

Relative to P promise-BPP equals APP

Philippe Moser*

Abstract

We show that for determinictic polynomial time computation, oracle access to \mathbf{APP} , the class of real functions approximable by probabilistic Turing machines, is the same as having oracle access to promise- \mathbf{BPP} . First we construct a mapping that maps every function in \mathbf{APP} to a promise problem in \mathbf{prBPP} , and that maps complete functions to complete promise problems. Then we show an analogue result in the opposite direction, by constructing a mapping from \mathbf{prBPP} into \mathbf{APP} , that maps every promise problem to a function in \mathbf{APP} , and mapping complete promise problems to complete functions. Second we prove that $\mathbf{P^{APP}} = \mathbf{P^{prBPP}}$. Finally we use our results to simplify proofs of important results on \mathbf{APP} , such as the \mathbf{APP} -completeness of the function f_{CAPP} that approximates the acceptance probability of a Boolean circuit, or the possibility (similarily to the case of \mathbf{BPP}) to reduce the error probability for \mathbf{APP} functions, or the conditionnal derandomization result $\mathbf{APP} = \mathbf{AP}$ iff \mathbf{prBPP} is easy.

1 Introduction

The complexity class **BPP** is sometimes considered to be the class of all feasible computation. Nevertheless, it has been conjectured that **BPP** does not have any complete sets. One reason for this is the existence of a relativized world where **BPP** (and other semantic classes) do not have complete sets (see [Sip82] and [HH86]). This is because **BPP** is a semantic class (on every input, a **BPP** machine must have either at least 3/4 or at most 1/4 accepting paths). Thus the canonical complete language $L = \{(M, x, 1^t) | M \text{ is a BPP machine and } M \text{ accepts } x \text{ in at most } t \text{ steps} \}$ is not **BPP**-complete, because the predicate -M is a **BPP** machine - is undecidable, thus L is not in **BPP**.

One way around this difficulty is to consider promise problems i.e. problems that need to be solved only on instances where a certain promise holds. Thus the canonical complete language L together with the promise that M is indeed a **BPP** machine, is promise-**BPP** (denoted **prBPP**) complete. Indeed once you know that M is a **BPP** machine, a probabilistic algorithm can simulate machine M on input x, thus deciding, with high probability, wether M accepts x or not; this puts L in **prBPP**.

Another approach was introduced in [KRC00]. They introduced a natural generalization of **BPP**, namely the class **APP** of real-valued functions $f: \{0,1\}^* \to [0,1]$ that can be approximated within any $\epsilon > 0$, by a probabilistic Turing machine running in time polynomial in the

^{*}Address: Theorical Computer Science Department, University of Geneva. Email: moser@cui.unige.ch; Thesis advisor: prof. Jose D. P. Rolim

input size and the precision $1/\epsilon$. They showed that **BPP** is exactly the subset of all Boolean functions in **APP**. Moreover they proved that computing the acceptance probability of a given Boolean circuit is an **APP**-complete problem.

This paper shows that relative to \mathbf{P} , the two complexity classes \mathbf{APP} and \mathbf{prBPP} are equal, i.e. $\mathbf{P^{APP}} = \mathbf{P^{prBPP}}$. Our main tool is the graphe of a function. Recall that for a real valued function $f:\{0,1\}^* \to [0,1]$, its graphe is defined as beeing the set of triples $(1^k, x, y)$ such that f(x) = y within distance 1/k. Our first result states that computing the graphe of the \mathbf{APP} -complete function f_{CAPP} (where f_{CAPP} on input a Boolean circuit outputs its probability of acceptance), together with the promise that all querries $f(x) \stackrel{?}{=} y$ made to graphe (f_{CAPP}) have the property that the distance between f(x) and y is either "very small" or "rather large", is \mathbf{prBPP} complete. Then we prove that computing the graphe of any function in \mathbf{APP} toghether with the same promise, is in \mathbf{prBPP} . This yields a mapping from \mathbf{APP} to \mathbf{prBPP} , mapping each function in \mathbf{APP} to a promise problem in \mathbf{prBPP} , and mapping complete functions to complete promise problems.

For the other direction we first prove that, for any real-valued function $f:\{0,1\}^* \to [0,1]$ such that the problem of computing its graphe (toghether with same the promise as above) is in **prBPP**, f is in **APP**. Second we construct a mapping from **prBPP** to **APP**, that maps every promise problem to a real-valued function, and mapping complete promise problem to complete functions. We then prove that $\mathbf{P}^{\mathbf{APP}} = \mathbf{P}^{\mathbf{prBPP}}$.

Finally we use our results to simplify proofs of important results about **APP**. Namely it is shown in [KRC00] that similarly to the case of **BPP**, the error probability for **APP** functions can be reduced exponentially. Their proof is rather technical and relies on a rather involved argument of repeated trials; on the other hand the idea of our proof is very simple: let f be any function in **APP**. We first map f to its corresponding promise problem (Q, R) in **prBPP**. Then using the fact that error probability is possible in **prBPP**, we reduce the error probability of the Turing machine that solves (Q, R). Finally by mapping (Q, R) to its corresponding function in **APP**, we obtain a function f' which is the same as f, but such that the Turing machine that computes f' has exponentially small error probability.

Second it is proved in [KRC00] that the function f_{CAPP} (where f_{CAPP} on input a Boolean circuit C outputs its probability of acceptance) is \mathbf{APP} -complete under approximate polynomial time many-one reduction (the analogue of many-one reduction for \mathbf{APP}). We cannot prove this directly from our results. Still we can prove a slightly weaker result, namely the completeness of f_{CAPP} under polynomial time Turing approximate reduction (the analogue of polynomial Turing reduction for \mathbf{APP}).

Finally it is proved in [For01] that $\mathbf{APP} = \mathbf{AP}$ iff \mathbf{prBPP} is easy. We prove this by using our two mappings between \mathbf{APP} and \mathbf{prBPP} .

2 Preliminaries

Since we are working with real-valued functions, we need the following definition of approximate equality. Let $a, b \in [0, 1]$ be two real numbers. We say that a and b are $\frac{1}{k}$ - equal (denoted $\stackrel{1}{=}$) if $|a-b| \leq \frac{1}{k}$.

[KRC00] introduced the class APP of real valued function. Here is their definition.

Definition 1 A family $f = \{f_n\}_{n\geq 0} : \{0,1\}^* \to [0,1]$ of real-valued functions is in **APP**, if there exists a probabilistic, polynomial-time Turing machine M such that, for all $k, n \in \mathbb{N}$, we have

$$\Pr_{w}[M_{w}(1^{k}, x) \stackrel{\frac{1}{k}}{=} f_{n}(x)] \ge \frac{3}{4}.$$

Consider the following family of functions $f_{\text{CAPP}}: \{0,1\}^* \to [0,1]$, which takes on input a Boolean circuit C, and outputs its acceptance probability, i.e. $f_{\text{CAPP}}(C) = \Pr_w[C(w) = 1]$. It was proved in [KRC00] that the function f_{CAPP} is **APP**-complete under polynomial manyone approximate reduction. For two functions f and g in **APP**, f is polynomially manyone approximately reducible to g, denoted $f \lesssim_{\text{mo}}^p g$, if there is a polynomial family of reductions $r_{n,k}: \{1\}^k \times \{0,1\}^n \to \{0,1\}^{p(n)}$, for some polynomial p, such that, for all $k, n \in \mathbb{N}$,

$$f_n(x) \stackrel{\frac{1}{k}}{=} g_m(r_{n,k}(1^k, x)).$$

A promise problem is a formulation of a partial decision problem that has the structure

Input x Promise
$$Q(x)$$
 Property $R(x)$

where Q and R are predicates. Formally, a promise problem is a pair of predicates (Q, R). A Turing machine solves (Q, R) if

$$\forall x[Q(x) \to [M(x) \text{ halts } \land [M \text{ accepts } x \leftrightarrow R(x)]]].$$

A solution of (Q, R), is a language A decided by a machine M (i.e. A = L(M)) such that M solves (Q, R).

prBPP is the class of all promise problems (Q, R), that have a solution in **BPP** (on instances where the promise is satisfied).

In order to define complete problems for **prBPP** we need the following definitions of reductions.

Definition 2 A promise problem (Q,R) is uniformly Turing reducible in polynomial time to a promise problem (S,T), denoted $(Q,R) \leq_{\mathrm{UT}}^{\mathrm{PP}} (S,T)$, if there is a deterministic, polynomial time oracle Turing machine M such that, for every solution A of (S,T), M^A solves (Q,R).

If machine M depends on the solution A, we simply call it Turing reducibility. Grollmann and Selman [GS88] showed that the two definitions are equivalent. Finally we say that a promise problem (Q,R) is uniformly many-one reducible in polynomial time to a promise problem (S,T), denoted $(Q,R) \leq_{\text{mo}}^{\text{PP}} (S,T)$, if there exists a partial polynomial time computable function $red: \{x \in \{0,1\}^* | Q(x)\} \to \{0,1\}^*$ in \mathbf{FP} , such that for every solution A of (S,T), the set B defined by:

$$B(x) = \begin{cases} A(red(x)) & \text{if } Q(x) \\ \text{undefined} & \text{otherwise} \end{cases}$$

is a solution of (Q, R).

Unlike **BPP**, the canonical complete language yields a complete promise problem for **prBPP**. Consider the following promise problem $(Q_{prBPP}, \mathcal{L}_{prBPP})$.

 $\mathcal{Q}_{\text{prBPP}}(M, x, 1^t) = 1$ iff M is a probabilistic Turing machine that decides x **BPP**-wise, i.e.

 $\Pr_w[M_w(x) = 1] \ge \frac{3}{4} \text{ or } \le \frac{1}{4}.$ $\mathcal{L}_{\text{prBPP}}(M, x, 1^t) = 1 \text{ if } M \text{ accepts } x \text{ BPP-wise in at most } t \text{ steps, i.e. } \Pr_w[M_w(x) = 1] \ge \frac{3}{4}.$ $\mathcal{L}_{\text{prBPP}}(M, x, 1^t) = 0$ if M rejects x **BPP**-wise in at most t steps, i.e. $\Pr_w[M_w(x) = 1] \leq \frac{1}{4}$.

The following result states that this promise problem is complete for **prBPP** under uniform polynomial time many-one reduction, and hence under uniform Turing polynomial time reduction.

 $\textbf{Theorem 1} \ \ \textit{The promise problem} \ (\mathcal{Q}_{prBPP}, \mathcal{L}_{prBPP}) \ \textit{is } \textbf{prBPP-} \textit{complete under} \leq^{PP}_{mo} \textit{reduction}.$

Proof

i) $(\mathcal{Q}_{\text{prBPP}}, \mathcal{L}_{\text{prBPP}}) \in \mathbf{prBPP}$.

Indeed when $\mathcal{Q}_{prBPP}(M, x, 1^t)$ holds, we know that machine M has a **BPP** behaviour on input x. Therefore a simulation of M on input x yields a **BPP** solution for $(\mathcal{Q}_{prBPP}, \mathcal{L}_{prBPP})$.

ii) $(Q_{prBPP}, \mathcal{L}_{prBPP})$ is prBPP-hard under \leq_{mo}^{PP} reduction.

Let (S,T) be any promise problem in **prBPP**. Let M be a probabilistic polynomial time Turing machine solving (S,T) and let p be its polynomial time bound. Consider the following deterministic polynomial time partial function

$$\left\{ \begin{array}{l} red: \{x \in \{0,1\}^* | \ S(x)\} \to \{0,1\} \in \mathbf{FP} \\ x \mapsto (M,x,1^{p(|x|)}) \end{array} \right.$$

We claim that red is a many-one reduction from (S,T) to $(\mathcal{Q}_{prBPP}, \mathcal{L}_{prBPP})$. Indeed let A be a solution of $(\mathcal{Q}_{prBPP}, \mathcal{L}_{prBPP})$. It is clear that first if S(x) holds then $\mathcal{Q}_{prBPP}(M, x, 1^{p(x)})$ holds. Second the set B defined by

$$B(x) = \begin{cases} A(red(x)) & \text{if } \mathcal{Q}_{prBPP}(x) \\ 0 & \text{otherwise} \end{cases}$$

is a solution of (S, T).

A mapping from APP to prBPP 3

Our main tool to build a correspondance between **APP** and **prBPP**, is the graphe of a function.

Definition 3 Let $f = \{f_n\}_{n>0} : \{0,1\}^* \to [0,1]$ be a real valued function. We define its graphe by:

$$gr(f) = \{(1^k, x, y) \in \{1\}^* \times \{0, 1\}^* \times \{0, 1\}^* | y \stackrel{\frac{1}{k}}{=} f(x)\}.$$

Let $f: \{0,1\}^* \to [0,1]$ be a real-valued function. Consider the following promise problem $(\mathcal{P}_{APP}, gr(f))$, where

$$\mathcal{P}_{\text{APP}}(1^k, x, y) = \begin{cases} 1 & \text{if } d(f(x), y) \leq \frac{1}{2k} \text{ or } > \frac{3}{2k} \\ 0 & \text{otherwise} \end{cases}$$

The following result states that computing the graphe of the **APP**-complete function f_{CAPP} is a **prBPP**-complete problem.

Theorem 2 Let $f_{\text{CAPP}}: \{0, 1\}^* \to [0, 1]$ be the **APP**-complete function. Then $(\mathcal{P}_{\text{APP}}, gr(f_{\text{CAPP}}))$ is **prBPP**-complete under $\leq_{\text{UT}}^{\text{PP}}$ reduction.

Proof

i) $(\mathcal{P}_{APP}, gr(f_{CAPP})) \in \mathbf{prBPP}$

Let M be the probabilistic transducer witnessing the fact $f_{\text{CAPP}} \in \mathbf{APP}$. Consider the following probabilistic polynomial time Turing machine N. Input $(1^k, x, y)$

- Simulate $M(1^{2k}, x)$ denote the output by \tilde{y} .
- Accept iff $d(y, \tilde{y}) \leq \frac{1}{k}$.

It is clear that first N has a **BPP**-like behaviour inside the promise. Second it is clear that N decides $gr(f_{\text{CAPP}})$ correctly inside the promise; indeed by observing Figure 1 we see that wherever y and \tilde{y} are in the interval $[f_{\text{CAPP}}(x) - \frac{1}{2k}, f_{\text{CAPP}}(x) + \frac{1}{2k}]$, N always accepts $(1^k, x, y)$ inside the interval $[f_{\text{CAPP}}(x) - \frac{1}{2k}, f_{\text{CAPP}}(x) + \frac{1}{2k}]$, and always rejects $(1^k, x, y)$ outside the interval $[f_{\text{CAPP}}(x) - \frac{3}{2k}, f_{\text{CAPP}}(x) + \frac{3}{2k}]$.

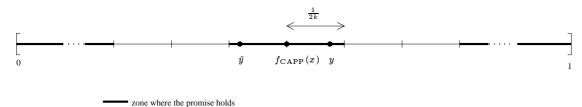


Figure 1: The intervall [0,1]

ii) $(\mathcal{P}_{APP}, gr(f_{CAPP}))$ is **prBPP**-hard.

We prove that $(\mathcal{Q}_{\text{prBPP}}, \mathcal{L}_{\text{prBPP}}) \leq_{\text{UT}}^{\text{PP}} (\mathcal{P}_{\text{APP}}, gr(f_{\text{CAPP}}))$ which proves part ii). We construct a polynomial time deterministic Turing machine M, such that for every solution A of $(\mathcal{P}_{\text{APP}}, gr(f_{\text{CAPP}}))$, M^A solves $(\mathcal{Q}_{\text{prBPP}}, \mathcal{L}_{\text{prBPP}})$. So let $(N, x, 1^t)$ be an input for the promise problem $(\mathcal{Q}_{\text{prBPP}}, \mathcal{L}_{\text{prBPP}})$, where N is a probabilistic Turing machine, such that the promise $\mathcal{Q}_{\text{prBPP}}(N, x, 1^t)$ holds. Since the promise holds, N accepts or rejects input x **BPP**-wise. Therefore in order to decide $\mathcal{L}_{\text{prBPP}}$ inside the promise, M^A only needs to compute whether N accepts x in at most t steps.

Let A be a solution of $(\mathcal{P}_{APP}, gr(f_{CAPP}))$, and let k = 10. Consider the Boolean circuit $C_{N,x}$ which computes N(x), i.e. $C(w) = N_w(x)$. Here is a description of M^A on input $(N, x, 1^t)$.

- Divide both $[0, \frac{1}{4} + \frac{1}{2k}]$ and $[\frac{3}{4} \frac{1}{2k}, 1]$ in subintervals of size at most $\frac{1}{k}$. Let y_0, \ldots, y_t and z_0, \ldots, z_t be the endpoints of those subintervals.
- Ask the oracle whether $(1^k, C_{N,x}, y_i) \stackrel{?}{\in} A$ and whether $(1^k, C_{N,x}, z_i) \stackrel{?}{\in} A$ for i = 1, 2, ..., t. Accept iff there is a z_i such that $z_i \in A$.

We show that M^A solves \mathcal{L}_{prBPP} correctly.

Since N decides input x **BPP**-wise (because the promise holds), we know that either $f_{\text{CAPP}}(C_{N,x}) \leq \frac{1}{4}$ or $\geq \frac{3}{4}$. Suppose wlog that $f_{\text{CAPP}}(C_{N,x}) \geq \frac{3}{4}$. Therefore $f_{\text{CAPP}}(C_{N,x}) \in [z_{i_0}, z_{i_0+1}]$, for a certain i_0 where $0 \leq i_0 \leq t$. First we show that there is a z_i such that $(1^k, C_{N,x}, z_i) \in A$, and second $y_i \notin A$ for every $i = 0, 1, \ldots, t$. The first statment is clear because since $f_{\text{CAPP}}(C_{N,x}) \in [z_{i_0}, z_{i_0+1}]$, we can suppose wlog that $d(f_{\text{CAPP}}(C_{N,x}), z_{i_0}) \leq \frac{1}{2k}$. Therefore A is correct for z_{i_0} , which implies $(1^k, C_{N,x}, z_{i_0}) \in A$. The second holds because for every $i = 0, 1, \ldots, t$ we have $d(f_{\text{CAPP}}(C_{N,x}), y_i) > \frac{3}{2k}$, which implies the correctness of A for every y_i for $i = 0, 1, \ldots, t$.

The proof of Theorem 2 can be applied to any function $f \in \mathbf{APP}$.

Theorem 3 Let $f: \{0,1\}^* \to [0,1]$ be a real valued function in **APP**. Then the promise problem $(\mathcal{P}_{\text{APP}}, gr(f)) \in \mathbf{prBPP}$.

Proof

Similar to part i) of Theorem 2.

4 From prBPP to APP

In a sense Theorem 2 gives a mapping Ψ from **APP** to **prBPP** associating to each real-valued function in **APP** a promise problem in **prBPP**, and mapping complete function onto complete promise problems (see Theorem 6). The following result gives an inverse for Ψ .

Theorem 4 Let $f: \{0,1\}^* \to [0,1]$ be a real valued function, such that $(\mathcal{P}_{APP}, gr(f)) \in \mathbf{prBPP}$. Then f is in \mathbf{APP} .

Proof

By hypothesis, there is a solution A which decides gr(f) correctly inside the promise, moreover $A \in \mathbf{BPP}$ inside the promise, i.e. whenever $d(x, f(x)) \leq \frac{1}{2k}$ or $> \frac{3}{2k}$. We construct the following probabilistic polynomial time transducer M for f. Input: $(1^{k'}, x)$.

• Divide the interval [0,1] into $\frac{3k'}{2}$ subintervals of size at most $\frac{2}{3k'}$. Denote by y_0, \ldots, y_t the endpoints.

• Output the first y_i such that $(1^{\frac{3}{2k'}}, x, y_i) \in A$.

We claim that firt there is at least one i with $0 \le i \le t$, such that $(1^{\frac{3k'}{2}}, x, y_i) \in A$. Indeed A is correct on input $(1^{\frac{3}{2k'}}, x, y_i)$ when either $d(f(x), y_i) \le \frac{1}{2} \cdot \frac{2}{3k'} = \frac{1}{3k'}$ or $d(f(x), y_i) > \frac{3}{2} \cdot \frac{2}{3k'} = \frac{1}{k'}$. Moreover we can suppose wlog that $f(x) \in [y_{i_0}, y_{i_0+1}]$; therefore $d(f(x), y_{i_0}) \le \frac{1}{2} \cdot \frac{2}{3k'} = \frac{1}{3k'}$. Therefore $(1^{\frac{3k'}{2}}, x, y_{i_0}) \in A$. Second we prove that when $(1^{\frac{3k'}{2}}, x, y_i) \in A$ then $d(f(x), y_i) \le \frac{1}{k'}$. But this is true because of the promise on A. Indeed if $(1^{\frac{3k'}{2}}, x, y_i) \in A$ then $d(f(x), y_i) \le \frac{3}{2} \cdot (\frac{3k'}{2})^{-1} = \frac{1}{k'}$.

In fact we have a much stronger result than Theorem 2, namely that the same result holds under uniform many-one polynomial reduction.

Theorem 5 The promise problem $(\mathcal{P}_{APP}, gr(f_{CAPP}))$ is \mathbf{prBPP} -complete under \leq_{mo}^{PP} reduction.

Proof

Part i) is the same as in Theorem 2.

ii) $(\mathcal{P}_{APP}, gr(f_{CAPP}))$ is **prBPP**-hard.

We prove that $(\mathcal{Q}_{\text{prBPP}}, \mathcal{L}_{\text{prBPP}}) \leq_{\text{mo}}^{\text{PP}} (\mathcal{P}_{\text{APP}}, gr(f_{\text{CAPP}}))$ which proves the Theorem. Let A be a solution of $(\mathcal{P}_{\text{APP}}, gr(f_{\text{CAPP}}))$. Let $(N, x, 1^t)$ be where N is a probabilistic polynomial time Turing machine such that the promise $\mathcal{Q}_{\text{prBPP}}(N, x, 1^t)$ holds. We construct a solution that computes whether N accepts x. The promise guarantees that N behaves \mathbf{BPP} -wise on x. Therefore by repeated trials, and using standard Chernoff bounds, we get a probabilistic Turing machine N', such that $\Pr_w[N'(x)=1] \geq 1-2^{-q(|x|)}$ ($\leq 1-2^{-q(|x|)}$) respectively), L(N')=L(N) whenever the promise holds, and such that the running time of N' is polynomial in the running time of N, for a certain polynomial q. Thus we have that $\mathcal{Q}_{\text{prBPP}}(N', x, 1^{q(t)})$ holds. Consider $C_{N',x}$ a Boolean circuit computing N'(x). Suppose wlog that N' accepts x, i.e. $f_{\text{CAPP}} \in [1-2^{q(n)},1]$. Consider $k=\frac{1}{10}$. Consider the following partial polynomial time computable reduction

$$\left\{ \begin{array}{l} red: \{s \in \{0,1\}^* | \ \mathcal{Q}_{\text{prBPP}}(s) \to \{0,1\}^* \\ (N,x,1^t) \mapsto (1^{10},C_{N',x},1) \end{array} \right.$$

Consider the set B defined by

$$B(s) = \begin{cases} A(red(s)) & \text{if } \mathcal{Q}_{prBPP}(s) \\ 0 & \text{otherwise} \end{cases}$$

B is a solution of $(\mathcal{Q}_{\text{prBPP}}, \mathcal{L}_{\text{prBPP}})$. Indeed since $d(f_{\text{CAPP}}(C_{N,x}), 1) \leq 1 - 2^{-q(|x|)} \leq \frac{1}{2k}$, the promise for A holds, therefore $(1^{10}, N'(x), 1) \in A$ and B concludes that N' accepts x, which is correct.

We now construct a mapping between **APP** and **prBPP**. Consider the following two mappings

$$\Psi: \left\{ \begin{array}{l} \mathbf{APP} \to \mathbf{prBPP} \\ f \mapsto (\mathcal{P}_{\mathrm{APP}}, gr(f)) \end{array} \right. \Phi: \left\{ \begin{array}{l} \mathbf{prBPP} \to \mathbf{APP} \\ (Q, R) \mapsto f_{Q, R} \end{array} \right.$$

Where $f_{Q,R}$ is defined as follows; Let $\{M_i\}_{\{i\in\mathbb{N}\}}$ be an enumaration of all probabilistic Turing machines solving (Q,R). Let M' be the first (in lexicographical order). We define $f_{Q,R}(x) = \Pr_w[M'_w(x) = 1]$ The following result states that the two mappings Φ and Ψ map complete problems to complete problems.

Theorem 6 Ψ maps every $\mathbf{APP} \lessapprox_{\mathrm{mo}}^{\mathrm{P}}$ -complete function f to a $\mathbf{prBPP} \le_{\mathrm{mo}}^{\mathrm{PP}}$ -complete problem $(\mathcal{P}_{\mathrm{APP}}, gr(f))$, and Φ maps every $\mathbf{prBPP} \le_{\mathrm{mo}}^{\mathrm{PP}}$ complete problem (Q, R) to a $\mathbf{APP} \le_{\mathrm{T}}^{\mathrm{P}}$ -complete function $f_{Q,R}$.

Proof

For Ψ the result immediately follows from Theorem 5. The Proof for Φ follows.

First we prove that Φ maps $(\mathcal{P}_{\text{APP}}, gr(f_{\text{CAPP}}))$ to a $\mathbf{APP} \leq_{\text{T}}^{\text{P}}$ -complete function. Denote $h = \Phi(\mathcal{P}_{\text{APP}}, gr(f_{\text{CAPP}}))$. Let M be the first (in lexicographical order) probabilistic Turing machine solving $(\mathcal{P}_{\text{APP}}, gr(f_{\text{CAPP}}))$. We have $h(1^k, x, y) = \Pr[M_w(1^k, x, y) = 1]$.

Claim: h is $APP \leq_T^P$ -complete.

Proof (of Claim). Let $g \in \mathbf{APP}$ be any real-valued function, and let N be a probabilistic polynomial Turing machine witnessing this fact. We construct a deterministic polynomial time oracle Turing machine K, such that K^h computes g. Here is a description of K^h on input $(1^k, x)$. Let $red: \{0,1\}^* \to \{0,1\}^*$ be a reduction in \mathbf{FP} such that $g(x) \stackrel{\frac{1}{2k}}{=} f_{\mathrm{CAPP}}(red(x))$

- Divide the interval [0,1] into subintervals of size at most $\frac{1}{3k}$. Denote y_0, y_1, \ldots, y_t the endpoints of those subintervals.
- For i = 0, 1, ..., t querry $h(1^{3k}, red(x), y_i)$ with precision $\frac{1}{10}$. Output the first y_i satisfying

$$h(1^{3k}, red(x), y_i) \ge \frac{3}{4} - \frac{1}{10}$$
 (1).

Let's prove the correctness of K^h . First we show that there is a y_i satisfying (1). Indeed we can suppose wlog that $f_{\text{CAPP}}(red(x)) \in [y_j, y_{j+1}]$. Therefore wlog $d(f_{\text{CAPP}}(red(x)), y_j) \leq \frac{1}{6k}$. But thanks to the promise, we know that M decides $(1^{3k}, red(x), y_j)$ correctly if $d(f_{\text{CAPP}}(red(x)), y_j) \leq \frac{1}{2} \cdot \frac{1}{3k}$, which is true. Second we show that all y_i satisfying (1) are such that $d(y_i, g(x)) \leq \frac{1}{k}$. Indeed let y_i (where $0 \leq i \leq t$) be any y_i such that $h(1^{3k}, red(x), y_i) \geq \frac{3}{4} - \frac{1}{10}$. Therefore M accepts $(1^{2k}, red(x), y_i)$ which implies, thanks to the promise, that $d(f_{\text{CAPP}}(red(x)), y_i) \leq \frac{3}{2} \cdot \frac{1}{3k} = \frac{1}{2k}$ which implies $d(y_i, g(x)) \leq \frac{1}{k}$.

Second we prove that Φ maps every complete problem to a complete function. So let (S, T) be any **prBPP**-complete language. Therefore let red_2 be a reduction from $(\mathcal{P}_{\text{APP}}, gr(f_{\text{CAPP}}))$

to (S,T). Let N be the first (in lexicographical order) probabilistic polynomial Turing machine that solves (S,T). The following probabilistic polynomial Turing machine M solves $(\mathcal{P}_{\text{APP}}, gr(f_{\text{CAPP}}))$. M on input x computes and outputs $N(red_2(x))$. The end of the proof is similar to the first case.

We now prove our main result, stating that relative to **P**, **APP** equals **prBPP**. We first give the definition of an oracle for **APP** and **prBPP**. An oracle for a function $f \in \mathbf{APP}$ is querried $(1^k, x)$ and answers y where $y \stackrel{1}{=} f(x)$. An oracle for a promise problem (Q, R) is querried x and answers R(x) whenever the promise Q(x) holds.

Theorem 7 $P^{APP} = P^{prBPP}$

Proof

First we prove that $\mathbf{P}^{\mathbf{APP}} \subseteq \mathbf{P}^{(\mathcal{P}_{\mathsf{APP}},gr(f_{\mathsf{CAPP}}))}$. Let L be any language in $\mathbf{P}^{\mathbf{APP}}$ and let $M^{f_{\mathsf{CAPP}}}$ be a deterministic polynomial time oracle machine deciding it. We construct a deterministic polynomial oracle machine $N^{(\mathcal{P}_{\mathsf{APP}},gr(f_{\mathsf{CAPP}}))}$ deciding L. $N^{(\mathcal{P}_{\mathsf{APP}},gr(f_{\mathsf{CAPP}}))}$ on input x simulates $M^{f_{\mathsf{CAPP}}}(x)$. Suppose that during its computation, $M^{f_{\mathsf{CAPP}}}(x)$ querries string $(1^k,C)$ to its oracle. Then divide the interval [0,1] into subintervals of size at most $\frac{2}{3k}$, denote by y_0,y_1,\ldots,y_t the endpoints of those subintervals. Querry whether $(1^{\frac{3k}{2}},C,y_i) \stackrel{?}{\in} (\mathcal{P}_{\mathsf{APP}},gr(f_{\mathsf{CAPP}}))$ for $i=0,1,\ldots,t$. Denote by y_j the first y_i such that $(1^{\frac{3k}{2}},C,y_i) \in (\mathcal{P}_{\mathsf{APP}},gr(f_{\mathsf{CAPP}}))$. Answer $M^{f_{\mathsf{CAPP}}}$'s querry $(1^k,C)$ with y_i .

Second we prove the other inclusion. Let L be any language in $\mathbf{P^{prBPP}}$ and let $M^{\mathcal{P}_{\mathsf{APP}},gr(f_{\mathsf{CAPP}}))}$ be a deterministic polynomial time oracle machine deciding it. We construct a deterministic polynomial oracle machine $N^{f_{\mathsf{CAPP}}}$ deciding L. $N^{f_{\mathsf{CAPP}}}$ on input x simulates $M^{\mathcal{P}_{\mathsf{APP}},gr(f_{\mathsf{CAPP}}))}(x)$. Suppose that during its computation, $M^{\mathcal{P}_{\mathsf{APP}},gr(f_{\mathsf{CAPP}}))}(x)$ querries string $(1^k,C,y)$ to its oracle (i.e asking whether $f_{\mathsf{CAPP}}(C) \stackrel{1}{=} y$). Then querry $(1^{2k},C)$ to the oracle for f_{CAPP} , (denote the answer by \tilde{y}), and answer $M^{\mathcal{P}_{\mathsf{APP}},gr(f_{\mathsf{CAPP}}))}$'s querry $(1^k,C,y)$ with "yes" iff $d(\tilde{y},y) \leq \frac{1}{k}$. It is clear that $N^{f_{\mathsf{CAPP}}}$ answers $M^{\mathcal{P}_{\mathsf{APP}},gr(f_{\mathsf{CAPP}}))}$ querries correctly inside the promise $\mathcal{P}_{\mathsf{APP}}$.

5 Consequences for APP

Our results significantly simplify the proofs of important results on **APP**. First it is shown in [KRC00] that similarly to the case of **BPP**, the interval of error probability for functions in **APP** can be reduced from $[\frac{1}{2} - p(n), \frac{1}{2} + p(n)]$ to $[2^{-q(n)}, 1 - 2^{q(n)}]$, for any polynomial p(n) and q(n). We give a much simpler proof using the fact that error reduction is possible in **prBPP**.

Theorem 8 Let $f = \{f_n\}_{n\geq 0} : \{0,1\}^* \to [0,1]$ be a familiy of real-valued functions such that, there exists a probabilistic, polynomial time transducer M and a polynomial p, such that, $\forall k, n \in \mathbb{N}$,

$$\Pr_{w}[M_{w}(1^{k}, x) \stackrel{\frac{1}{k}}{=} f_{n}(x)] \ge \frac{1}{2} + \frac{1}{p(k+n)} ,$$

then for any polynomial q, there exists a probabilistic, polynomial time transducer N, such that $\forall k, n \in \mathbb{N}$,

$$\Pr_{w'}[M_{w'}(1^k, x) \stackrel{\frac{1}{k}}{=} f_n(x)] \ge 1 - 2^{-q(k+n)} .$$

${f Proof}$

Let $f = \{f_n\}_{n\geq 0} : \{0,1\}^* \to [0,1]$ be a familiy of real-valued functions such that, there exists a probabilistic, polynomial time transducer M and a polynomial p, such that, $\forall k, n \in \mathbb{N}$,

$$\Pr_{w}[M_{w}(1^{k}, x) \stackrel{\frac{1}{k}}{=} f_{n}(x)] \ge \frac{1}{2} + \frac{1}{p(k+n)} .$$

It is clear that the $\left[\frac{1}{4},\frac{3}{4}\right]$ interval in the definition of the promise problem $(\mathcal{Q}_{\text{prBPP}},\mathcal{L}_{\text{prBPP}})$ is quite arbitrary and can be replaced by the interval $\left[\frac{1}{2}-\frac{1}{t(n)},\frac{1}{2}+\frac{1}{t(n)}\right]$, where t is any fixed polynomial. Therfore applying Theorem 3, we have that $(\mathcal{P}_{\text{APP}},gr(f))$ is solved by a probabilistic Turing machine N that accepts (respectivly rejects) with probability $\frac{1}{2}+\frac{1}{p(k+n)}$ whenever the promise \mathcal{P}_{APP} holds. Now let q be any polynomial. Using standard error reduction technique for \mathbf{BPP} , we get a probabilistic Turing machine N' such that when the promise \mathcal{P}_{APP} holds, N' decides the same language as N and N' accepts (respectivly rejects) with probability $\geq 1-2^{-q(k+n)}$ (respectivly $\leq 2^{-q(k+n)}$). By Theorem 4 we obtain a probabilistic Turing machine M witnessing the fact that $f \in \mathbf{APP}$ and that errs with probability $2^{-q(k+n)}$.

Second it is shown in [KRC00] that the function $f_{\text{CAPP}}: \{0,1\}^* \to [0,1]$ is **APP**-complete under polynomial time many-one approximate reduction. We cannot prove this directly from our results. Still we can prove a slightly weaker result, namely the completeness of f_{CAPP} under polynomial time Turing approximate reduction. For two real valued functions f, g in **APP**, we say that f is Turing approximate reducible in polynomial time to g (denoted $\leq_{\text{T}}^{\text{P}}$), if there exists a deterministic polynomial time oracle Turing machine N such that $N^g(1^k, x) \stackrel{\frac{1}{k}}{=} f(x)$.

Theorem 9 The function f_{CAPP} is **APP**-complete under polynomial Turing approximate reduction.

Proof

Let $f = \{f_n\}_{n\geq 0} : \{0,1\}^* \to [0,1]$ be any familiy of real-valued functions in **APP**. By Theorem 3 we have that $(\mathcal{P}_{APP}, gr(f)) \in \mathbf{prBPP}$. Since the promise problem $(\mathcal{P}_{APP}, gr(f_{CAPP}))$ is \mathbf{prBPP} complete under uniform polynomial many one reduction (Theorem 2), there exists a partial function in \mathbf{FP}

$$\begin{cases} red: \{s \in \{0,1\}^* | \mathcal{P}_{APP}(s)\} \to \{0,1\}^* \\ (N,x,1^t) \mapsto (1^{10},C_{N',x},1) \end{cases}$$

such that for any solution A of $(\mathcal{P}_{APP}, gr(f_{CAPP}))$, the set

$$B(s) = \begin{cases} A(red(s)) & \text{if } \mathcal{P}_{APP}(s) \\ 0 & \text{otherwise} \end{cases}$$

is a solution of $(\mathcal{P}_{APP}, gr(f))$. So let A be a fixed solution of $(\mathcal{P}_{APP}, gr(f_{CAPP}))$. We construct a polynomial time deterministic oracle Turing machine N, such that $N^{f_{CAPP}}$ computes f. Here is a description of $N^{f_{CAPP}}$ on input $(1^k, x)$.

- Divide the interval [0,1] into $\frac{3k}{2}$ subintervals of size at most $\frac{2}{3k}$. Denote by y_1, \ldots, y_t the endpoints of those subintervals.
- Test whether $(1^{\frac{3k}{2}}, x, y_i) \in (P, gr(f))$ for i = 1, 2, ... t by computing $B(1^{\frac{3k}{2}}, x, y_i) = A(red(1^{\frac{3k}{2}}, x, y_i))$ for i = 1, 2, ... t.
- Output the first y_i such that B accepts $(1^{\frac{3k}{2}}, x, y_i)$.

Let us check that $N^{f_{\text{CAPP}}}$ computes f(x) correctly. So suppose wlog that $f(x) \in [y_i, y_{i+1}]$. Therefore wlog $d(f(x), y_i) \leq \frac{1}{2} \cdot \frac{2}{3k} = \frac{1}{3k}$. Thus there is at least one y_i where $0 \leq i \leq t$ such that B accepts $(1^{\frac{3k}{2}}, x, y_i)$. Thanks to the promise, we know that B correctly rejects any $(1^{\frac{3k}{2}}, x, z)$ such that $d(f(x), z) > \frac{3}{2} \cdot (\frac{3k}{2})^{-1} = \frac{1}{k}$. Therefore $d(f(x), y_i) \leq \frac{1}{k}$.

It is shown in [For01] that $\mathbf{APP} = \mathbf{AP}$ iff \mathbf{prBPP} is easy. We say that \mathbf{prBPP} is easy if for every promise problem (Q,R) in \mathbf{prBPP} , there is a language $L \in \mathbf{P}$, such that L decides R when the promise holds, i.e. $[Q(x) \Rightarrow R(x) = L(x)]$.

Theorem 10 APP = AP iff prBPP is easy.

Proof

Easy consequence of Theorem 7.

6 Final remarks

It would be interesting to see whether it is possible, while using our results, to prove the **APP**-completeness of the function f_{CAPP} , under approximate many-one reduction (instead of Turing reduction). The main difficulty here is that even if you are able to compute the graphe of the function f_{CAPP} , there is no easy way to compute the image $f_{\text{CAPP}}(x)$, asking only **one** querry to its graphe.

References

- [BDG90] J. L. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity II. EATCS Monographs on Theorical Computer Science Volume 22, Springer Verlag, 1990.
- [BDG95] J. L. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity I. EATCS Monographs on Theorical Computer Science Volume 11, Springer Verlag, 1995.
- [ESY84] S. Even, A. Selman, and Y. Yacobi. The complexity of promise problems with applications to public-key cryptography. *Information and Control*, pages 159–173, 1984.
- [For01] L. Fortnow. Comparing notions of full derandomization. Proceedings of the 16th IEEE Conference on Computational Complexity, pages 28–34, 2001.
- [GS88] J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosystems. Siam Journal on Computing, 17(2):309–335, April 1988.
- [HH86] J. Hartmanis and L. Hemachandra. Complexity classes without machines: On complete languages for UP. Proceedings of the Thirteenth International Colloquium on Automata, Languages, and Programming, 226 of Lecture Notes in Computer Science:123–135, 1986.
- [KF82] K. Ko and H. Friedman. Computational complexity of real functions. *Theorical Computer Science*, pages 20:323–352, 1982.
- [Ko91] K. Ko. Complexity Theory of Real functions. Birkhäuser, 1991.
- [KRC00] V. Kabanets, C. Rackoff, and S. A. Cook. Efficiently approximable real-valued functions. Technical Report 00-034, Electronic Colloquium on Computational Complexity, April 2000.
- [MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
- [Sip82] M. Sipser. On relativization and the existence of complete sets. *Proceedings of the Ninth International Colloquium on Automata, Languages, and Programming*, 140 Lecture Notes in Computer Science:523–531, 1982.