Electronic Colloquium on Computational Complexity, Report No. 68 (2001)

Relative to P promise-BPP equals APP

Philippe Moser*

Abstract

We show that for determinictic polynomial time computation, oracle access to APP, the
class of real functions approximable by probabilistic Turing machines, is the same as hav-
ing oracle access to promise-BPP. First we construct a mapping that maps every function
in APP to a promise problem in prBPP, and that maps complete functions to complete
promise problems. Then we show an analogue result in the opposite direction, by construct-
ing a mapping from prBPP into APP, that maps every promise problem to a function in
APP, and mapping complete promise problems to complete functions. Second we prove
that PAPP = PPrBPP_ FRinally we use our results to simplify proofs of important results on
APP, such as the APP-completeness of the function foapp that approximates the accep-
tance probability of a Boolean circuit, or the possibility (similarily to the case of BPP) to
reduce the error probability for APP functions, or the conditionnal derandomization result
APP = AP iff prBPP is easy.

1 Introduction

The complexity class BPP is sometimes considered to be the class of all feasible computation.
Nevertheless, it has been conjectured that BPP does not have any complete sets. One reason
for this is the existence of a relativized world where BPP (and other semantic classes) do not
have complete sets (see [Sip82] and [HH86]). This is because BPP is a semantic class (on every
input, a BPP machine must have either at least 3/4 or at most 1/4 accepting paths). Thus the
canonical complete language L = {(M, z,1%)| M is a BPP machine and M accepts z in at most
t steps} is not BPP-complete, because the predicate — M is a BPP machine — is undecidable,
thus L is not in BPP.

One way around this difficulty is to consider promise problems i.e. problems that need to be
solved only on instances where a certain promise holds. Thus the canonical complete language
L together with the promise that M is indeed a BPP machine, is promise-BPP (denoted
prBPP) complete. Indeed once you know that M is a BPP machine, a probabilistic algorithm
can simulate machine M on input z, thus deciding, with high probability, wether M accepts x
or not; this puts L in prBPP.

Another approach was introduced in [KRC00]. They introduced a natural generalization of
BPP, namely the class APP of real-valued functions f : {0,1}* — [0,1] that can be approxi-
mated within any € > 0, by a probabilistic Turing machine running in time polynomial in the

*Address: Theorical Computer Science Department, University of Geneva. Email: moser@cui.unige.ch; Thesis
advisor: prof. Jose D. P. Rolim

ISSN 1433-8092

input size and the precision 1/e. They showed that BPP is exactly the subset of all Boolean
functions in APP. Moreover they proved that computing the acceptance probability of a given
Boolean circuit is an APP-complete problem.

This paper shows that relative to P, the two complexity classes APP and prBPP are equal,
i.e. PAPP — pprBPP (yur main tool is the graphe of a function. Recall that for a real valued
function f : {0,1}* — [0, 1], its graphe is defined as beeing the set of triples (1¥,z,y) such that
f(z) = y within distance 1/k. Our first result states that computing the graphe of the APP-
complete function fcapp (where focapp on input a Boolean circuit outputs its probability of

acceptance), together with the promise that all querries f(z) L y made to graphe(fcapp) have
the property that the distance between f(z) and y is either “very small” or “rather large”, is
prBPP complete. Then we prove that computing the graphe of any function in APP toghether
with the same promise, is in prBPP. This yields a mapping from APP to prBPP, mapping
each function in APP to a promise problem in prBPP, and mapping complete functions to
complete promise problems.

For the other direction we first prove that, for any real-valued function f : {0,1}* — [0, 1]
such that the problem of computing its graphe (toghether with same the promise as above) is in
prBPP, f is in APP. Second we construct a mapping from prBPP to APP, that maps every
promise problem to a real-valued function, and mapping complete promise problem to complete
functions. We then prove that PAPP = pprBPP,

Finally we use our results to simplify proofs of important results about APP. Namely it is
shown in [KRCO0] that similarly to the case of BPP, the error probability for APP functions
can be reduced exponentially. Their proof is rather technical and relies on a rather involved
argument of repeated trials; on the other hand the idea of our proof is very simple: let f be any
function in APP. We first map f to its corrsponding promise problem (@, R) in prBPP. Then
using the fact that error probability is possible in prBPP, we reduce the error probability of
the Turing machine that solves (@, R). Finally by mapping (Q, R) to its corresponding function
in APP, we obtain a function f’ which is the same as f, but such that the Turing machine that
computes f’ has exponentially small error probability.

Second it is proved in [KRCO00] that the function fcapp (where fcapp on input a Boolean
circuit C outputs its probability of acceptance) is APP-complete under approximate polynomial
time many-one reduction (the analogue of many-one reduction for APP). We cannot prove this
directly from our results. Still we can prove a slightly weaker result, namely the completeness of
fcapp under polynomial time Turing approximate reduction (the analogue of polynomial Turing
reduction for APP).

Finally it is proved in [For01] that APP = AP iff prBPP is easy. We prove this by using
our two mappings between APP and prBPP.

2 Preliminaries

Since we are working with real-valued functions, we need the following definition of approximate
1
equality. Let a,b € [0, 1] be two real numbers. We say that a and b are %- equal (denoted £) if
la—b| < 7.
[KRCO00] introduced the class APP of real valued function. Here is their definition.

Definition 1 A family f = {fn}n>0 : {0,1}* — [0,1] of real-valued functions is in APP, if
there exists a probabilistic, polynomial-time Turing machine M such that, for all k,n € N, we
have

1
Pr(M, (1%,2) £ fu(@)] > .
Consider the following family of functions fcapp : {0,1}* — [0,1], which takes on input
a Boolean circuit C, and outputs its acceptance probability, i.e. fcapp(C) = Pr,[C(w) = 1].
It was proved in [KRCO00] that the function fcapp is APP-complete under polynomial many-
one approximate reduction. For two functions f and g in APP, f is polynomially many-one
approximately reducible to g, denoted f ggm g, if there is a polynomial family of reductions
Tnk {1}* x {0,1}" — {0,1}?() for some polynomial p, such that, for all k&, n € N,

||z~

fn(x) gm(rn,k(lkax))'

A promise problem is a formulation of a partial decision problem that has the structure

Input z Promise Q(z) Property R(z)

where (Q and R are predicates. Formally, a promise problem is a pair of predicates (Q, R).
A Turing machine solves (Q, R) if

Vz[Q(z) — [M(z) halts A [M accepts z <> R(z)]]].

A solution of (@, R), is a language A decided by a machine M (i.e. A = L(M)) such that
M solves (Q, R).

prBPP is the class of all promise problems (@, R), that have a solution in BPP (on instances
where the promise is satisfied).

In order to define complete problems for prBPP we need the following definitions of reduc-
tions.

Definition 2 A promise problem (Q, R) is uniformly Turing reducible in polynomial time to a
promise problem (S,T), denoted (Q,R) <Y (S,T), if there is a deterministic, polynomial time

oracle Turing machine M such that, for every solution A of (S,T), M* solves (Q,R).

If machine M depends on the solution A, we simply call it Turing reducibility. Grollmann
and Selman [GS88] showed that the two definitions are equivalent. Finally we say that a promise
problem (@, R) is uniformly many-one reducible in polynomial time to a promise problem (S, T),
denoted (Q, R) <EP (S,T), if there exists a partial polynomial time computable function red :

{z € {0,1}*| Q(z)} — {0,1}* in FP, such that for every solution A of (S,T'), the set B defined
by:

B(z) = { A(red(z)) if Q(x)

undefined otherwise

is a solution of (@, R).

Unlike BPP, the canonical complete language yields a complete promise problem for prBPP.
Consider the following promise problem (QprspPP, LprBPP)-
OQpspp(M,z,1") = 1 iff M is a probabilistic Turing machine that decides z BPP-wise, i.e.
Pry[My(z) =1] > 2 or < 1.
Lospp(M,z,1Y) = 1 if M accepts z BPP-wise in at most ¢ steps, i.e. Pr,[M,(z) =1] > 3.
Lpspp(M,z,1Y) = 0 if M rejects z BPP-wise in at most ¢ steps, i.e. Pry[M,(z) =1] < 1.
The following result states that this promise problem is complete for prBPP under uni-
form polynomial time many-one reduction, and hence under uniform Turing polynomial time
reduction.

Theorem 1 The promise problem (Qprepp, LprBpp) is prBPP-complete under ang reduction.

Proof

i) (QprBPP, LprBPP) € PrBPP.

Indeed when Q,ppp(M,z,1%) holds, we know that machine M has a BPP behaviour on
input z. Therefore a simulation of M on input z yields a BPP solution for (Qprpp, LprBPP)-

ii) (QprepP, Lprapp) is prBPP-hard under SIP;P(; reduction.

Let (S,T) be any promise problem in prBPP. Let M be a probabilistic polynomial time
Turing machine solving (S,7T) and let p be its polynomial time bound. Consider the following
deterministic polynomial time partial function

red: {z € {0,1}*| S(z)} — {0,1} € FP
{ z > (M, z,17(2D)

We claim that red is a many-one reduction from (S,T) to (QprBPP, LprBPP). Indeed let A
be a solution of (Qprpp, Lprepp). It is clear that first if S(z) holds then Qpnppp(M,z, lp(m))
holds. Second the set B defined by

B(;];) = { A(’l"ed(_’l,‘)) if QprBPP(I)

0 otherwise

is a solution of (S, 7).

3 A mapping from APP to prBPP

Our main tool to build a correspondance between APP and prBPP, is the graphe of a function.

Definition 3 Let f = {fn}n>0: {0,1}* = [0,1] be a real valued function. We define its graphe
by:

1

gr(f) = {1, z,y) € {1} x {0,1}* x {0,1}*| y £ f(2)}.

Let f : {0,1}* — [0,1] be a real-valued function. Consider the following promise problem
(Papp, gr(f)), where

1 i d(f(2),y) < % or > &

k _
Papp(1%,,y) _{ 0 otherwise

The following result states that computing the graphe of the APP-complete function fcapp
is a prBPP-complete problem.

Theorem 2 Let foapp : {0,1}* — [0, 1] be the APP-complete function. Then (Papp,gr(fcarp))
is prBPP-complete under SE% reduction.

Proof

i) (Papp,gr(fcapp)) € prBPP

Let M be the probabilistic transducer witnessing the fact fcapp € APP. Consider the
following probabilistic polynomial time Turing machine N. Input (1*,z,y)

e Simulate M(1?*, z) denote the output by .
e Accept iff d(y,§) < 7.

It is clear that first N has a BPP-like behaviour inside the promise. Second it is clear
that N decides gr(fcapp)) correctly inside the promise; indeed by observing Figure 1 we see
that wherever y and g are in the interval [fcapp(z) — i, feaprp(z) + ﬁ], N always accepts
(1%, z,v) inside the interval [fcapp(z) — %, feapp(z) + %], and always rejects (1%, z,y) outside
the interval [fcapp(z) — %, feaprp(z) + %]

%
<
’7 Il . il | —‘
L ‘ i - ‘ ‘]
0 g fcapp(z) y

= z0ne where the promise holds

Figure 1: The intervall [0, 1]

ii) (Papp,gr(fcapp)) is prBPP-hard.

We prove that (Qurpp, LprBPP) Sglr} (Papp, gr(fcapp)) which proves part ii). We con-
struct a polynomial time deterministic Turing machine M, such that for every solution A of
(Papp, gr(fcapp)), M4 solves (QprBPP, LprBPP)- So let (N, z, 1%) be an input for the promise
problem (QpBPpP, LprBPP), Where N is a probabilistic Turing machine, such that the promise
Qprarr (N, , 1*) holds. Since the promise holds, N accepts or rejects input z BPP-wise. There-
fore in order to decide Ly gpp inside the promise, M 4 only needs to compute whether N accepts
z in at most ¢ steps.

Let A be a solution of (Papp, gr(fcapp)), and let £ = 10. Consider the Boolean circuit Cy
which computes N(z), i.e. C(w) = Ny (z). Here is a description of M4 on input (N, z, 1?).

e Divide both [0, 2 + 5¢] and [2 — o, 1] in subintervals of size at most 7. Let yo, ...,y and
Z0,. .. ,2¢ be the endpoints of those subintervals.

? ?
e Ask the oracle whether (1%, Cy 4, v;) € A and whether (1¥,Cy 4, 2;) € Afori=1,2,... ,t.
Accept iff there is a z; such that z; € A.

We show that M4 solves Lypp correctly.

Since N decides input z BPP-wise (because the promise holds), we know that either
feapp(Cng) < 3 or > 3. Suppose wlog that foapp(Cn,z) > 3. Therefore foapp(Cng) €
[2ig, Zig+1], for a certain 7y where 0 < 45 < ¢. First we show that there is a z; such that
(1%, CnNyg,zi) € A, and second y; ¢ A for every i = 0,1, ... ,t. The first statment is clear because
since fcapp(Cnz) € [2ig, Zig+1), We can suppose wlog that d(fcarp(Cnz), 2ip) < # There-
fore A is correct for z;,, which implies (1¥, Cy 4, 2;,) € A. The second holds because for every
i=0,1,...,t we have d(foarr(Cnz),yi) > %, which implies the correctness of A for every
y; fore=0,1,...,t.

a

The proof of Theorem 2 can be applied to any function f € APP.

Theorem 3 Let f : {0,1}* — [0,1] be a real valued function in APP. Then the promise
problem (Papp,gr(f)) € prBPP.

Proof
Similar to part i) of Theorem 2.

4 From prBPP to APP

In a sense Theorem 2 gives a mapping ¥ from APP to prBPP associating to each real-valued
function in APP a promise problem in prBPP, and mapping complete function onto complete
promise problems (see Theorem 6). The following result gives an inverse for .

Theorem 4 Let f : {0,1}* — [0,1] be a real valued function, such that (Papp,gr(f)) €
prBPP. Then f is in APP.

Proof

By hypothesis, there is a solution A which decides gr(f) correctly inside the promise, more-
over A € BPP inside the promise, i.e. whenever d(z, f(z)) < 5 or > 5. We construct the
following probabilistic polynomial time transducer M for f. Input: (1¥,z).

e Divide the interval [0, 1] into 37’“, subintervals of size at most % Denote by o, ... ,y: the
endpoints.

e Output the first y; such that (1%,30,%) € A.

We claim that firt there is at least one ¢ with 0 <37 < t such that (1%,3:, y;) € A. Indeed A

is correct on input (12%’,3:,%) when either d(f(z),y;) < & 3k' = 3}0, or d(f(z),y;) > %% = %
Moreover we can suppose wlog that f(z) € [yig, Yig+1]; therefore d(f(2),%i0) < 5 57 = 37-
Therefore (1%, z,Yip) € A. Second we prove that when (17, i) € A then d(f(z),yi) < 2
But this 1s true because of the promise on A. Indeed if (,Z,Yyi) € A then d(f(z),y;) <
2 (5 =

O

In fact we have a much stronger result than Theorem 2, namely that the same result holds
under uniform many-one polynomial reduction.

<PP reduction.

Theorem 5 The promise problem (Papp, gr(fcapp)) is prBPP-complete under
Proof
Part i) is the same as in Theorem 2.

ii) (Papp,gr(fcapp)) is prBPP-hard.

We prove that (QpspP, LprBPP) <PV (Papp,gr(fcapp)) which proves the Theorem. Let
A be a solution of (Papp,gr(fcapp)). Let (N, z,1') be where N is a probabilistic polynomial
time Turing machine such that the promise Qpp(N,z, 1*) holds. We construct a solution
that computes whether N accepts z. The promise guarantees that N behaves BPP-wise on z.
Therefore by repeated trials, and using standard Chernoff bounds, we get a probabilistic Turing
machine N’, such that Pry[N'(z) = 1] > 1 —27902) (< 1 — 27902 respectivly), L(N') = L(N)
whenever the promise holds, and such that the running time of N’ is polynomial in the running
time of N, for a certain polynomial g. Thus we have that Qumpp(N', 2, 19®)) holds. Consider
Cn'z a Boolean circuit computing N'(z). Suppose wlog that N’ accepts z, i.e. foapp €
[1 — 24" 1] . Consider k = %. Consider the following partial polynomial time computable
reduction

{ red: {s € {0,1}*| Qprapp(s) = {0,1}*
(N,z,1) — (1'% Cpr 5, 1)

Consider the set B defined by

B(S) = { OA(Ted(S)) if QprBPP(S)

otherwise

B is a solution of (QppPp, Lprpp)- Indeed since d(fcapp(Cnz), 1) <1 —27 a(|zl) < 55, the
promise for A holds, therefore (119, N’(x),1) € A and B concludes that N’ accepts z, Wthh is
correct.

We now construct a mapping between APP and prBPP.
Consider the following two mappings

U { APP — prBPP) { prBPP — APP
"L f = (Papp,gr(f)) "L (@ R)— for

Where fq g is defined as follows; Let {M;};cny be an enumaration of all probabilistic Turing
machines solving (Q, R). Let M’ be the first (in lexicographical order). We define fg gr(z) =
Pry[M],(z) = 1] The following result states that the two mappings ® and ¥ map complete
problems to complete problems.

Theorem 6 ¥ maps every APP é}'}lo—complete function f to a prBPP Siﬂ—complete problem

Papp, g7 , and ® maps every prBPP <PP complete problem (Q, R) to a APP <PT—complete
mo
Junction fg gr.

Proof

For ¥ the result immediately follows from Theorem 5. The Proof for ® follows.

First we prove that ® maps (Papp,gr(fcaprp)) to a APP S%—complete function. Denote
h = ®(Papp,gr(fcapp)). Let M be the first (in lexicographical order) probabilistic Turing
machine solving (Papp, gr(fcapp))- We have h(1¥, z,y) = Pr[M,, (1%, z,y) = 1].

Claim: h is APP <%-complete.

Proof (of Claim). Let g € APP be any real-valued function, and let N be a probabilistic
polynomial Turing machine witnessing this fact. We construct a deterministic polynomial time

oracle Turing machine K, such that K" computes g. Here is a description of K" on input (1%, z).
1

Let red : {0,1}* — {0,1}* be a reduction in FP such that g(z) Z foapp(red(z))

e Divide the interval [0,1] into subintervals of size at most ﬁ Denote yg,y1,-.. ,y: the
endpoints of those subintervals.

e Fori=0,1,...,t querry h(13*,red(z),y;) with precision %. Output the first y; satisfying

3 1

3k

P —— .
h(]‘ aTed(m)ayz) - 4 10 (]‘)

Let’s prove the correctness of K”. First we show that there is a y; satsfying (1). Indeed we can
suppose wlog that fcapp(red(z)) € [y;,y;+1]. Therefore wlog d(fcapp(red(z)),y;) < 4. But
thanks to the promise, we know that M decides (1%*, red(z), ;) correctly if d(foapp(red(z)),y;) <
% - o, which is true. Second we show that all y; satisfying (1) are such that d(y;,g(z)) < 7. In-
deed let y; (where 0 < i < t) be any y; such that h(13*, red(z),y;) > %— 11—0. Therefore M accepts
(1?*, red(z),y;) which implies, thanks to the promise, that d(fcapp(red(z)),yi) < 3 - 3 = 5
which implies d(y;, g(z)) < 7.

Second we prove that ® maps every complete problem to a complete function. So let (S,T)
be any prBPP-complete language. Therefore let reds be a reduction from (Papp, gr(fcarp))

to (S,T). Let N be the first (in lexicographical order) probabilistic polynomial Turing ma-
chine that solves (S,T). The following probabilistic polynomial Turing machine M solves
(Papp, g7(fcapp)). M on input z computes and outputs N(redz(z)). The end of the proof
is similar to the first case.

a

We now prove our main result, stating that relative to P, APP equals prBPP. We first give
the definition of an oracle for APP and prBPP. An oracle for a function f € APP is querried
1

(1%, 2) and answers y where y £ f(z). An oracle for a promise problem (Q, R) is querried z and
answers R(z) whenever the promise Q(z) holds.

Theorem 7 PAFPP — pprrBPP

Proof

First we prove that PAPP C P(Papp.gr(foarr)) Let L be any language in PAPP and let
M fcAPP be a deterministic polynomial time oracle machine deciding it. We construct a determin-
istic polynomial oracle machine N (Papp.97(fcarp)) deciding L. N(Papr.g7(fearr)) on input z simu-
lates MfcaPP (). Suppose that during its computation, M7cAPP (z) querries string (1%, C) to its
oracle. Then divide the interval [0, 1] into subintervals of size at most %, denote by yo, Y1, --- , Yt

the endpoints of those subintervals. Querry whether (1%, C,vyi) é (Papp,gr(fcapp)) for i =
0,1,...,t. Denote by y; the first y; such that (1%,0,%) € (Papp,gr(fcapp)). Answer
Mearr's querry (1%, C) with y;.

Second we prove the other inclusion. Let L be any language in PP*BPP and let M Parp:97(foarp))
be a deterministic polynomial time oracle machine deciding it. We construct a deterministic
polynomial oracle machine N/caPP deciding L. N/cAPP on input z simulates MPapp97(foarp)) (z).
Suppose that during its computation, MPapp.97(foarP)) (1) querries string (1%, C,y) to its oracle

1

i.e asking whether fcapp(C £). Then querry (12*,C) to the oracle for cApp, (denote the
(g y querry (1%, :

answer by 7), and answer MPaPP.97(fcarr))g querry (1%, C,y) with “yes” iff d(g,y) < % It is
clear that NJ/cAPP angwers MPAPP.97(fcaPP)) querries correctly inside the promise Popp.

5 Consequences for APP

Our results significantly simplify the proofs of important results on APP. First it is shown
in [KRCO00] that similarly to the case of BPP, the interval of error probability for functions in
APP can be reduced from [% —p(n), %+p(n)] to [2_‘1(”), 1-— 2‘1(")], for any polynomial p(n) and
g(n). We give a much simpler proof using the fact that error reduction is possible in prBPP.

Theorem 8 Let f = {fn}n>0: {0,1}* — [0,1] be a familiy of real-valued functions such that,
there exists a probabilistic, polynomial time transducer M and a polynomial p, such that, Vk,n €
N,

1

1 1
Pr(My(1%,2) = ful@)] 2 5+ Cpmes

then for any polynomial q, there exists a probabilistic, polynomial time transducer N, such that

Vk,n € N,
1
P}‘[Mw/(lk,x) £ fu(z)] > 1 - 9—4(k+n)

Proof
Let f = {fn}n>0: {0,1}* — [0,1] be a familiy of real-valued functions such that, there exists
a probabilistic, polynomial time transducer M and a polynomial p, such that, Vk,n € N,

1

1 1
Pr[My, (1%, 2) & fu(2)] 2 5 + CETS)

It is clear that the %, %] interval in the definition of the promise problem (Q:Bpp, LprBPP) iS
quite arbitrary and can be replaced by the interval [% — ﬁ,% + ﬁ], where t is any fixed
polynomial. Therfore applying Theorem 3, we have that (Papp, gr(f)) is solved by a probabilis-
tic Turing machine N that accepts (respectivly rejects) with probability % + m whenever
the promise Papp holds. Now let g be any polynomial. Using standard error reduction tech-
nique for BPP, we get a probabilistic Turing machine N’ such that when the promise Papp
holds, N’ decides the same language as N and N’ accepts (respectivly rejects) with probability
> 1-29k+7) (respectivly < 2-9(%+7)), By Theorem 4 we obtain a probabilistic Turing machine

M witnessing the fact that f € APP and that errs with probability 2~2k+n),

a

Second it is shown in [KRCO00] that the function fcapp : {0,1}* — [0,1] is APP-complete
under polynomial time many-one approximate reduction. We cannot prove this directly from
our results. Still we can prove a slightly weaker result, namely the completeness of fcapp under
polynomial time Turing approximate reduction. For two real valued functions f,g in APP, we

say that f is Turing approximate reducible in polynomial time to g (denoted g%), if there exists
1

a deterministic polynomial time oracle Turing machine N such that N9(1%,z) £ f(z).

Theorem 9 The function fcapp is APP-complete under polynomial Turing approzimate re-
duction.

Proof

Let f = {fn}n>o0 : {0,1}* — [0,1] be any familiy of real-valued functions in APP. By
Theorem 3 we have that (Papp, gr(f)) € prBPP. Since the promise problem (Papp, gr(fcarp))
is prBPP complete under uniform polynomial many one reduction (Theorem 2), there exists a
partial function in FP

{ red: {s € {0,1}*| Papp(s)} — {0,1}*
(N, z,1t) — (110, Cpr 4, 1)

such that for any solution A of (Papp, g7(fcapp)), the set

B(s) = { A(red(s)) if Papp(s)

0 otherwise

10

is a solution of (Papp, gr(f)). Solet A be a fixed solution of (Papp, gr(fcapp)). We construct
a polynomial time deterministic oracle Turing machine N, such that N/cAPP computes f. Here
is a description of N/cAPP on input (1%, z).

e Divide the interval [0, 1] into % subintervals of size at most % Denote by y1,... ,y; the
endpoints of those subintervals.

e Test whether (1%,z,yi) € (P,gr(f)) for « = 1,2,...¢t by computing B(l%,x,yi) =
A(Ted(l%,z,yi)) fori=1,2,...%

e Output the first y; such that B accepts (1%,x,y,~).

Let us check that N/oAPP computes f(z) correctly. So suppose wlog that f(z) € [y;, yit1]-
Therefore wlog d(f(x),y;) < % . % = 3i Thus there is at least one 1; where 0 < ¢ < ¢ such that

B accepts (1%,$,yi). Thanks to the promise, we know that B correctly rejects any (1%,% z)
such that d(f(z),z) > 3 - (3)~! = 1. Therefore d(f(z),y:) < 1-
O

It is shown in [For0l] that APP = AP iff prBPP is easy. We say that prBPP is easy if
for every promise problem (@, R) in prBPP, there is a language L € P, such that L decides R
when the promise holds, i.e. [Q(z) = R(z) = L(z)].

Theorem 10 APP = AP iff prBPP is easy.

Proof
Easy consequence of Theorem 7.

6 Final remarks

It would be interesting to see whether it is possible, while using our results, to prove the APP-
completeness of the function fcapp, under approximate many-one reduction (instead of Turing
reduction). The main difficulty here is that even if you are able to compute the graphe of the
function fcapp, there is no easy way to compute the image fcapp(z), asking only one querry
to its graphe.

11

References

[BDGYI0] J. L. Balcazar, J. Diaz, and J. Gabarro. Structural Complezity II. EATCS Monographs
on Theorical Computer Science Volume 22, Springer Verlag, 1990.

[BDGY5] J. L. Balcazar, J. Diaz, and J. Gabarro. Structural Complezity I. EATCS Monographs
on Theorical Computer Science Volume 11, Springer Verlag, 1995.

[ESY84] S. Even, A. Selman, and Y. Yacobi. The complexity of promise problems with appli-
cations to public-key cryptography. Information and Control, pages 159-173, 1984.

[For01] L. Fortnow. Comparing notions of full derandomization. Proceedings of the 16th IEEE
Conference on Computational Complezity, pages 28-34, 2001.

[GS88] J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosystems.
Siam Journal on Computing, 17(2):309-335, April 1988.

[HH86] J. Hartmanis and L. Hemachandra. Complexity classes without machines: On com-
plete languages for UP. Proceedings of the Thirteenth International Colloguium on Au-
tomata, Languages, and Programming, 226 of Lecture Notes in Computer Science:123—
135, 1986.

[KF82] K. Ko and H. Friedman. Computational complexity of real functions. Theorical
Computer Science, pages 20:323-352, 1982.

[Ko91] K. Ko. Complezity Theory of Real functions. Birkhduser, 1991.

[KRCO00] V. Kabanets, C. Rackoff, and S. A. Cook. Efficiently approximable real-valued func-
tions. Technical Report 00-034, Electronic Colloquium on Computational Complexity,
April 2000.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

[Sip82] M. Sipser. On relativization and the existence of complete sets. Proceedings of the
Ninth International Colloguium on Automata, Languages, and Programming, 140 Lec-
ture Notes in Computer Science:523-531, 1982.

12

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

