic branching programs where along each consistent path at most k variables are allowed
to be tested more than once [12]. On the other hand, the negation ¬ fC is just an OR of at
most n scalar products of an input vector with the rows of the corresponding parity-check ma-
trix. Hence, for every linear code, the characteristic function ¬ fC of its complement has a
small nondeterministic OBDD (an OBDD is a read-once branching program where the vari-
ables along every path appear according to a fixed order). We can strengthen this observation
even to randomized OBDDs with one-sided error.

Theorem 3. Let C ⊆ {0, 1}n be a linear code and let fC be its characteristic function. Then,
for every integer r > 2, ¬ fC can be computed by a randomized OBDD of size O

(

n4r
)

with
one-sided error at most 2−r .

Sketch of Proof. Let H be the m × n parity-check matrix of C . Let w be chosen uniformly at
random from {0, 1}n. The essence of the construction is the simple fact that w>H x ≡ 0 mod 2
for x ∈ C , whereas Prob

[

w>H x 6≡ 0 mod 2
]

= 1/2 for x 6∈ C . We cannot use this rep-
resentation of fC directly to construct a randomized OBDD, since this OBDD would require
exponentially many probabilistic nodes to randomly choose the vector w.

To reduce the number of random bits, we apply an idea which has appeared in different disguises
in several papers (see, e. g., Newman [16]): By a probabilistic argument it follows that, for all δ

with 0 < δ < 1/2, there is a set W ⊆ {0, 1}n with |W | = O
(

n/δ2
)

such that for w chosen
uniformly at random from W and all x 6∈ C , Prob

[

w>H x 6≡ 0 mod 2
]

> 1/2 − δ. Choose
δ = 1/5 and let W be the obtained set of vectors.

Let G be the randomized OBDD which starts with a tree on dlog |W |e probabilistic variables
at the top by which an element w ∈ W is chosen uniformly at random. At the leaf of the tree
belonging to the vector w, append a deterministic sub-OBDD which checks whether w>H x ≡
0 mod 2. By the above facts, this randomized OBDD computes ¬ fC with one-sided error at
most 7/10. The size of G is bounded by O

(

n2
)

.

7



To decrease the error probability, we regard G as a deterministic OBDD on all variables (deter-
ministic and probabilistic ones). Applying the known OBDD-algorithms, we obtain an OBDD
G ′ for the OR of 2r copies of G with different sets of probabilistic variables. This OBDD G ′

has one-sided error at most (7/10)2r < 2−r and size O
(

n4r
)

. 2

Apparently, this result gives the strongest known tradeoff between nondeterministic and ran-
domized branching program complexity.

4 A Lower Bound for Triangle-Freeness

The triangle-freeness function 1n is a function on n =
(m

2

)

Boolean variables (encoding the
edges on an m-vertex graph) which, given a graph G on m vertices, accepts it if and only if G
has no triangles. The function ⊕ CLIQUEn,3 has the same set of variables and outputs the parity
of the number of triangles in G.

Theorem 4. There is a subfunction 1′
n of 1n such that R(1′

n) = 2�(n). The same holds also
for ⊕ CLIQUEn,3.

This result is sufficient to prove that each nondeterministic read-once branching program detect-
ing the triangle-freeness of a graph requires truly exponential size. Since by assigning constants
to some variables, we can only decrease the branching program size, the desired lower bound
on the size of any 1-n.b.p. computing 1n follows directly from Theorem 4 and the fact that each
Boolean function f on n variables requires a 1-n.b.p. of size at least R( f )/(2n) (as mentioned
in the introduction). We obtain the following main result which also answers Problem 11 of
Razborov from [19].

Theorem 5. Nondeterministic read-once branching programs for the triangle-freeness function
1n as well as for ⊕ CLIQUEn,3 require size 2�(n).

Remark. Using a similar probabilistic argument, the following has recently been proven
in [13]: (i) R(1n) = 2�

(

n3/4
)

; (ii) Rk(1n) = 2�(n) provided k 6 2c
√

n for a sufficiently
small constant c > 0; and (iii) there is a constant C > 0 such that syntactic nondeterministic
read-k-times branching programs, detecting the absence of 4-cliques in a graph on m vertices,
require size at least 2�

(

m2/Ck
)

. Moreover, it is shown that Theorem 4 remains true also for
β-balanced partitions, for all constants β with 0 < β 6 1/2.

4.1 Outline of the Proof of Theorem 4

We give the details only for 1n and discuss the changes required for ⊕ CLIQUEn,3 at the end
of this section. To define the desired subfunction of 1n , we consider graphs on m vertices
partitioned into sets U = {1, . . . , m/2} and V = {m/2 + 1, . . . , m}. The subfunction 1′

n will
depend only on variables corresponding to the edges in the bipartite graph U × V ; the variables
corresponding to the edges within the parts U and V will be fixed. Hence, 1′

n will still have
m2/4 variables.
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The proof consists essentially of two parts: First, we probabilistically construct an assignment
which fixes the subgraphs GU and GV on the vertex sets U and V . After fixing these graphs,
we obtain a subfunction 1′

n of 1n which depends only on variables belonging to edges in the
bipartite graph G B = U × V . We then consider only those partitions 5 which are balanced
with respect to the bipartite (non-fixed) part. Our goal is to choose the graphs GU and GV such
that none of them contains a triangle and the resulting graph G = GU ∪ GV ∪ G B contains
many triangles whose bipartite edges belong to different halves of a partition.

A pair of edges in U × V is called a test, if they form a triangle together with an edge from GU

or GV . Two tests are said to collide, if a triangle can be formed by picking one edge from the
first test, one edge from the second test and an edge from GU ∪ GV . In particular, tests collide
if they share an edge.

Given a balanced partition 5 = (E1, E2) of the edges in U × V , say that a test is hard for 5,
if each part Ei of the partition contains one edge of the test. The following lemma about graph
partitions is the core of our argument.

Lemma 5. There exist triangle-free graphs GU and GV such that for all balanced partitions
51, . . . ,5k of U × V , where k 6 2αm2

and α > 0 is a sufficiently small constant, the graph
G = GU ∪ GV ∪ G B has a set T of tests such that T does not contain any colliding pairs, and
T contains a subset Ti of �

(

m2
)

hard tests for each 5i , i = 1, . . . , k.

Let us first show how this lemma implies the theorem; we will then sketch the proof of the
lemma itself.

Choose GU and GV according to the lemma and let 1′
n be the resulting subfunction on U × V .

Let functions f1, . . . , fk be given with 1′
n = f1 ∨ · · · ∨ fk , k 6 2αm2

, and
∑k

i=1 R1( fi) =
Rk(1

′
n), and let 51, . . . ,5k be the partitions corresponding to optimal covers of f1, . . . , fk by

rectangles.

We construct a set A of hard 1-inputs for 1′
n which will already require many rectangles to be

covered according to the partitions 51, . . . ,5k . Let T be the set of tests obtained by Lemma 5.
Edge variables outside of T are fixed to 0 for all inputs in A. For each test in T , we then choose
exactly one edge and set the respective variable to 1, the second one is set to 0. Thus, the graph
corresponding to an input in A has precisely one of the two edges of each test in T , and two
graphs differ only on edges in T . Since no two tests in T collide, the graphs are triangle-free
and we obtain a total of 2|T | graphs. Hence, |A| = 2|T |.

Now observe that there is at least one function fi with | f −1
i (1) ∩ A| > |A|/k = 2|T |/k. By

Lemma 5, there is a set Ti ⊆ T of h = �
(

m2
)

tests which are hard for the partition 5i . Let
B ⊆ f −1

i (1) ∩ A be a set of maximum size such that two different inputs from B differ in at
least one bit corresponding to a test in Ti . Then |B| > | f −1

i (1) ∩ A|/2|T |−h > 2h/k.

Since all the inputs from B are accepted by fi , it remains to show that no rectangle r 6 fi

with the underlying partition 5i can accept more than one input from B. Assume that (a, b)

and (a′, b′) are two different inputs in B accepted by r . By the choice of B, they differ in a test
t = {e1, e2} which is hard for 5i , i. e., whose edges belong to different halves of the partition
5i . By the definition of A, exactly one of the two edges e1 and e2 is present in each of the
graphs belonging to (a, b) and (a ′, b′), resp., and these edges are different.
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Now, if r(a, b) = 1, then r(a, b′) = 0 or r(a′, b) = 0 because either the graph corresponding
to (a, b′) or to (a′, b) will contain both edges e1, e2, which, together with the corresponding
edge of GU or GV , forms a triangle. This is a contradiction to the fact that r is a rectangle.
Altogether, we have completed the proof of the lower bound for 1′

n .

Changes for ⊕ CLIQUEn,3. We consider the subfunction ⊕ CLIQUE′
n,3 which is obtained from

⊕ CLIQUEn,3 in same way as 1′
n from 1n . Let t := |T |. For x, y ∈ {0, 1}t , define IPt(x, y) :=

∑t
i=1 xi yi mod 2. Define the set A of hard inputs for ⊕ CLIQUE′

n,3 as follows: For all (x, y) ∈
IP−1

t (1), include the input obtained by setting variables outside of T to 0 and setting the two
edge variables of the i th test in T to xi and yi , resp. Then |A| = | IP−1

t (1)| > 22t−1 and
A ⊆ ⊕ CLIQUE−1

n,3(1).

Following the proof for 1′
n , we obtain a set B of at least 2t+h−1/k inputs from A which are

hard for one of the partitions 5i in a cover of ⊕ CLIQUE′
n,3. Using the well-known fact that

|r−1(1)| 6 2t for each rectangle r 6 IPt or r 6 ¬ IPt , one easily proves that no rectangle
r ′ 6 ⊕ CLIQUE′

n,3 can contain more than 2t inputs from B. Thus, at least 2h−1/k rectangles
are needed to cover B.

4.2 Sketch of Proof for Lemma 5

Recall that a test is a pair of edges in U × V which form a triangle together with an edge in GU

or GV , and that a test is hard with respect to a partition 5 if its two edges lie in different halves
of 5.

Lemma 6. There exist graphs GU and GV such that:

(i) each of the graphs GU and GV has 2(m) edges, at most O(1) triangles, and at most O(m)

paths of length 2 or 3; and

(ii) for every balanced partition 5 of U × V , there are h = �
(

m2
)

tests which are hard for 5.

Sketch of Proof. We prove the existence of the desired graphs by a probabilistic argument. In
what follows, let GU (GV) stand for the random graph on U (resp., on V ) obtained by inserting
the edges independently at random with probability p = 2(1/m) each1. Using Markov’s
inequality, it is easy to show that the graphs GU and GV have the properties described in Part (i)
of the lemma with probability at least 1/2. It remains to prove that, with probability larger than
1/2, for every balanced partition of U × V , there are at least �

(

m2
)

hard tests.

Let 5 be such a balanced partition. The partition 5 distributes the edges in U × V to two sets
of size m2/8 each which are given to the players Alice and Bob. Call a vertex mixed if each of
the two players has at least 1

8 · m
2 bipartite edges incident to it.

Claim 1. There are �(m) mixed vertices in each of the sets U and V .

1For the sake of simplicity, we omit the exact constant in the definition of p here.
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Proof of the Claim. We use essentially the same argument as Papadimitriou and Sipser in [18].
W. l. o. g., assume that we have at most εm mixed vertices in V , where ε > 0 is a sufficiently
small constant (ε < 1/112 works fine). Call a vertex v an A-vertex (resp. B-vertex) if Alice
(resp. Bob) has at least 7

8 · m
2 edges incident to v. Thus, vertices which are neither A- nor

B-vertices are mixed. Observe first that the number of A-vertices as well as the number of
B-vertices in each of the sets U and V is at most bmax := 4

7 · m
2 , since otherwise Alice or Bob

would have more than m2/8 edges. On the other hand, the number of A-vertices as well as the
number of B-vertices in U (in V ) is bounded from below by bmin := 3

7 · m
2 −εm, since otherwise

there would be more than εm mixed vertices in U (in V ), contrary to the assumption.

Now more than half of the edges from A-vertices in U to B-vertices in V belong to Alice,
because otherwise there will be an A-vertex u ∈ U such that Alice has at most half of the edges
from u to B-vertices in V , and thus altogether at most 1

2 · bmax + |V | − bmin = 1
2 · 4

7 · m
2 + m

2 −
(

3
7 · m

2 − εm
)

6 6
7 · m

2 +εm < 7
8 · m

2 edges incident to u. With the same reasoning, however, more
than half of all edges from A-vertices in U to B-vertices in V belong to Bob. Contradiction. 2

For each mixed vertex u ∈ U , let VA(u) (VB(u)) be the set of vertices v ∈ V for which Alice
(resp. Bob) has the edge {u, v}. Since u is mixed, |VA(u)|, |VB(u)| > 1

8 · m
2 . Observe that each

edge between VA(u) and VB(u) leads to a hard test with respect to the given partition 5.

Claim 2. The following event has probability larger than 1/2 with respect to the random choices
of GV: For all pairs of disjoint sets S1, S2 ⊆ V of size at least m/16 each, the number of edges
in GV between S1 and S2 is at least p|S1||S2|/2.

Proof of the Claim. The expected number of edges between fixed sets of vertices S1 and S2 is
p|S1||S2|. By Chernoff bounds, the true number of edges is at least p|S1||S2|/2 with probability
at least 1 − e−cm , where the constant c > 0 can be adjusted by the choice of the constant in
the definition of p. Since there are at most

(

2m/2
)2 = 2m choices for the sets S1, S2 ⊆ V ,

the probability of the described event is at least 1 − 2m · e−cm , which is larger than 1/2 for
appropriate c. 2

We apply the claim to the sets VA(u) and VB(u), where u is a mixed vertex. Due to the claim,
the event that, for all partitions 5 and all �(m) mixed vertices u with respect to 5, the respec-
tive sets VA(u) and VB(u) are connected by at least p|VA(u)||VB(u)|/2 = �(m) edges, has
probability larger than 1/2. Thus, with probability larger than 1/2, for each partition 5 there
are �

(

m2
)

hard tests. This completes the proof of the lemma. (Observe that it does not matter
whether we carry out the above argument for mixed vertices in U or in V .) 2

We apply Lemma 6 and fix graphs GU and GV with the described properties. Since there are
only O(1) triangles, we can remove these triangles without destroying the other properties.
Especially, we still have linearly many edges. By Property (ii), this pair of graphs produces
a set of h = �

(

m2
)

hard tests Ti for each of the partitions 5i (i = 1, . . . , k) from a given
multipartition protocol for 1n .
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Let T0 be the set of all tests induced by GU and GV , and let t = |T0| be its size. Since both
graphs GU and GV have 2(m) edges, t = �

(

m2
)

. Using the properties of these graphs stated
in Lemma 6 (i), it is easy to show (by case analysis) that at most O(t) of all

(t
2

)

pairs of tests in
T0 will collide:

Lemma 7. There are at most O(t) pairs of colliding tests in T0.

To finish the proof of Lemma 5, it remains to find a subset T ⊆ T0 such that: (i) there is no pair
of tests from T which collide; and (ii) |T ∩ Ti | = �

(

m2
)

for all i = 1, . . . , k. We again use a
probabilistic construction. Let T be a set of s tests picked uniformly at random from the set T0,
where s = γ t and γ is a constant with 0 < γ < 1 chosen later on.

Lemma 8.

(i) With probability at least 1/2, the set T contains at most O
(

s2/t
)

pairs of colliding tests
(where t = |T0| is the total number of tests).

(ii) With probability larger than 1/2, |T ∩ Ti | >
s·h
2t for all i = 1, . . . , k.

Proof. Part (i): We define the collision graph to have tests as vertices and edges for each
collision. Let c be the number of edges in the collision graph. By Lemma 7, we know that
c = O(t).

Let cT be the number of edges in the subgraph of the collision graph induced by the randomly
chosen set T. Since we pick tests uniformly at random, the expected number of edges is
E [cT] = s(s−1)

t (t−1)
· c. By Markov’s inequality, it follows that the actual number of edges is at

most 2 · E [cT] with probability at least 1/2. Hence, the number of pairs of colliding tests in T
is at most 2 · E [cT] = O

(

(s/t)2 · c
)

= O
(

s2/t
)

with probability at least 1/2.

Part (ii): Consider a fixed partition 5i . The probability to choose a hard test from Ti is h/t ,
t = �

(

m2
)

the total number of tests. Thus the expected number of elements in T ∩ Ti for a
randomly chosen set T of s tests is s · h/t . Let λ := h/(2t). By Chernoff bounds, it follows
that Prob [|T ∩ Ti | < λ · s] 6 2e−λ2s = e−�(s). Hence, the probability that T contains at least
λ·s = sh/(2t) hard tests for each of the partitions at least 1−k ·2−�(s). Since s = γ t = 2

(

m2
)

,

this probability is larger than 1/2 for k 6 2αm2
with α > 0 sufficiently small. 2

Lemma 8 yields the existence of a set T ⊆ T0 with the following properties: (i) |T | = s = γ t ;
(ii) there are at most δs2/t pairs of tests in T which collide, δ > 0 some constant; and (iii) for
all i = 1, . . . , k, |T ∩ Ti | > sh/(2t).

By deleting at most δs2/t tests from T , we remove all collisions, obtaining a smaller set T ′.
The number of hard tests for each 5i in T ′ is still sh/(2t) − δs2/t = (s/t) · (h/2 − δs) =
γ · (h/2 − δγ t). Since this number is of the order �

(

m2
)

for γ = h/(4δt) = O(1), we have
completed the proof of Lemma 5.
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Appendix

A1: The Hierarchy for k-Partition Protocols

Here we prove the lower bound from Theorem 1. We first repeat the definition of the type of
functions used in the hierarchy result. Some details of the definition will be filled in later on.

Definition A.1: Let k and m be positive integers, and let h : {0, 1}m → {0, 1} be an arbitrary
function. Let X = {x1, . . . , x2m} and let P = {5∗

1, . . . ,5
∗
k+1}, where 5∗

i is a balanced partition
of X . For i = 1, . . . , k+1, define x1(i) and x2(i) as the vectors of m variables corresponding to
the halves of 5∗

i . Let ` = dlog(k + 1)e, Y = {y0, . . . , y`−1}, and Z = {z0, . . . , z`−1}. Define
fh,P : {0, 1}2(m+`) → {0, 1} by

fh,P(x, y, z) :=
∨

16i6k+1

[|y|2 = i] ∧ h
(

x1(i)
)

,

where |y|2 denotes the value of y as a binary number.

As already shown in the main text, (k + 1)-pcc ( fh,P ) 6 dlog(k + 1)e + 1. It remains to prove
a linear lower bound on the k-partition communication complexity for suitably chosen h and P .
We will first prove a technical lemma which replaces Lemma 3 from the main text. Then we
apply the lemma to an explicit example.

Definition A.2: For x, y ∈ {0, 1}n, let d(x, y) denote the (Hamming) distance between x and y.
By the weight of x , denoted by w(x), we mean the number of 1-entries in x . A set C ⊆ {0, 1}n

is called a balanced code if the w(x) = bn/2c for all x ∈ C 1.

Lemma A.3: Let Cn ⊆ {0, 1}n be a family of balanced codes which is defined for infinitely
many n such that for all different x, y ∈ Cn , D 6 d(x, y) 6 n − D.

Let m be a positive integer, and let n = 2m be such that Cn is defined. Suppose that D > 8bαmc.
Let N = |Cn|, and suppose that ` := dlog Ne 6 D/8. Let Cn = {c1, . . . , cN }.
Let X = {x1, . . . , x2m}. For i = 1, . . . , N, let 5∗

i = (5∗
i,1,5

∗
i,2), with 5∗

i,1 := {x j | ci, j = 1}
and 5∗

i,2 := X − 5∗
i,1. Let P = {5∗

1, . . . ,5
∗
N }. Let fh,P be the function obtained according

to Definition A.1 using an arbitrary function h : {0, 1}m → {0, 1} and the set of partitions P

defined here.

Then there are α-balanced partitions 5′
1, . . . ,5

′
N−1 of the input variables of h, i. e., 5′

i =
(5′

i,1,5
′
i,2) with |5′

i,1|, |5
′
i,2| > bαmc, and an (N − 1)-partition protocol P ′ for h according

to 5′
1, . . . ,5

′
N−1 such that the complexity of P ′ is bounded from above by (N − 1)-pcc ( fh,P ).

1 This is the definition used in coding theory. In fact, we only need w(x) ∈ {bn/2c, dn/2e} here.
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Proof. Let P be an optimal (N − 1)-partition protocol for fh,P according to the balanced par-
titions 51, . . . ,5N−1 of X ∪ Y ∪ Z , where 5i = (5i,1,5i,2).

For i ∈ {1, . . . , N }, define Si :=
{

x1(i)
}

and Si :=
{

x2(i)
}

= X − Si . For i ∈ {1, . . . , N − 1},
define Ti := X ∩5i,1 and Ti = X ∩5i,2 := X −Ti . Since there are 2dlog Ne y- and z-variables,
the number of x-variables in each half of 5i is at least n/2 − 2dlog Ne > n/2 − D/4. Hence,
|Ti |, |Ti | > n/2 − D/4.

We apply Lemma 2 from the main text (page 5) to A := {Si | i = 1, . . . , N } and
B := {Ti | i = 1, . . . , N − 1}. This yields an index i0 ∈ {1, . . . , N } with |Si0 ∩ T j | > D/8
and |Si0 ∩ T j | > D/8 for all j ∈ {1, . . . , N − 1}. Since D > 8bαmc by assumption, we have
|Si0 ∩ T j | > bαmc and |Si0 ∩ T j | > bαmc for all j ∈ {1, . . . , N − 1}.
We construct the desired (N − 1)-partition protocol P ′ for h by setting variables to constants in
the given protocol P for fh,P . Let fh,P = P1 ∨ · · · ∨ PN−1, where Pi is the function computed
by the i th subprotocol Pi of P . We fix the y-variables such that y represents the value i0.
Furthermore, we fix the variables in Si0 and the z-variables in an arbitrary way.

Let P ′ and P ′
1, . . . , P ′

N−1 be the protocols obtained from P and P1, . . . , PN−1, resp., by the
above variable assignments. The new protocols only work on variables from Si0 , and we have

P ′
1 ∨ · · · ∨ P ′

N−1 = h
(

x1(1)
)

.

By restricting the partitions 51, . . . ,5N−1 to the remaining variables in Si0 , we obtain new
partitions 5′

1, . . . ,5
′
N−1, where 5′

i = (5′
i,1,5

′
i,2), such that |5′

i,1|, |5
′
i,2| > bαmc for all

i = 1, . . . , N − 1. Each protocol P ′
i is a nondeterministic two-party protocol according to 5′

i .

Altogether, P ′ is a protocol of the desired type for h (defined on Si0), and the complexity of P ′

is bounded from above by the complexity of P . 2

Application to an Explicit Example

Definition A.4: Let C ⊆ {0, 1}n. The rate of C is defined as (log |C|)/n.

Proposition A.5: Let C ⊆ {0, 1}n be a code with rate α and δn 6 d(x, y) 6 (1 − δ)n for all
different x, y ∈ C, where α, δ > 0. Let N := 2n and define

Cb := {(x, y) | x ∈ C, y ∈ {0, 1}n with w(y) = n − w(x)} ⊆ {0, 1}N .

Then Cb is a balanced code with rate at least α/2 and (δ/2)N 6 d(x, y) 6 (1 − δ/2)N for all
different x, y ∈ Cb.

Definition A.6: Let m be a positive integer, N = 2m − 1, and let α be a primitive element of
�

2m . Let K be an integer with 1 6 K 6 N − 1, and define D := N − K + 1. Let RN ,K be the
[N , K ]-Reed-Solomon code i. e., the linear code of length N over

�
2m with parity-check matrix

HN ,K =











1 α α2 · · · αN−1

1 α2 α4 · · · α2(N−1)

...
...

... · · · ...

1 αD−1 α(D−1)·2 · · · α(D−1)(N−1)










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This code has dimension K and distance D (see, e. g., [15]).

For x ∈
�

2m and 1 6 i 6 N , define ci (x) := (x, αi · x). For x = (x1, . . . , xN ) ∈
� N

2m , define
c(x) := (c1(x1), . . . , cN (xN )) and regard this as a vector from (

�
2)

2m N . The binary code JN ,K

of length 2m N defined by

JN ,K := {c(x) | x ∈ RN ,K }

is called ([N , K ]-)Justesen code. This code is linear and has dimension mK (both facts follow
directly from the definition).

Theorem A.7 (Justesen): Let m be a positive integer and 0 < R < 1/2. Let N = 2m − 1
and n = 2m N. Define K := dR · 2Ne. Then the Justesen code J R

m := JN ,K has rate at least
K/(2N ) > R, and for each constant ε > 0 and m sufficiently large,

w(x) > (1 − ε)(1 − 2R)cn, for all x ∈ J R
m ,

where c := H−1(1/2) > 0.11002 (H is the binary entropy function).

Observation A.8: There is a deterministic polynomial time algorithm which, given x ∈ {0, 1}n,
checks whether x ∈ J R

m .

Proof. This follows from the facts that (i) an irreducible polynomial p(x) ∈
�

2[x] of degree m
can be found by a deterministic algorithm with polynomial time in m (see, e. g., [21]); and (ii)
addition and multiplication in

�
2m can be carried out efficiently by algorithms on polynomials

in
�

2[x]/(p(x)), given the irreducible polynomial p(x). 2

Observation A.9: For each constant ε > 0 and m sufficiently large,

w(x) 6 n − (1 − ε)(1 − 2R)cn, for all x ∈ J R
m .

Proof. This follows in the same way as the lower bound on the weight in the standard proof of
Theorem A.7 (see, e. g., [15]).

The standard proof exploits the fact that there are only few Boolean vectors of fixed length with
small weight. The same holds for vectors of large weight, as stated below.

Claim. Let 0 < γ, δ < 1. Suppose that M = M(L) =
(

2δL − 1
)

(γ + o(1)) (for L → ∞),
and let W = W (L) be the sum of all weights of M different vectors from {0, 1}L . Then W 6

L M −
(

H−1(δ) − o(1)
)

L M.

Proof of the Claim. The number of vectors from {0, 1}L with weight at least (1 − λ)L is

Nlarge =
∑

(1−λ)L6i6L

(

L

i

)

=
∑

06i6λL

(

L

i

)

6 2H(λ)L ,
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where the inequality at the end follows by well-known estimates of the binomial coefficients.
This yields

W 6 L Nlarge + (1 − λ)L(M − Nlarge)

= L Nlarge + L M − λL M − L Nlarge + λL Nlarge

= L M − λL M(1 − Nlarge/M)

6 L M − λL M
(

1 − 2H(λ)L/M
)

.

We set λ := H−1
(

δ − 1/ log L
)

= H−1(δ) ± o(1). Then

W 6 L M − λL M
(

1 − 2H(λ)L/M
)

= L M − λL M

(

1 −
2δL−L/ log L

(

2δL − 1
)

(γ + o(1))

)

= L M − λL M(1 − o(1))

= L M −
(

H−1(δ) − o(1)
)

L M
2

By the following claim, each codeword x = (x1, . . . , xN ) of the Reed-Solomon code with a
fixed number of non-zero entries (i. e., fixed weight) leads to a codeword c(x) in the Justesen
code with the same number of different components ci(xi ) from {0, 1}2m .

Claim. For 1 6 i < j 6 N = 2m − 1 and u, v ∈
�

2m − {0}, (u, αi u) 6= (v, α jv).

Proof of the Claim. If (u, αi u) = (v, α jv), then αi u = α j u, and thus, by division in
�

2m ,
αi = α j . It follows that i ≡ j mod

(

2m − 1
)

. 2

Now we prove the claimed upper bound on the weight of codewords in J R
m . The distance of the

Reed-Solomon code RN ,K is D = N − K + 1. Thus, each code word x = (x1, . . . , xN ) ∈
� N

2m

has at least D non-zero entries. By the second claim, the corresponding codeword c(x) =
(c1(x1), . . . , cN (xN )) in the Justesen code contains at least D different vectors from {0, 1}2m .
We have

D = N − K + 1 > N − K = N − dR · 2Ne =
(

2m − 1
)

(1 − 2R + o(1)).

We apply the first claim to bound the weight of c(x). We set L := 2m, δ := 1/2, γ := 1 − 2R,
and M :=

(

2m − 1
)

(1 − 2R + o(1)). By the claim, the weight of c(x) is bounded by

W 6 L M −
(

H−1(δ) − o(1)
)

L M

6 2m
(

2m − 1
)

−
(

H−1(δ) − o(1)
)

2m
(

2m − 1
)

(1 − 2R − o(1))

= n − (1 − 2R)H−1(δ)(1 − o(1))n,

where we have used the bound M 6 2m − 1 for the second line. 2
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Lemma A.10 (Beame, Saks, Thathachar [4]): Let n = 2d , and let Sn be the n × n Sylvester
matrix defined by Sn(x, y) := (−1)x>y mod2, x, y ∈ {0, 1}n. Define BQFn : {0, 1}n → {0, 1} by
BQFn(x) :=

[

x>Snx ≡ 0 mod 3
]

.

(i)
∣

∣BQF−1
n (1)

∣

∣ > 2n−24 log n/
√

n .

(ii) Let r : {0, 1}n → {0, 1} be a rectangle with respect to a δ-balanced partition of the vari-
ables of BQFn with r 6 BQFn . Then

∣

∣r−1(1)
∣

∣ 6 2(1−δ2)n.

Especially, this lemma implies that BQFn has multipartition communication complexity �(n)

even with respect to partitions which are only δ-balanced for some constant δ > 0.

Proof of Theorem 1 – Lower Bound. We prove that for all functions k with k(n) 6 2αn−1 − 1,
α := (1/32)H−1(1/2), there is a function fh,P constructed according to Definition A.1 with
|P| = k + 1, input size 2(n), and k-pcc ( fh,P ) = �(n). We do not make any attempt to
optimize the constants here.

Let d be a positive integer and R = 1/4. Plug J R
d into Proposition A.5. Let m = 2d

(

2d − 1
)

,
and let Cb

2m ⊆ {0, 1}2m be the balanced code obtained according to the proposition, which has
rate at least R/2 = 1/8 and D 6 d(x, y) 6 2m − D for all different x, y ∈ C b

2m , where
D := 8δ(2m), δ := (1/64)H−1(1/2) ∈ (0.01, 0.02).

Define n := 2d+dlog de−1. Then n 6 m = 2d
(

2d − 1
)

for sufficiently large d . Define
h : {0, 1}m → {0, 1} by h(x1, . . . , xm) := BQFn(x1, . . . , xn). By Lemma A.10 and Propo-
sition 1, the multipartition complexity of h with respect to δ-balanced partitions of the input
variables is at least δ2n − o(1). Since n = (m/2)(1 + o(1)), this is of order �(m).

We have |Cb
2m | > 2m/4. We use h and a subset of Cb

2m of size k + 1 6 22δm−1 in Lemma A.3.
Observe that the assumption dlog(k + 1)e 6 D/8 = 2δm is fulfilled for the chosen k. For
the function fh,P : {0, 1}2m+2dlog(k+1)e → {0, 1} constructed from h and the set of partitions P
corresponding to the chosen subset of Cb

2m , we obtain k-pcc ( fh,P ) = �(m). 2

A2: Linear Codes

Proof of Theorem 2

Let t :=
⌈

n1/2
⌉

. Using Stirling’s formula, one can easily prove the following estimate for the
binomial coefficients occurring in Lemma 4:

(

bn/2c
t

)

= e−1(2π)−1/2 · n−1/4 ·
(

(e/2)n1/2
)n1/2

· (1 + o(1)).

Thus,
(bn/2c

t

)

> 2αn1/2 · n(1/2)n1/2
, for some positive constant α < log(e/2) (log(e/2) > 0.442).
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By Lemma 4, we obtain the following lower bound on the multipartition communication com-
plexity of the characteristic function of the considered BCH-code:

log

(

|C| ·
(

bn/2c
t

)2

· 2−n

)

> log

(

22αn1/2 · nn1/2

(n + 1)dn1/2e

)

= �
(

n1/2).

Proof of Proposition 2

Checking whether a given input is accepted reduces to checking whether the two strings, ob-
tained by Alice and Bob by multiplying the parts of the input they see with the corresponding
parts of the parity-check matrix, are equal. Hence, if H1 and H2 are the parts of the parity-check
matrix corresponding to the parts of the inputs string (x, y) given to Alice and Bob, then testing
whether fC(x, y) = 1 is the same as testing the equality H1 · x = H2 · y of two strings.

Proof of Theorem 3

It remains to prove that the number of random bits can be reduced as described in the sketch of
proof. A similar argument has been used by several authors, e. g., in [6, 7, 16, 20].

Although the main trick is quite simple, it is usually hidden behind the technical details of a
particular model of computation. Since the argument may be of independent interest, it makes
sense to formulate it as a separate combinatorial lemma about the average density of Boolean
matrices.

Lemma A.11: Let M, N be positive integers with M > 5 and M = 2o(
√

N). Let A be a
Boolean M × N matrix with the property that the average density, i. e. the average number of
1’s, in each row does not exceed p, 0 6 p < 1. Then, for every constant δ > 0, there is a
set I ⊆ {1, . . . , N } with |I | =

⌈

log M/δ2
⌉

such that in the submatrix of A consisting of the
columns with index in I , each row has average density at most p + δ.

Proof. Let ξ1, . . . , ξt be independent random variables which are uniformly distributed over
{1, . . . , N }, where t :=

⌈

log M/δ2
⌉

. First, observe that with probability 1 −
(t

2

)

/N = 1 − o(1),
all ξ1, . . . , ξt are distinct. Next, fix a row x = (x1, . . . , xN ) of A and consider the 0-1 random
variables Xi = xξi , for i = 1, . . . , t . We have Prob [Xi = 1] 6 p for all i . By Chernoff
bounds, the average density

(
∑t

i=1 Xi
)

/t of 1’s in x exceeds p + δ with probability at most

2e−δ2t 6 2M− log e. Thus, with probability at least 1 − 2M1−log e, the restriction of each row
of A to the columns with indices ξ1, . . . , ξt has density at most p + δ. This probability is larger
than 0 for M > 5. Altogether, the probability that the submatrix consisting of the columns with
indices ξ1, . . . , ξt has the claimed properties is larger than 0. 2
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We apply this lemma as follows. Choose the set of all x ∈ {0, 1}n with ¬ fC(x) = 1, i. e.
x 6∈ C , as the row indices, and all vectors w ∈ {0, 1}n as the column indices. Define the
2n × 2n matrix A = (ax,w) by setting ax,w :=

[

w>H x 6≡ 0 mod 2
]

. Then each row of A has
density 1/2. The lemma gives us a set W ⊆ {0, 1}n with |W | =

⌈

log M/δ2
⌉

= O
(

n/δ2
)

such that, for all x with ¬ fC(x) = 1 and w chosen uniformly at random from W , we have
Prob

[

w>H x 6≡ 0 mod 2
]

> 1/2 − δ.

This completes the proof of Theorem 3.

A3: Triangle-Freeness

Proof of Lemma 6

It only remains to supply the details of the proof of Part (i) of the lemma.

Let G be a random graph on m/2 vertices where the edges are inserted independently at random
with probability p = 2(1/m). We claim that, with probability at least 3/4, G has 2(m) edges,
O(1) triangles, and O(1) paths of length 2 and 3.

(a) The expected number of edges in G is E = p ·
(m/2

2

)

= 2(m). Using Chernoff bounds,
we get that the actual number of edges is smaller than E/2 or larger than (3/2)E only with
exponential small probability.

(b) The expected number of triangles in G is E =
(m/2

3

)

· p3. Hence, G has more than 16 · E
triangles with probability less than 1/16 by Markov’s inequality.

(c) The expected number of paths of length k in G is E =
(m/2

k+1

)

· pk , and G has more than
32 · E paths of length k with probability less than 1/32. Thus the bound on the number of
paths of length two and three is exceeded with probability at most 1/16.

Altogether, the conjunction of (a), (b) and (c) holds with probability at least 1 − 3/16 > 3/4. It
follows that, with probability larger than 1/2, both of the random graphs GU and GV considered
in the main text have 2(m) edges, O(1) triangles, and O(1) paths of length 2 and 3.

Proof of Lemma 7

Recall that our goal is to prove that there are at most O(t) pairs of colliding pairs in the set T0 of
tests induced by the graphs GU and GV . We prove the claim by case inspection of all possible
situations in which tests may collide.

A test is a pair of edges of the bipartite graph G B = U × V which together with an edge from
GU or GV form a triangle. Thus, a test is defined by a pair (e, v), where e is an edge in GU

(GV ) and a vertex v ∈ V (v ∈ W , resp.).

Claim 1. Let (e1, w1) and (e2, w2) describe two colliding tests. Assume that e1 and e2 both
belong to GU (resp. that they both belong to GV ). Then at least one of the following conditions
applies.
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(a) {w1, w2} is an edge of GV (resp. of GU ) and e1 and e2 belong to a GU -path (resp. to a
GV -path) of length two;

(b) w1 = w2 and e1 and e2 belong to a GU -path (resp. to a GV -path) of length two or three.

Proof of Claim 1. Assume first that a triangle is formed by picking a G V -edge (resp. a GU -
edge) as the third edge. In this case the two bipartite edges originate from the same vertex in U
(resp. V ) which has to be a common endpoint of e1 and e2. Thus e1 and e2 belong to a GU -path
(resp. GV -path) of length two and {w1, w2} is the GV -edge (resp. the GU -edge) in question.
(See Figure 1 a.)

w2w1

U

V

e1 e2

a)

Figure 1.

U

V

U
e

V
w1 = w2 w1 = w2

e1 e2

b1) b2)

e2e1

Now assume that the triangle is formed by picking a GU -edge (resp. a GV -edge) e. Thus
the triangle consists of e and the two bipartite edges: w1 = w2 follows. If e1 and e2 do not
share an endpoint, then (e1, e, e2) is a GU -path (resp. GV -path) of length three (Figure 1 b1).
Finally, if e1 and e2 share an endpoint, then (e1, e2) is a GU -path (resp. GV -path) of length two
(Figure 1 b2). 2

Claim 2. Assume that e1 belongs to GU and that e2 belongs to GV (the situation where e1

belongs to GV and e2 to GV is completely symmetric). Then at least one of the following
conditions applies.

(c) w1 is an endpoint of e2 and w2 is an endpoint of e1;

(d) w1 is an endpoint of e2 and e1 belongs to a GU -path of length two that begins in w2;

(e) w2 is an endpoint of e1 and e2 belongs to a GV -path of length two that begins in w1;

Proof of Claim 2. There are essentially three different possible situations which are shown in
Figure 2. Obviously, this is exactly what is described in conditions (c)–(e). Condition (e) is
symmetric to (d).

e1w2

w1

V

U

e2 w1e2 e2w1

Figure 2.

e e1 e1w2 w2
U

V V

U

e

c) d) e)
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We now estimate the number of colliding pairs of tests by using the above results and Lemma 6,
Part (i). We show that there are only O

(

m2
)

pairs of tests for which one of the conditions (a)–(e)
applies. Since t = 2

(

m2
)

, this also proves that the number of colliding pairs is of order O(t).

(a) There are only O(m) edges {w1, w2} in GU (resp. GV ) and O(m) GV -paths (GU -paths) of
length two.

(b) There are only m/2 vertices w1 and O(m) GU -paths (GV -paths) of length three.

(c) The number of collisions of this type is 2|GU ||GV | = O
(

m2
)

, since there are |GU ||GV |
choices for e1 and e2 and two ways to place the endpoints w1 and w2 for each of these
choices.

(d) There are O(m) GU -paths of length two and 2|GV | choices for the pair (e2, w1).

(e) This is symmetric to (d).

2
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