
Polynomial Programs and the Razborov-Smolensky Method

Hubie Chen∗

Abstract

Representations of boolean functions as polynomials (over rings) have been used to establish lower
bounds in complexity theory. Such representations were used to great effect by Smolensky, who estab-
lished that MOD q /∈ AC0[MOD p] (for distinct primes p, q) by representing AC0[MOD p] functions
as low-degree multilinear polynomials over fields of characteristic p. Another tool which has yielded
insight into small-depth circuit complexity classes is the program-over-monoids model of computation,
which has provided characterizations of circuit complexity classes such as AC0 and NC1.

We introduce a new model of computation, the polynomial program, which naturally unifies both
the polynomial (over ring) model of computation and the program-over-monoids model of computation.
Our motivation is to extend Smolensky’s result to prove AC0[MOD m] lower bounds, where m is a
composite with at least two distinct prime factors.

In this paper, we first study the basic properties of this new model of computation and its relationship
to previous work. Then, we show that Smolensky’s proof of the “hardness” of certain functions for the
polynomial model of computation has an analog in the polynomial program model. We also prove a
dichotomy theorem on finite groups, essentially showing that a finite group G either is so “complicated”
that every boolean function has a degree one polynomial program over G, or is too “simple” in that the
function MOD p can be computed by a low-degree polynomial program over G for at most one prime
p. The property of nilpotence gives the dividing line. This dichotomy theorem rigorously demonstrates
limitations of the Razborov-Smolensky method for polynomial programs over finite groups.

∗Department of Computer Science, Cornell University, Ithaca, NY 14853. E-mail: hubes@cs.cornell.edu.

0

Electronic Colloquium on Computational Complexity, Report No. 67 (2001)

ISSN 1433-8092

1 Introduction

One research program of central importance in complexity theory aims to develop techniques for proving
resource lower bounds on explicit functions. A sequence of papers from the 1980s [7, 1, 16, 8] contributed
to this program by establishing that the parity function cannot be computed by AC 0 circuits (circuits of con-
stant depth, polynomial size, and unbounded fan-in). Building on the work of Razborov [11], Smolensky
gave a generalization of this result in 1987 [14], demonstrating that for distinct primes p and q, the lan-
guage MOD q is not computable by AC0[MOD p] circuits (AC0 circuits with oracle gates for the MOD p
function). In contrast to the combinatorial methods which were used to obtain the parity function lower
bounds, Smolensky’s proof technique, which we call the Razborov-Smolensky Method, was algebraic in
flavor. This proof technique involved showing that AC 0[MOD p] circuits can be closely approximated by
low degree multilinear polynomials over fields of characteristic p, and correspondingly that any such close
approximation of MOD q necessarily is of high degree.

Although there have been many new results concerning circuits with depth restrictions since Smolen-
sky’s result,1 the Razborov-Smolensky method remains a state-of-the-art separation technique in that there
are no analogous results characterizing the power of AC 0[MOD m] circuits when m is a composite number
with at least two distinct prime factors. Indeed, it is an open question as to whether or not MOD k can be
computed by AC0[MOD m] circuits when k is a prime not dividing m.

In fact, the class AC0[MOD m] is not known to be distinct from NP. The AC 0[MOD m] versus NP
question, then, is representative of the wide gap between our ability to formally demonstrate lower bounds
and our intuition concerning the power of various complexity classes.

In this paper, we introduce a new model of computation, which we refer to as the polynomial pro-
gram. A polynomial program is defined over a semigroup (a set with an associative binary operation),
and encompasses the polynomial model of computation used in the Razborov-Smolensky method and the
program-over-monoids model studied for example in [4]. In particular, when R is a ring, a multilinear poly-
nomial from the ring of polynomials R[X1, . . . , Xn] is a polynomial program over the additive group of R.
Also, a program over the monoid M is a polynomial program of degree one over M .

We study this model of computation in hopes of extending the Razborov-Smolensky method to address
the power of AC0[MOD m] circuits. In addition, we seek a better understanding of this method’s limitations,
and an explanation for why results on the complexity classes AC 0[MOD m] are not forthcoming. Moreover,
this new model of computation is a natural unification of two models of computation in which useful and
interesting results have been derived. The use of polynomials over rings to represent boolean functions,
which dates back to the work of Minsky and Papert on perceptrons [10], has been a successful technique in
proving complexity lower bounds for a variety of models of computation;2 and, polynomial length programs
over various classes of monoids have provided characterizations of circuit complexity classes such as AC 0

and NC1. The notion of polynomial program offers a framework in which such results might be extended.
The contents of this paper are as follows. We define the polynomial program model of computation,

highlight some of its basic properties, and describe how previous work relates to this new model (Sections
3 and 4). One key ingredient of the Razborov-Smolensky method is a proof that certain explicit functions
are “complete” for specific rings in that they require high degree to represent as polynomials over such
rings; in Section 5 we generalize this proof to the polynomial program framework. In Section 6 we prove a
dichotomy theorem for finite groups, essentially showing that a finite group G either is so “complicated” that
every boolean function has a degree one polynomial program over G, or is too “simple” in that the function
MOD p can be computed by a low degree polynomial program over G for at most one prime p. The property
of nilpotence will give the dividing line. This dichotomy theorem rigorously demonstrates limitations of the

1For example, the characterizations of circuit complexity classes given in [2] and [4].
2For more information on polynomial representations of boolean functions, we refer the reader to the surveys [5] and [12].

1

Razborov-Smolensky method for polynomial programs over finite groups.

2 Preliminaries

2.1 Languages and Classes

The languages MOD m and MAJORITY are defined as follows:
MOD m = {x ∈ {0, 1}∗ :

∑|x|
i=1 xi ≡ 0 (mod m)}

MAJORITY = {x ∈ {0, 1}∗ :
∑|x|

i=1 xi ≥ |x|/2}
Following a common abuse of notation, we will interchange languages and their characteristic functions;

whether we are referring to one or the other will be clear from the context.
An AC0 (NC0) circuit family is a sequence of circuits of constant depth, unbounded (respectively

bounded) fan-in, and polynomial size over the standard basis {¬,∧,∨}. The class AC 0 (NC0) consists
of the languages decidable by AC0 (NC0) circuit families. In this paper, we do not discuss issues of
uniformity, and our complexity classes are non-uniform.

If S = {g1, . . . , gk} is a set of boolean functions, then AC0[S] or AC0[g1, . . . , gk] is used to denote the
class of languages decidable by AC0 circuit families with oracle gates for the functions g1, . . . , gk , where
such oracle gates may have unbounded fan-in. Define TC0 to be AC0[MAJORITY].

2.2 Known Relationships

Here we present some basic relationships in the region of interest, each of which has been observed or is
implicit in previous work. We provide brief justifications.

Proposition 1 The following relationships among complexity classes hold:

1. If a, b ≥ 1 and a divides b, AC0[MOD a] ⊆ AC0[MOD b].

2. If a, b ≥ 1 are relatively prime, then AC0[MOD a, MOD b] = AC0[MOD ab].

3. For all k ≥ 1, and primes p, AC0[MOD pk] = AC0[MOD p].

4. For all m ≥ 1, AC0[MOD m] = AC0[∪p|m{MOD p}], where the union is over primes p dividing m.

Proof. (1) follows from the fact that, if a divides b, to test whether or not a string x1 . . . xn is in MOD a, we
can test whether or not x

b/a
1 . . . x

b/a
n is in MOD b.

The ⊆ direction of (2) follows from the previous justification; for the other direction, to test whether or
not a string x is in MOD ab, we can test whether or not x is in each of MOD a and MOD b.

(3) follows from the fact that for every natural number a, a ≡ 0 (mod pk) if and only if for all i =
0, . . . , k − 1,

(a
pi

)

≡ 0 (mod p). To test whether or not a string x1 . . . xn is in MOD pk, for each i =
0, . . . , k − 1 we test whether or not y1 . . . y(n

pi) is in MOD p, where each yj is the AND of a different subset

of {x1, . . . , xn} of size pi. By the fact, the string x1 . . . xn is in MOD pk if and only if each of the k tests
is true (i.e., the AND of the tests is true). Notice that we can assume that every MOD m gate in a circuit
has constant fan-in from any other gate (since we can reduce the number of wires coming into the MOD m
gate from another gate modulo m), and hence we can assume that every MOD gate in an AC 0 circuit has
polynomial fan-in.

The ⊇ direction of (4) follows from (1) and (2); the ⊆ direction follows from (2) and (3).
�

Proposition 2 The following results concerning languages and complexity classes hold:

2

1. [14] If p and q are distinct primes, then MOD q /∈ AC 0[MOD p].

2. If p is prime and m is divisible by a prime other than p, then MOD m /∈ AC 0[MOD p].

3. All symmetric functions (and hence the functions MOD m for all m ≥ 1) are contained in TC 0.

Proof. (1) is the principal result of [14]. (2) follows from (1) and Proposition 1(1). Verifying that the “exact”
functions {x ∈ {0, 1}∗ :

∑|x|
i=1 xi = k} for k = 0, . . . , n are in TC0 gives (3).

�

Our next proposition implies that there are infinitely many incomparable AC0-degrees in between AC0

and TC0, as for any two distinct primes p, q, we have MOD p ∈ AC 0[MOD p] \ AC0[MOD q].

Proposition 3 For every prime p, AC0 (AC0[MOD p] (TC0.

Proof. MOD p ∈ AC0[MOD p] \AC0 as MOD p /∈ AC0 by Proposition 2 (1); and for any prime q distinct
from p, MOD q ∈ TC0 \ AC0[MOD p] by Proposition 2(1) and Proposition 2(3).

�

2.3 Notation and Conventions

We use eG to denote the identity element of a group G. All rings are assumed to have multiplicative
identities, and when R is a ring we denote by 0R the additive identity of R, and 1R the multiplicative identity
of R. We use R+ to denote the additive group of R. If p ∈ R[X1, . . . , Xn] is a multivariate polynomial over
a ring R with indeterminates from the set {X1, . . . , Xn}, by the value of p at an assignment a ∈ {0, 1}n we
mean the value of p when, for all i ∈ {1, . . . , n}, Xi = 0R or 1R depending on whether ai = 0 or 1. We
generally associate 0R and 1R with the boolean values 0 and 1, and say that a polynomial g ∈ R[X1, . . . , Xn]
strongly represents a boolean function f : {0, 1}n → {0, 1} if at all points a ∈ {0, 1}n, f(a) = 0 implies
g(a) = 0R, and f(a) = 1 implies g(a) = 1R. We use Zm to denote the ring of integers modulo m.

3 Polynomial Programs

A polynomial program P over the group G (on n inputs) is a sequence of instructions 〈M1, g1〉, . . . , 〈Ml, gl〉,
where Mi is a subset of the set of input variables {X1, . . . , Xn} and gi ∈ G (for all i = 1, . . . , l.) We call
the Mi’s the monomials of P . Define the size of P to be the number of instructions in P ; and the degree of
P , denoted by deg(P), to be the maximum cardinality of a monomial of P .

For a 0 − 1 assignment a ∈ {0, 1}n to the input variables {X1, . . . , Xn}, define the value of the ith
instruction 〈Mi, gi〉 at a as

vali(P, a) =

{

gi if aj = 1 for all Xj ∈ Mi

eG otherwise

We define the value of P , denoted by val(P, a), to be the product (in G) of the values of the instructions
of P , val1(P, a) · · · vall(P, a). When A is a subset of {0, 1}n, we say that a polynomial program P over
G (on n inputs) g-accepts or g-computes A if g ∈ G is not the identity element of G; for all a ∈ A,
val(P, a) = g; and for all a /∈ A, val(P, a) = eG.

We say that {Pn}n≥1 is a polynomial program family over the group G if for each n ≥ 1, Pn is a
polynomial program over the group G on n inputs. We say that a polynomial program family {Pn}n≥1

g-accepts or g-computes a language L ⊆ {0, 1}∗ if Pn g-accepts L ∩ {0, 1}n for all n ≥ 1.
We say that a polynomial program (family) over G is an accepting polynomial program (family) if,

for some element g ∈ G, the polynomial program (family) g-accepts a set. In other words, a polynomial
program (family) is accepting if it takes on only the values {g, eG}, for some non-identity g ∈ G.

3

3.1 Polynomial Programs over Semigroups

More generally, one can define polynomial programs over a semigroup S by defining a program to be a
sequence of instructions where each instruction is a triple 〈M,a, b〉 such that M s a subset of the set of input
variables and their negations, {X1, . . . , Xn} ∪ {X1, . . . , Xn}; a, b ∈ S; and the value of an instruction is
a if Y = 1 for all Y ∈ M , and b otherwise. In fact, one can define a polynomial program over a set with
a non-associative binary operation (for instance, the program-over-groupoid model of [6] can be naturally
generalized to a notion of “polynomial program over groupoid”). When S is a group, however, it can be
verified the two definitions are equivalent (up to a size difference). Our focus in this paper is on polynomial
programs over groups, and we use the first definition in this paper where instructions are pairs 〈M, g〉 for
notational convenience. Moreover, “polynomial program” will be assumed to refer to a polynomial program
over a group, unless otherwise specified.

3.2 New polynomial programs from old

Suppose P = 〈M1, g1〉, . . . , 〈Ml, gl〉 and P ′ = 〈M ′
1, g

′
1〉, . . . , 〈M ′

l′ , g
′
l′〉 are polynomial programs over the

same group G.
Denote by P ◦ P ′ the polynomial program 〈M1, g1〉, . . . , 〈Ml, gl〉, 〈M ′

1, g
′
1〉, . . . , 〈M ′

l′ , g
′
l′〉; we call this

the concatenation of P and P ′. Notice that val(P ◦ P ′, a) = val(P, a)val(P ′, a), for all assignments a.
Denote by XjP the program 〈M1 ∪ {Xj}, g1〉, . . . , 〈Ml ∪ {Xj}, gl〉. Notice that val(XjP, a) = eG on

assignments a with aj = 0 and val(XjP, a) = val(P, a) on assignments a with aj = 1.
Denote by P−1 the program 〈Ml, g

−1
l 〉, . . . , 〈M1, g

−1
1 〉, which has value val(P−1, a) = val(P, a)−1.

If h : G → G′ is a group homomorphism, denote by h(P) the program 〈M1, h(g1)〉, . . . , 〈Ml, h(gl)〉.
Notice that val(h(P), a) = h(val(P, a)), for all assignments a.

Suppose that P = 〈M1, g1〉, . . . , 〈Ml, gl〉 and P ′ = 〈M ′
1, g

′
1〉, . . . , 〈M ′

l , g
′
l〉 are accepting polynomial

programs on the same number of inputs and of the same length (but possibly over different groups). We say
that the programs P and P ′ are equivalent if they accept the same set and, for all i ∈ {1, . . . , l}, Mi = M ′

i .
In particular, equivalent polynomial programs are of the same degree. The following fundamental fact,
which we will use a number of times throughout this paper, allows us to take a polynomial program over a
group, and obtain an equivalent polynomial program over a second group, under certain circumstances.

Lemma 4 (Homomorphism property) If P is a g-accepting polynomial program over the group G and
h : G → G′ is a group homomorphism such that g is not in the kernel of h, then there is a polynomial
program over G′ equivalent to P .

Proof. The polynomial program h(P) takes on the value h(g) or h(eG) = eG′ depending on whether P
takes on the value g or eG (respectively). Since g is not in the kernel of h, h(g) is not the identity of G ′, and
the polynomial program h(P) h(g)-accepts the set which the polynomial program P g-accepts.

�

4 Previous work

We now describe how our new model of computation, the polynomial program, relates to previously studied
models of computation, proving some basic facts along the way; and we describe the results from previous
work that we will use here.

4.1 Polynomials over rings

As mentioned, there is a large body of work in which boolean functions are represented using polynomials
over rings. In such work, it is typical that a polynomial f in R[X1, . . . , Xn] (where R is a ring) is considered

4

a representation of a boolean function g : {0, 1}n → {0, 1} if there are disjoint “rejecting” and “accepting”
subsets E,C ⊆ R such that at all assignments a ∈ {0, 1}n , the value of f at a is an element of E or C
depending on whether the value of g at a is 0 or 1, respectively. The Razborov-Smolensky method focuses
on the so-called strong representation, where E and C are {0R} and {1R}, respectively.

Our first observation is that for any polynomial f ∈ R[X1, . . . , Xn], there is a polynomial program with
value matching f at all points in {0, 1}n, and with degree not greater than that of f .

Proposition 5 If R is a ring with identity, then for every polynomial f ∈ R[X1, . . . , Xn], there is a polyno-
mial program P over R+ with value equal to f at all assignments in {0, 1}n, and with degree less than or
equal to the degree of f .

Proof. If an indeterminate Xi appears more than once in a monomial, we can reduce its power to one
without changing its value at the points in A = {0, 1}n. Thus, we can assume that f is of the form
∑

a∈A ca
∏

ai=1 Xi (where ca ∈ R for all a ∈ A). The polynomial program Pa = 〈{Xi : ai = 1}, ca〉
has value equal to the monomial ca

∏

ai=1 Xi, and the concatenation of all of the polynomial programs
{Pa : a ∈ A} computes

∑

a∈A ca
∏

ai=1 Xi.
�

It is easy to confirm that the measure of degree applied to a polynomial f by the Razborov-Smolensky
method matches the degree of the polynomial program which results by applying Proposition 5 to f .

In analogy to Smolensky’s demonstration [14] that every function g : {0, 1}n → R can be represented
by a polynomial p ∈ R[X1, . . . , Xn] (in the sense that the values of p and g are equal at all points in {0, 1}n),
it is natural to wonder if every function f : {0, 1}n → G is the value of some polynomial program over G.
This is indeed the case.

Proposition 6 Assume G is a finite group. For every function f : {0, 1}n → G, there is a polynomial
program over G with value equal to f .

Proof. It suffices to show that for any a ∈ {0, 1}n, there is a polynomial program over G with value equal
to f(a) at a, and value eG everywhere else. (The desired polynomial program is simply the concatenation
of such programs over all assignments a.)

Let m be the order of f(a) in G and define δa to be the polynomial
∏

ai=1 Xi
∏

ai=0(1 − Xi) ∈
Zm[X1, . . . , Xn]. Notice that δa(a) = 1 and δa(x) = 0 for all x 6= a. By Proposition 5, there is a
polynomial program γa over Zm 1-computing δa. Let ha : Zm → G be the injective homomorphism defined
by ha(1) = f(a); then, the polynomial program ha(γa) has value f(a) at a and value eG everywhere else.

�

Let us say that a polynomial g over a ring R e-approximates a boolean function f on n inputs if g
strongly represents f at all but e points. That is, associating 0R and 1R with 0 and 1, f and g are different
at e or fewer points. The following two statements are among the key results of the Razborov-Smolensky
method, and together with the fact that there are finite fields of characteristic p with qth roots of unity, imply
that MOD q /∈ AC0[MOD p].

Theorem 7 [14] Let p and q be distinct primes.
For every boolean function f : {0, 1}n → {0, 1} computable in AC0[MOD p], there is a family of

degree o(
√

n) polynomials over Zp (and hence over any field of characteristic p) o(2n)-approximating f .
If f is a family of degree o(

√
n) polynomials over a finite field with qth roots of unity, then f differs from

the MOD q function in at least c2n − o(2n) points (for some constant c > 0 depending only on q).

As a consequence of Theorem 7, fields of characteristic p are seen to be algebraic settings which differen-
tiate between the prime p and all other primes q: MOD p ∈ AC 0[MOD p] has a low degree (indeed, constant

5

degree) representation, whereas MOD q does not. In the search for a proof that MOD k /∈ AC 0[MOD pq]
for some triple of distinct primes p, q, k, then, it is natural to seek algebraic settings where two primes p and
q both have low degree representations, but another prime k does not; the results in Section 6 on polynomial
programs over finite groups are along these lines.

The polynomial 1 − (
∑n

i=1 Xi)
p−1 ∈ Zp[X1, . . . , Xn] strongly represents MOD p, and indeed is the

polynomial which results by applying Theorem 7 to the function MOD p. More generally, given an element
g of prime power order pk in a group, there is a constant degree polynomial program family over G which
g-computes MOD pj , for any j ≥ 1.

Proposition 8 If g ∈ G is of order pk for a prime p and k ≥ 1, then for any j ≥ 1, there is a polynomial
program family over G g-computing MOD pj of constant degree.

Proof. The polynomial [1− (
∑n

i=1 Xi)
φ(pk)]φ(pk) ∈ Zpk [X1, . . . , Xn] has value equal to (the characteristic

function of) MOD p: if
∑n

i=1 Xi is divisible by p, then so is (
∑n

i=1 Xi)
φ(pk), and thus [1− (

∑n
i=1 Xi)

φ(pk)]
is coprime to pk, so the polynomial has value 1 ∈ Zpk . If

∑n
i=1 Xi is not divisible by p, then [1 −

(
∑n

i=1 Xi)
φ(pk)] is equal to 0 ∈ Zpk .

Using this as a primitive, we can strongly represent MOD pj with a constant degree polynomial in
Zpk [X1, . . . , Xn] using the construction given in the proof of Proposition 1(3) by representing AND, OR,
and NOT gates as in the proof of Lemma 22.

By Proposition 5 there is a polynomial program P over Zpk of constant degree which 1-accepts MOD pj .
Let h : Zpk → G be the injective homomorphism defined by h(1) = g; then, by Lemma 4, h(P) g-accepts
MOD pj .

�

4.2 The “programs over monoids” model

The programs over monoids model of computation is a generalization of the branching program, which was
introduced in [9]. We refer the reader to [3] for a description of this model of computation. The polynomial
program model encompasses this model in that a program over a monoid M is a polynomial program of
degree one over M , and vice-versa3 . A number of nice characterizations of circuit complexity classes in
terms of programs over monoids have been given, among them the following.

Theorem 9 [4] A language is in AC0 iff it is recognizable by a polynomial length program family over
some aperiodic monoid.

Theorem 10 [4] A language is in ACC0 def
= ∪m≥2AC0[MOD m] iff it is recognizable by a polynomial

length program family over some solvable monoid.

Theorem 11 [2] A language is in NC1 iff it is recognizable by a polynomial length program family over
some finite monoid.

Theorem 12 [2] For any non-solvable group G, a language is in NC 1 iff it is recognizable by a polynomial
length program family over G.

Let us say that an element g of a group G is G-universal if for any boolean function f , there is a degree
one polynomial program over G (equivalently, a program over G) which g-accepts f . Let us say that a
group G is universal if there exists an element g ∈ G such that g is G-universal. We have the following
classification theorem.

Theorem 13 [15] A finite group is universal iff it is not nilpotent.
3This is true so long as the acceptance criterion for polynomial programs is defined appropriately. A program over a monoid M

is typically said to accept a string if the product of the values of the instructions is in some “accepting subset” of M .

6

4.3 Discussion

Just as space and time are resources in the classical Turing machine model of computation which, when
restricted, yield interesting and useful complexity classes; degree, size, and semigroup are resources in
the polynomial program model of computation which, when restricted in different ways, yield complexity
classes, which in some cases coincide with more traditional complexity classes.

The characterizations of depth-bounded circuit complexity classes given by Theorems 9, 10, 11, and
12 demonstrate that polynomial programs of degree one and polynomial size yield traditional classes for
different classes of monoids. The polynomial size restriction is crucial when the monoid is sufficiently
“complex”, since without a size restriction, polynomial programs of degree one over non-nilpotent groups
can compute any function (Theorem 13).

On the other hand, Smolensky’s insight that functions in AC 0[MOD p] can be closely approximated by
degree o(

√
n) polynomials over Zp (Theorem 7) gives a characterization of a traditional complexity class

in terms of polynomial programs of restricted degree (degree o(
√

n)) over an extremely simple group (Zp),
with no size restriction. Here, fixing one of the resources (namely, the group) but allowing degree to be
unbounded allows one to compute any function (Proposition 6).

Thus, it is appropriate to say that the line of work represented by the four characterization theorems in
Section 4.2 focuses on obtaining different classes of boolean functions by looking at extremely low degree
(namely, degree one), polynomial size polynomial programs over monoids of varying complexity, whereas
the Razborov-Smolensky method obtains different classes of boolean functions by looking at polynomial
programs over extremely simple groups (namely, cyclic groups of prime order) of varying degree, with no
regard for size. In one theory, the critical resource is the “complexity” of the underlying semigroup; in the
other, the critical resource is degree.

5 Complete Functions

Smolensky’s argument that every low degree (degree o(
√

n)) polynomial in a finite field with qth roots of
unity must differ from the MOD q function at many points (Theorem 7) is along the following lines. It is first
demonstrated that MOD-FAMILY-q, a family of functions essentially equivalent in complexity to MOD q,
is “complete” in such a field. This means that if f is a polynomial (over the field) computing the functions
in MOD-FAMILY-q up to an error set I ⊆ {0, 1}n , then every boolean function can be computed up to
the same error set I in degree ≤ deg f + (n/2). However, if f is of low degree and purports to compute
MOD-FAMILY-q up to an error set I , a counting argument shows that there are only so many polynomials
of degree ≤ deg f +(n/2), but many more boolean functions. Therefore, there is a polynomial representing
many boolean functions, and I must be large.

Here, we generalize the notion of completeness defined by Smolensky, and prove that q-completability,
defined below, is a sufficient condition for MOD-FAMILY-q to be complete for a group, meaning that
the same degree upper bound (deg(MOD-FAMILY-q) + (n/2)) holds for all functions in the polynomial
program model of computation. As we will see below, this proof generalizes Smolensky’s proof which states
(in our terminology) that MOD-FAMILY-q is complete for polynomial programs over the additive group of
a field with qth roots of unity. The notion of completeness is crucial to the Razborov-Smolensky method,
and we hope that this result will lead to a full extension of the method to the polynomial program model.

Note that there is no finiteness restriction on the groups in this section.
For a subset I ⊆ {0, 1}n and group G, let us say that a polynomial program P I-approximates a function

f : {0, 1}n → G if for all a /∈ I , the value of P at a is equal to f(a), that is, the value of the polynomial
program P matches f at the points not in the error set I . Let us say that a polynomial program P over G on
n inputs I-approximates a boolean function f : {0, 1}n → {0, 1} via g ∈ G if g is a non-identity element

7

of G such that for all a /∈ I: f(a) = 0 ⇔ P has value g on a, and f(a) = 1 ⇔ P has value e on a. In other
words, the polynomial program P g-computes f at the points not in the error set I .

For a function f : {0, 1}n → G, define degIG(f) to be the minimum degree of a polynomial program
I-approximating f . When f : {0, 1}n → {0, 1} is a boolean function on n inputs, define degIg,G(f) to be
the minimum degree of a polynomial program I-approximating f via g. For a set S of boolean functions on
n inputs, define degIG(S) = maxg∈G maxf∈S degI

g,G(f).
A set S of boolean functions is complete for G if for all n, for all I ⊆ {0, 1}n, for all f : {0, 1}n → G,

degI
G(f) ≤ degI

G(S) + (n/2).

Define MOD-FAMILY-q to be the set of boolean functions {{x ∈ {0, 1}∗ :
∑|x|

i=1 xi ≡ a (mod q) } :
0 ≤ a < q}. A group G is q-completable if q is a prime and there exists a set of generators {gi}i∈ω

for G and automorphisms {σi}i∈ω , {τi}i∈ω of G such that for all i, j, σi(gi) 6= gi, σq
i (gi) = gi, and

τi(σ
j+1
i (gi)σ

−j
i (gi)) = σj(gi). As the terminology might suggest, q-completability of G is a sufficient

condition for MOD-FAMILY-q to be complete for G, and this is the main result for this section.

Theorem 14 If G is q-completable, then MOD-FAMILY-q is complete for G.

We prove two lemmas in order to establish this theorem. For each of these lemmas and in the proof of
the theorem, we assume that G is q-completable via a set of generators {gi}i∈ω and automorphisms {σi}i∈ω ,
{τi}i∈ω . For disjoint Mx,My ⊆ {X1, . . . , Xn}, define Z(Mx,My, gi) : {0, 1} → G to be eG if there exists

Xi ∈ Mx such that Xi = 0, and σ
�

Xi∈My
Xi(gi) otherwise.

Lemma 15 For every I ⊆ {0, 1}n , My ⊆ {X1, . . . , Xn}, and i ∈ ω, there is a polynomial program
I-approximating Z(∅,My , gi) with degree ≤ degI

G(MOD-FAMILY-q) + (n/2).

Proof. Fix i. We first show by induction that for all My , there is a polynomial program over the variable set
My with value Z(∅,My, gi) of degree ≤ |My|. This establishes the lemma for |My| ≤ n/2.

This is obviously true for My = ∅: the polynomial program with the single instruction 〈∅, gi〉 computes
Z(∅, ∅, gi) and is of degree 0. For |My| > 0, fix Xj ∈ My and let P be a polynomial program of degree
≤ |My| − 1 computing Z(∅,My \ {Xj}, gi). Then, the polynomial program σ(XjP) ◦ XjP

−1 ◦ P has
degree ≤ |My| and has value equal to σ(P) if Xj = 1, and value equal to P otherwise.

It remains to prove the lemma for |My| > n/2. Fix both i and I . We prove by induction on |My| that
there exists a program I-approximating Z(∅,My, gi) of degree ≤ degI

G(MOD-FAMILY-q) + |My|.
If |My| = 0, let Pa be the minimum-degree program I-approximating {x ∈ {0, 1}∗ :

∑|x|
i=1 xi ≡

a(mod q)} via σa(gi). Each Pa has degree ≤ degI
G(MOD-FAMILY-q), and P0 ◦ · · · ◦ Pq−1 is an I-

approximation of Z(∅,My , gi) with degree ≤ degI
G(MOD-FAMILY-q).

If |My| > 0, pick Xj ∈ My . By induction, there is a program P I-approximating Z(∅,My ∪ {Xj}, gi)
of degree ≤ degI

G(MOD-FAMILY-q) + |My| − 1. I claim that P ′ = σ−1(XjP) ◦ (XjP)−1 ◦ P I-
approximates Z(∅,My, gi). For assignments a /∈ I with aj = 0, val(P ′, a) = val(P, a) = Z(∅,My ∪
{Xj}, gi) = Z(∅,My, gi). For assignments a /∈ I with aj = 1, val(P ′, a) = val(σ−1(P) ◦ P−1 ◦ P, a) =
val(σ−1(P), a) = σ−1(val(P, a)) = σ−1(Z(∅,My ∪ {Xj}, gi)) = Z(∅,My, gi).

�

Lemma 16 For every I ⊆ {0, 1}n, disjoint subsets My,Mx ⊆ {X1, . . . , Xn}, and i ∈ ω, there is a
polynomial program I-approximating Z(∅,My, gi) with degree ≤ degI

G(MOD-FAMILY-q) + (n/2).

Proof. Fix I , My , and i. We prove the lemma by induction on |Mx|. For |Mx| = 0, this lemma is precisely
Lemma 15.

For |Mx| > 0, pick Xk ∈ Mx. Let P1 denote the program with value Z(Mx \ {Xk},My ∪ {Xk}, gi),
and let P2 denote the program with value Z(Mx \ {Xk},My, gi). Both P1 and P2 exist by induction.

8

Let P denote the program τi(P1 ◦ P−1
2). For assignments a /∈ I with ak = 0, val(P1, a) = val(P2, a)

and so val(P, a) = τi(e) = e = Z(Mx,My, gi). Now suppose a /∈ I is an assignment with ak = 1.
Define j so that val(P2, a) = σj+1(gi) at a. Then, at a we have val(P1, a) = σj+1(gi), implying that
val(P, a) = τi(σ

j+1(gi)σ
j(g−1

i)) = σj(gi) = val(P2, a) = Z(Mx \ {Xk},My, gi) = Z(Mx,My, gi).
�

Proof. (Theorem 14) Suppose I ⊆ {0, 1}n and let f : {0, 1}n → G be any function. It suffices to show that
there is a polynomial program P I-approximating f with deg(P) ≤ degI

G(MOD-FAMILY-q) + (n/2).
By Proposition 6, there is a polynomial program P ′ with value equal to f . Assume without loss of

generality that the instructions of P ′ contain only group elements from the set of generators {gi}i∈ω. Every
instruction of P ′ is then of the form 〈Mx, gi〉 for some Mx ⊆ {X1, . . . , Xn}. Such an instruction has the
same value as Z(Mx, ∅, gi), so to obtain P from P ′, we expand every instruction 〈Mx, gi〉 of P ′ into a
polynomial program I-approximating Z(Mx, ∅, gi) of degree ≤ degI

G(MOD-FAMILY-q) + (n/2), which
exists by Lemma 16.

�

It is easy to see that the class of groups which are q-completable is closed under taking direct products.

Theorem 17 If G1 and G2 are both q-completable, then G1 × G2 is q-completable.

The additive group of any field with qth roots of unity is a concrete example of a q-completable group.
Let F be such a field and h ∈ F be a qth root of unity. Every non-zero element a ∈ F induces an
automorphism ρa(x) = ax of F +. We can take our set of generators to be F itself, since for any element
x ∈ F , ρh(x) 6= x, ρq

h(x) = x, and ρ(h−1)−1(ρj+1
h (x)−ρj

h(x)) = (h−1)−1(hj+1x−hjx) = hjx = ρj
h(x).

6 Polynomial Programs over Finite Groups

The Razborov-Smolensky method uses degree as the crucial measure of the complexity of a function: taking
F to be a field of characteristic p, functions in AC0[MOD p] can be closely approximated by low degree 1F -
accepting polynomial program families over F +, whereas MOD q has high degree if closely approximated
by such programs, for distinct primes p, q (Theorem 7).

In the search for a proof that MOD k /∈ AC0[MOD pq] (for distinct primes k, p, q) it is natural to ask
the question: is there a group G and a group element g ∈ G such that all functions in AC 0[MOD pq] can be
closely approximated by low degree g-accepting polynomial program families, but where MOD k cannot?
A priori, it may seem that since G may now be chosen to be any group (as opposed to just one of the groups
appearing as the additive group of some field), such pairs of groups and group elements may exist.

The results in this section show that no pairing of a finite group with one of its elements has the above
property. We prove a dichotomy theorem which shows that for any finite group G and element g ∈ G, either
g is G-universal, implying that all of the languages MOD m for m > 1 can be computed by degree one
g-accepting polynomial program families; or, any g-accepting polynomial program family can be translated
into a polynomial program family over Zp (for some prime p) with at most a constant factor degree increase.
In the latter case, we have that the limitations to computing MOD q for any prime q other than p given
in Theorem 7 apply: no low degree (o(

√
n)) g-accepting polynomial program family over G can closely

approximate MOD q, otherwise we would have a low degree polynomial program family over Zp closely
approximating MOD q.

Theorem 18 For every finite group G and non-identity element g ∈ G, either g is G-universal; or, for any
g-accepting polynomial program family {Pn}n≥1 over G of degree d(n), there is a polynomial program
family over Zp (for some prime p) of degree ≤ c · d(n) accepting the same set as {Pn}n≥1, for a constant c
depending only on the group G.

9

Proof. This is immediate from Theorem 24 and Corollary 26, proved below.
�

We now investigate the cases of abelian groups, nilpotent groups, and non-nilpotent groups. While our
results on nilpotent groups apply to abelian groups, in the case of abelian groups we are able to obtain a
sharper result with a simpler proof, so we treat them separately.

6.1 Abelian Groups

In this section, we show that a polynomial program over any finite abelian group can be converted into a
polynomial program over a cyclic group of prime order, without changing the degree. This is stronger than
our result for nilpotent groups, which involves potentially increasing the degree by a constant factor.

We begin by establishing the result for cyclic p-groups, which are the building blocks for finite abelian
groups.

Lemma 19 If C is a cyclic p-group for some prime p, and P is an accepting polynomial program over C ,
then there is a polynomial program over Zp equivalent to P .

Proof. Proof by induction on |C| = pk. If k = 1, then P itself is a polynomial program with the desired
properties. If k > 1, then suppose P is g-accepting, and let N denote the unique subgroup (of C) of order
pk−1. We break into two cases.

Case 1: If g /∈ N , then by Lemma 4 applied to P and the canonical homomorphism from C to C/N , we
obtain a polynomial program P ′ over the group C/N equivalent to P . (Since C is abelian, N is a normal
subgroup.) The group C/N is of order p and so is isomorphic to Zp; thus, P ′ is a polynomial program with
the desired properties.

Case 2: If g ∈ N , then we prove that if P is a program only taking on values in N , then the group
elements in the instructions of P can be modified so that they are all in N . This is sufficient, as P is then
equivalent to a program over a group of size pk−1, and so there is a program over Zp equivalent to P by
induction.

Our proof is by induction on the number of inputs.
If P is a program over 1 input, then the only possible monomials in P are ∅ and {X1}; if we take the in-

structions 〈Mi1 , gi1〉, . . . , 〈Mik , gik〉 where Mij = ∅, we can rewrite them as 〈Mi1 , e〉, . . . , 〈Mik−1
, e〉, 〈Mik , gi1 . . . gik〉

without changing the value of the program (as C is abelian). If we perform the same rewriting on the in-
structions with monomial {X1}, every instruction has a group element in N .

If P is a program over n > 1 inputs, let P ′ = 〈Mi1 , gi1〉, . . . , 〈Mik , gik〉 denote the instructions of
P where Xn /∈ Mij (for all j = 1, . . . , k). The sequence of instructions P ′ must itself be a g-accepting
polynomial program on n − 1 inputs, since the value of P ′ at a 0 − 1 assignment to {X1, . . . , Xn−1} is
precisely the value of P at the same 0 − 1 assignment extended so that Xn = 0. By induction, then, we can
modify the gij ’s so that they are all in N , without changing the value of P anywhere. Similarly, if we take
the instructions 〈M ′

i1
, g′i1〉, . . . , 〈M ′

im
, g′im〉 of P where Xn ∈ M ′

ij
(for all j = 1, . . . ,m), the sequence of

instructions P ′′ = 〈M ′
i1
\ {Xn}, g′i1〉, . . . , 〈M ′

im \ {Xn}, g′im〉 viewed as a program over the set of inputs
{X1, . . . , Xn−1} takes on only values in N , as the value of P ′′ at a 0 − 1 assignment to {X1, . . . , Xn−1}
multiplied by the value of P ′ at the same 0 − 1 assignment is precisely the value of P at the assignment
extended so that Xn = 1. Since P ′ and P only take on values in N , P ′′ only takes on values in N , and
we can modify the g′ij ’s so that they are all in N , without changing the value of P anywhere. The modified
version of P has the same value as the original polynomial program on all 0−1 assignments to the variables
{X1, . . . , Xn}.

�

Theorem 20 If G is a finite abelian group, and P is an accepting polynomial program over G, then there
is a polynomial program over Zp, for some prime p, equivalent to P .

10

Proof. Suppose that P is g-accepting, where g ∈ G. By the classification theorem for finite abelian
groups (see, for example, [13, pp. 102-103]), G is isomorphic to the direct product of cyclic p-groups:
G = C1 × . . . × Ck, where each Ci is a cyclic pi-group. For i = 1, . . . , k, let hi : G → Ci denote
the canonical “projection” homomorphism. Since g 6= e G, there exists j such that hj(g) is not the identity
element of Cj . By Lemma 4 applied to the program P and the homomorphism hj , we have a hj(g)-accepting
polynomial program P ′ over a cyclic pj-group equivalent to P . Applying Lemma 19 to the program P ′, we
obtain a program over Zpj

equivalent to P ′ (and hence P).
�

Because the additive group of any ring is abelian, Theorem 20 implies that no finite ring is an appro-
priate algebraic setting in which to attempt to represent the functions in AC 0[MOD pq] as “low degree”
polynomials. At first blush, it may seem that taking the direct product of a finite field with characteristic
p and a finite field with characteristic q might give an appropriate ring, since in some sense it contains the
structure of both fields; this theorem demonstrates that such a ring does not give “simultaneous” access to
the included field structures. On the other hand, MOD k (assuming p, q, k distinct primes) is “hard” for such
rings: taking R to be the direct product of two fields with kth roots of unity results in MOD-FAMILY-k
being complete for R+ (Theorems 14 and 17).

6.2 Nilpotent Groups

We now show that for any accepting polynomial program P over a nilpotent group, there is an polynomial
program of degree at most a constant times the degree of P accepting the same set over Zp, for some prime p.
This has been observed [3, 15] in the special case of degree one polynomial programs; we give an alternative
proof.

Let NC0[MOD p] denote the class of functions decidable by NC 0 circuits with oracle gates for the
MOD p function, where the MOD p gates may have unbounded fan-in (but where all other gates must
have bounded fan-in). We begin by showing that the word problem over any p-group can be computed by
NC0[MOD p] circuits.4

Lemma 21 Suppose G is a p-group for some prime p. The word problem over G can be computed by an
NC0[MOD p] circuit family.

Our proof of this lemma is along the lines of Barrington’s proof [2] that the word problem for any fixed
solvable group G is in AC0[MOD |G|]. (When elements of G are inputs to circuits, we assume that they are
represented by bit strings of length dlog2 |G|e.)
Proof. Proof by induction on |G| = pk. Suppose k > 0. Every non-trivial finite p-group has a normal
subgroup of index p; let N be such a normal subgroup of G. The group G/N is cyclic of order p; fix an
element a /∈ N , so that aN generates G/N .

Given a product g1 · · · gk of elements of G, we can write each element gi in the form aεini, where
ni ∈ N . (Notice that converting between any two bit representations of elements of a fixed group G can be
done in NC0.) Let bi be the product aε1 · · · aεi . Each bi can be computed from the aεi in NC0, since, for
any fixed k ≥ 1, a MOD pk gate with unbounded fan-in can be simulated in NC 0[MOD p] (see the proof of
Proposition 1(3)).

We have aε1n1 · · · aεknk = (b1n1b
−1
1) · · · (bknkb

−1
k)bk. Each product binib

−1
i can be computed from

the ni’s and bi’s in NC0. Since N is normal, each product binib
−1
i is in N and thus by induction there

is a NC0[MOD p] circuit computing the product (b1n1b
−1
1) · · · (bknkb

−1
k). From this product, g1 · · · gk =

(b1n1b
−1
1) · · · (bknkb

−1
k)bk can be computed in NC0.

�

4The word problem is the question of determining whether or not the product of a sequence of elements from a group is equal
to the identity element.

11

The next lemma shows that the circuit family computing the word problem resulting from Lemma 21
(indeed, every NC0[MOD p] circuit family) can be converted to a polynomial over Zp.

Lemma 22 For every language L computed by a NC0[MOD p] circuit family, there is a polynomial pro-
gram family over Zp of constant degree accepting L.

Proof. Let {X1, . . . , Xm} denote the inputs to the mth circuit in the circuit family, which decides L ∩
{0, 1}m . By Proposition 5, it suffices to show that there is a polynomial in Zp[X1, . . . , Xm] which at an
assignment a ∈ {0, 1}m takes on the value 0 or 1 depending on whether or not a ∈ L.

We represent this circuit using a polynomial, by induction on the height of the circuit. Each input gate
Xi has polynomial representation Xi. We can represent the NOT of a gate with representation f as 1 − f ;
we can represent the AND of two gates with representations f1, f2 as f1f2; we can represent the OR of two
gates with representations f1, f2 as 1 − (1 − f1)(1 − f2); and we can represent the MOD p of k gates with
representations f1, . . . , fk as (

∑k
i=1 fi)

p−1. In each case, we represent a gate at depth d using a polynomial
which has degree at most a constant (namely, max(2, p − 1)) times the maximum degree of the gates at
depth d − 1.

�

In fact, it can be proved that NC0[MOD p] is precisely the class of languages computed by accepting
polynomial program families over p-groups of constant degree, or, equivalently, the class of languages
computed by accepting polynomial program families over Zp of constant degree.

Theorem 23 Suppose G is a p-group for some prime p. There is a constant c (depending only on G) such
that for every accepting polynomial program P over G, there is a polynomial program over Zp of degree
≤ c · deg(P) accepting the same set as P .

Proof. It suffices to show that there is a polynomial in Zp[X1, . . . , Xn] satisfying the degree bound which,
at every 0 − 1 assignment to the Xi’s, takes on the value 1 or 0 depending on whether or not P accepts or
rejects.

Set b = dlog2 |G|e. Let {Cl}l≥1 denote the NC0[MOD p] circuit family of Lemma 21, where Cl decides
the word problem for products of length l. Let {Yi,j}1≤i≤l,1≤j≤b denote the inputs to the lth circuit Cl in
this circuit family. For each i ∈ {1, . . . , l}, Yi,1, . . . , Yi,b is intended to be the bit string representation of the
ith group element in the product.

By Lemma 22, there is a constant c such that for all l, there is a polynomial fl over Zp with indeter-
minates {Yi,j} of degree ≤ c accepting the same set as Cl. That is, the polynomial f has value 0 or 1,
depending on whether or not the product of the group elements is the identity or not.

Suppose P = 〈M1, g1〉, . . . , 〈Ml, gl〉 is a polynomial program on n inputs. Starting from f , create a
new polynomial as follows. For each i = 1, . . . , l and j = 1, . . . , b, replace Yi,j with rj(gi)

∏

Xk∈Mi
Xk ∈

Zp[X1, . . . , Xn], where rj(gi) is 0 ∈ Zp or 1 ∈ Zp depending on the value of the jth bit of the bit string
representing gi. Assuming without loss of generality that eG is represented by the bit string 0b (i.e., the
all-zero string of length b), the resulting polynomial is in Zp[X1, . . . , Xn], has degree ≤ c · deg(P), and is
0 or 1 depending on whether or not P rejects or accepts.

�

Because a nilpotent group is isomorphic to the direct product of p-groups (see for example [13]), we
obtain the desired result using the same idea as in the proof of Theorem 20.

Theorem 24 Suppose G is a finite nilpotent group. There is a constant c (depending only on G) such
that for every accepting polynomial program P over G, there is a polynomial program over Zp of degree
≤ c · deg(P) accepting the same set as P (for some prime p).

12

6.3 Non-Nilpotent Groups

Theorem 25 Suppose G is a finite non-nilpotent group. Then for every nonidentity element g ∈ G, either
g is G-universal or, for every g-accepting polynomial program P , there is a polynomial program equivalent
to P over a nilpotent group.

When G is a group, define L1(G) = G and Ln(G) = [Ln−1(G), G] for n > 1. A group is nilpotent if
and only if there is a N such that LN (G) = {eG} [13].
Proof. Since G is non-nilpotent, there is a N such that LN (G) = LN+1(G), and LN (G) is a non-trivial
subgroup. That the elements of LN (G) are G-universal is implicit in both [3] and [15].

If g /∈ LN (G), then let h : G → G/LN (G) be the canonical homomorphism. The subgroup LN (G) is
normal (in fact, characteristic) in G, and it is straightforward to show that G/LN (G) is nilpotent. Thus, for
every g-accepting polynomial program P over G, the accepting polynomial program h(P) is equivalent to
P (Lemma 4) and over a nilpotent group.

�

From Theorems 24 and 25, we derive the following corollary.

Corollary 26 Suppose G is a finite non-nilpotent group. There is a constant c (depending only on G) such
that if g ∈ G is a non-identity element that is not G-universal, then for every g-accepting polynomial
program over G, there is a polynomial program over Zp of degree ≤ c · deg P accepting the same set as P
(for some prime p).

7 Future Work

The dichotomy theorem of Section 6 suggests that the framework of accepting polynomial program families
over a single finite group G will not allow one to use degree to differentiate between languages in the class
AC0[MOD m], and the languages MOD k (for prime k not dividing m, and for composite m with at least
two distinct prime factors). Although the Razborov-Smolensky method does sucessfully use degree in this
setting to so differentiate when m is prime, our results indicate that a more refined framework is necessary
to handle the composite case. One possibility might be to use polynomial program families parameterized
with sequences of finite group and element pairs, one pair for each input length. Because of the universality
of non-nilpotent groups and the fact that a polynomial program over a nilpotent group induces at least one
polynomial program over a p-group (see Theorem 24), the natural candidate for a group sequence would
be a sequence of finite p-groups. In this direction, it might be worthwhile to understand what the optimal
constants of Theorem 23 are, and whether certain sequences of p-groups admit a low degree “bias” towards
particular languages MOD q, for primes q not equal to p. It may also be interesting to investigate the
possibility of using a polynomial program family over an infinite group as the base algebraic setting.

Perhaps, in place of degree, a more refined notion of complexity is required to develop a setting where
the functions of AC0[MOD m] have “low complexity” and certain functions not in AC 0[MOD m] can be
shown to have “high complexity.” For instance, might it be possible to assign costs to individual elements of
the group (or other structure) over which the polynomial program family is defined, in a meaningful way?

The proof of Theorem 14, which shows that q-completability of a group G implies that MOD-FAMILY-q
is complete for G, seems to rely heavily on the existence of “inverse” polynomial programs P −1. This sug-
gests that quasigroups may be the appropriate algebraic structures with which to parameterize polynomial
programs to obtain a characterization of AC0[MOD m] à la the Razborov-Smolensky method. Can the
counting argument of Smolensky (described at the beginning of Section 5), showing that complete elements
cannot be closely approximated by low degree polynomials, be extended to quasigroups?

Given two polynomial programs over the additive group of a ring, multiplication of the two correspond-
ing polynomials in the ring is a natural means of obtaining a third polynomial program, and this operation

13

has a number of nice properties (distributivity, etc.). As regards the Razborov-Smolensky method, a key
property of multiplication of polynomials over rings is that the resulting polynomial has degree linear in
each of the original polynomials. In order to “combine” two polynomial programs which are not defined
over the additive group of a ring, it may be important to develop an analogous “multiplication” operation
over whatever algebraic structure (quasigroup, etc.) one wishes to use, that is distinct from the existing
single operation on the algebraic structure. Attempts to develop such “multiplication” operations may be of
independent interest, as one could potentially obtain algebraic structures with two operations more general
than rings.

As mentioned, the polynomial program model of computation is a natural unification of the polynomial
over a ring model and the program over monoids model, and it may be possible to extend the existing results
from either model in this new framework. In general, it should be interesting to further investigate how the
resources of degree, size, and semigroup interact in the polynomial program model.

Lastly, one could study extensions of the polynomial program model which include non-determinism or
randomness; or, counting questions concerning this model.

Acknowledgements

We would like to thank Dexter Kozen for many useful discussions. We would also like to thank Eric
Allender, David A. Mix Barrington, Steve Chase, Keith Dennis, Riccardo Pucella, and Pascal Tesson for
their help.

References

[1] M. Ajtai. Σ1
1 formulae on finite structures. Annals of Pure and Applied Logic, 24:1–48, 1983.

[2] D. A. Mix Barrington. Bounded-width polynomial size branching programs recognize exactly those
languages in NC1. Journal of Computer and System Sciences, 38:150–164, 1989.

[3] D. A. Mix Barrington, H. Straubing, and D. Thérien. Non-uniform automata over groups. Information
and Computation, 89:109–132, 1990.

[4] D. A. Mix Barrington and D. Thérien. Finite monoids and the fine structure of NC1. Journal of the
ACM, 35:941–952, 1988.

[5] R. Beigel. The polynomial method in circuit complexity. In Proceedings 8th Structure in Complexity
Theory, pages 82–95. IEEE Computer Society Press, 1993. Revised version, 1995.

[6] H. Caussinus and F. Lemieux. The complexity of computing over quasigroups. Foundations of Soft-
ware Technology and Theoretical Computer Science, 1994.

[7] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy. Mathematical
Systems Theory, 17:13–27, 1984.

[8] J. Håstad. Almost optimal lower bounds for small depth circuits. In Procedings 18th Symposium on
Theory of Computing, pages 6–20. IEEE Computer Society Press, 1986.

[9] C. Y. Lee. Representation of switching functions by binary decision programs. Bell Systems Technical
Journal, 38:985–999, 1959.

14

[10] M. L. Minsky and S. A. Papert. Perceptrons. MIT Press, Cambridge, MA, 1988. Expanded edition.
Originally published in 1969.

[11] A. A. Razborov. Lower bounds on the size of bounded depth networks over a complete basis with
logical addition. Matematicheskie Zametki, 41:598–607, 1987. In Russian. English translation in
Mathematical Notes of the Academy of Sciences of the USSR 41:333–338, 1987.

[12] K. Regan. Polynomials and combinatorial definitions of languages. In L. A. Hemaspaandra and
A. L. Selman, editors, Complexity Theory Retrospective II, pages 261–293. Springer-Verlag, New
York, 1997.

[13] D. Robinson. A Course in the Theory of Groups. Springer-Verlag, second edition, 1996.

[14] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In
Proceedings 19th Symposium on Theory of Computing, pages 77–82. ACM Press, 1987.

[15] P. Tesson and D. Thérien. The computing power of programs over finite monoids. Technical Report
01-005, Electronic Colloquium on Computational Complexity, 2001.

[16] A. C. Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings 26th Foundations of
Computer Science, pages 1–10. IEEE Computer Society Press, 1985.

15
ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

