Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 68 (2001)

P(promiseBPP) = P(APP)

Philippe Moser*

Abstract

We show that for deterministic polynomial time computations, oracle access to APP,
the class of real functions approximable by probabilistic Turing machines, is the same as
having oracle access to promise-BPP. First, we construct a mapping that maps every
function in APP to a promise problem in prBPP, and that preserves completeness, i.e.
maps complete functions to complete promise problems. Next, we construct a mapping
from prBPP into APP, that maps every promise problem to a function in APP, and
which preserves completeness. Then, we prove that PAPP = PPrBPP Rinally we use our
results to simplify proofs of important results on APP, such as the APP-completeness of the
function foapp, which approximates the acceptance probability of a Boolean circuit, the error
probability reduction Theorem for APP functions, and the conditional derandomization
result APP = AP iff prBPP is easy.

1 Introduction

The complexity class BPP is sometimes considered to be the class of all feasibly computable
problems. One reason for this is because randomized algorithms work so well in practice.
Though, BPP is hard to study as a class because of its semantic nature: on every input, a
BPP machine must have either at least 3/4 or at most 1/4 accepting paths. Another difficulty
is the lack of known complete sets for BPP, indeed it has been conjectured that BPP does not
have any complete sets. One reason for this is the existence of a relativized world where BPP
(and other semantic classes) do not have complete sets (see [Sip82] and [HHS6]).

One way around this difficulty is to consider promise problems, i.e. problems that need to be
solved only on instances where a certain promise holds. Thus the canonical complete language
L ={(M,z,1")] M is a BPP machine and M accepts = in at most ¢ steps}, together with the
promise that M is a BPP machine, is promise-BPP (denoted prBPP) complete. Indeed once
it is known know that M is a BPP machine, a probabilistic algorithm can simulate machine M
on input z, thus deciding, with high probability, whether M accepts z or not.

Another approach was introduced by V. Kabanets et al. in [KRC00]. They introduced a
natural generalization of BPP, namely the class APP of real-valued functions f : {0,1}* —
[0, 1], that can be approximated within any € > 0, by a probabilistic Turing machine running in
time polynomial in the input size and the precision 1/e. They showed that BPP is exactly the
subset of all Boolean functions in APP. Moreover they proved that computing the acceptance
probability of a given Boolean circuit is an APP-complete problem.

*Address: Theorical Computer Science Department, University of Geneva. Email: moser@cui.unige.ch;

ISSN 1433-8092

This paper shows that deterministic polynomial time algorithms, having oracle access to
APP, are as powerful as those having oracle access to prBPP; i.e. PAPP = PPrBPP Tj grder
to build a mapping between APP and prBPP we associate each function to its graph. Recall
that the graph of a real valued function f : {0,1}* — [0, 1], is defined as being the set of encoded
triples (1%, z,y) such that f(z) =y within distance 1/k. Our first result states that computing
the graph of the APP-complete function fcapp (where foapp, on input a Boolean circuit,

outputs its probability of acceptance), together with the promise that all queries f(z) Z Yy
made to graph(fcapp) have the property that the distance between f(z) and y is either “very
small”, or “rather large”, is prBPP complete. Then we prove that computing the graph of
any function in APP, together with the same promise, is in prBPP. This yields a mapping
from APP to prBPP, mapping each function in APP to a promise problem in prBPP, and
preserving completeness, i.e. mapping complete functions to complete promise problems.

For the other direction, we first prove that for any real-valued function f : {0,1}* — [0, 1],
such that the problems of computing its graph (together with the same promise as above) is in
prBPP, f is in APP. Second we construct a mapping from prBPP to APP, that maps every
promise problem to a real-valued function, and which preserves completeness. Next, we prove
that PAPP — pprBPP

Finally we use our results to simplify proofs of important results about APP. Namely it is
shown in [KRCO00] that similarly to the case of BPP, the error probability for APP functions
can be reduced exponentially. Their proof is rather technical and relies on a rather involved
argument of repeated trials; on the other hand the idea of our proof is very simple: let f be
any function in APP. We first map f to its corresponding promise problem (@, R) in prBPP.
Then using standard error probability reduction for languages in prBPP, we obtain a Turing
machine solving (@, R) with exponentially small error probability. Finally by mapping (Q, R)
to its corresponding function in APP, we obtain a function f’ which is equal to f, and such
that there is a Turing machine computing f’ with exponentially small error probability.

Second it is proved in [KRCO00] that the function fcapp (where fcapp on input a Boolean
circuit C outputs its probability of acceptance) is APP-complete under approximate polynomial
time many-one reduction (the many-one reduction version for APP). We cannot prove this
directly from our results. Still we can prove a slightly weaker result, namely the completeness of
fcapp under polynomial time Turing approximate reduction (the polynomial Turing reduction
version for APP).

Finally it is proved in [For01] that APP = AP iff prBPP is easy. We prove this by using
our two mappings between APP and prBPP.

2 Preliminaries

Since we are working with real-valued functions, we need the following definition of approximate
equality. Let a,b, e € [0, 1] be real numbers. We say that a and b are e-equal (denoted a = b) if
d(a,b) :==la—b| <e.

As usual, a function f : {0,1}* — [0,1], mapping strings to real numbers, is defined as a
family of functions f = {f}n>0: {0,1}* — [0,1], where f, : {0,1}" — [0,1]. V. Kabanets and
al. in [KRCO00], introduced the class APP of real valued function. Here is their definition.

Definition 1 A family f = {fn}n>0 : {0,1}* — [0,1] of real-valued functions is in APP, if
there ezists a probabilistic, polynomial-time Turing machine M, and a polynomial q(k,n) such
that, Vk,n € N,Vz € {0,1}",

1
E 3
Pr [My(1*,2) £ f(2)] > 2.
’u)e{(),lfq(k,n)[(a$) f (.T)] = 4

To simplify notations we will denote Pr, o {0,1}9(km) 5 by Pr,,, where it is implicit that w is a
random string of size polynomial in k£ and n.

Consider the following family of functions fcapp : {0,1}* — [0,1], which takes as an input
a Boolean circuit C, and outputs its acceptance probability, i.e. foapp(C) = Pry[C(w) = 1].
It was proved in [KRCO00] that the function fcapp is APP-complete under polynomial many-
one approximate reduction. For two functions f and g in APP, f is polynomially many-one
approximately reducible to g, denoted f §§m g, if there is a polynomial family of reductions
g+ {1}F x {0,1}" — {0, 1}™*:m) for some polynomial m, such that, Vk,n € N,Vz € {0,1}",

fa(@) £ g(rap(1t,2)).

There is also a Turing reduction notion for functions. Let us first give the definition of an oracle

for an APP function. An oracle for a function f € APP is queried (1¥,z) and answers v,

. . . . 1/k
where y is a dyadic rational number of size polynomial in &, and such that y L f(z). For

two functions f and g in APP, f is polynomially approximately Turing reducible to g, denoted
f g% g, if there is a polynomial time oracle Turing machine M, with oracle access to g, such
that, Vk,n € N,Vz € {0,1}",
k
f@) 2 Mok,).
The following definitions of promise classes are from Grollmann and Selman [GS88]. A
promise problem is a formulation of a partial decision problem that has the structure

Input z Promise Q(z) Property R(x)

where Q and R are predicates. Formally, a promise problem is a pair of predicates (Q, R).
A Turing machine solves (Q, R) if

Vz[Q(z) — [M(z) halts A [M accepts z <> R(z)]]].
A solution of (@, R) is a language A such that,
Vz[Q(z) = A(z) = R(z)]
prBPP is the class of all promise problems (@, R), that have a solution in BPP (on instances
where the promise is satisfied).

In order to define complete problems for prBPP we need to define many-one reductions for
promise classes.

Definition 2 We say that a promise problem (Q, R) is uniformly many-one reducible in poly-
nomial time to a promise problem (S,T), denoted (Q,R) <%, (S,T), if there exists a partial
polynomial time computable function red : {z € {0,1}*| Q(z)} — {0,1}* in FP, such that for
every solution A of (S,T), the set B defined by: B(z) = A(red(x)) is a solution of (@, R).

Unlike BPP, the canonical complete language yields a complete promise problem for prBPP.
Consider the following promise problem (QpBpp, LprBPP)-
Opppp(M,z,1") = 1 iff M is a probabilistic Turing machine that decides z BPP-wise, i.e.
Pry[My(z) =1] > % or < %.
Lprgpp(M,z,1Y) = 1 if M accepts z BPP-wise in at most ¢ steps, i.e. Pry,[M,(z) =1] > 3.
Lospp(M, z,1Y) = 0 if M rejects z BPP-wise in at most ¢ steps, i.e. Pry,[My(z) =1] < 1.

It is a well-known fact that this promise problem is prBPP complete under polynomial time
many-one reduction.

Theorem 1 The promise problem (QppPp, LprBPP) is pPrBPP-complete under <P reduction.

Proof

i) (QprBPP, LprBPP) € PrBPP.

Indeed when Qp,gpp (M, z,1%) holds, we know that machine M has a BPP behavior on input
z. Therefore a simulation of M on input z yields a BPP solution for (Q,spp, LprBPP)-

ii) (Qprepp, Lprpp) is prBPP-hard under <}, reduction.

Let (S,T) be any promise problem in prBPP. Let M be a probabilistic polynomial time
Turing machine solving (S,7T) and let p be its polynomial time bound. Consider the following
deterministic polynomial time partial function

red: {z € {0,1}*| S(z)} — {0,1} € FP
{ z — (M, z,17(2D)

We claim that red is a many-one reduction from (S,7T) to (Qprerp, Lprepp). Indeed let A
be a solution of (Qprpp, Lprpp). It is clear that first if S(z) holds then Qpnppp(M,, 1p(z))
holds. Second the set B defined by

is a solution of (S, 7).

3 A mapping from APP to prBPP

Our main tool to build a correspondence between APP and prBPP, is the graph of a function.

4

Definition 3 Let f = {fn}n>0 : {0,1}* — [0,1] be a real valued function. We define its graph
by:

or(f) = (0%, 2,9)] y £ 1(2)).

Let f :{0,1}* — [0,1] be a real-valued function. Consider the following promise problem

(Pfagr(f))a where
e o [1 tdf@y < ko >4
Pr(1%,z,y) = { 0 otherwise

For simplicity we will denote (Py, gr(f)) by (P, gr(f)). The following result states that comput-
ing the graph of the function fcapp (which is APP-complete), is a prBPP-complete problem.

Theorem 2 The promise problem (P, gr(fcapp)) is prBPP-complete under <h, reduction.

Proof
i) (P,gr(fcarp)) € prBPP

Let M be a probabilistic transducer witnessing the fact fcapp € APP. Consider the follow-
ing probabilistic polynomial time Turing machine N. On input (1%, z,7),

e Simulate M(1?*, z) denote the output by .
e Accept iff d(y,§) < 7.

It is clear that first N has a BPP-like behavior inside the promise. Second it is clear that
N decides gr(fcapp)) correctly inside the promise; indeed by observing Figure 1 we see that
wherever y and ¢ are in the interval [fcapp(z) — ﬁ, feapp(z) + ﬁ], N accepts (1%, z,7) inside
the interval [fcapp(T) — 5%, foapp(2) + 5], with high probability, and rejects (1%, z,y) outside
the interval [fcapp(z) — 5z, foapp(7) + 55|, with high probability.

1
<
’7 Il . il | —‘
L ‘ i - ‘ ‘]
0 7 fcarp(z) y

= z0ne Where the promise holds

Figure 1: The interval [0, 1]
ii) (P,gr(fcapp)) is prBPP-hard.

We prove that (Qpspp, LorBrp) <t (P, gr(fcapp)) which proves the Theorem. Let A be
a solution of (P, gr(fcapp))- Consider (N,z,1!), where N is a probabilistic polynomial time
Turing machine such that the promise Qppp(N,z, 1*) holds. We construct a solution that
computes whether N accepts x. The promise guarantees that N behaves BPP-wise on z.

Consider Cy , a Boolean circuit computing N(z), i.e. Cng(w) = Ny(x). Suppose wlog that N
accepts z, i.e. foapp(Cn,z) € [2,1]. Consider k = 2. Consider the following partial polynomial
time computable reduction

{ red: {s € {0,1}*| Qprp(s)} — {0,1}*
(N,'Ta 1t) = (127 CN,ma 1)

Consider the set B defined by

B(s) = { A(red(s)) if QprBPP(S)

0 otherwise

B is a solution of (QppPp, LprBPp). Indeed since d(fcapp(Cnz),1) < i < ﬁ, the promise

for A holds, therefore (12, N(z),1) € A, and B concludes that N accepts z, which is correct.

a

The proof of Theorem 2 can be applied to any function f € APP, thus yielding the following
result.

Theorem 3 Let f : {0,1}* — [0,1] be a real valued function in APP. Then (P,gr(f)) is in
prBPP.

Proof
Similar to part i) of Theorem 2.

4 From prBPP to APP

In a sense Theorem 2 gives a mapping ¥ from APP to prBPP associating to each real-valued
function in APP a promise problem in prBPP, and preserving completeness (see Theorem 5).
The following result gives an inverse for W.

Theorem 4 Let f: {0,1}* — [0,1] be a real valued function, such that (P,gr(f)) € prBPP.
Then f is in APP.

Proof

By hypothesis, there is a solution A which decides gr(f) correctly inside the promise P,
moreover A € BPP inside the promise P, i.e. whenever d(z, f(z)) < 5z or > 2. We construct
the following probabilistic polynomial time transducer M for f. On input: (1¥,z),

e Divide the interval [0, 1] into 371“’ subintervals of size at most % Denote by g, ...,y the
endpoints.

e Output the first y; such that (1%,:5,3;1) € A.

3k’

We claim that ﬁrst there is at least one ¢ with 0 <7 < ¢, such that (12 ,z,y;) € A. Indeed A
is correct on input (1 3 ,x,yi) when either d(f(z),y;) < 5 52 = 37, or, d(f(z), ¥s) > 3.2 =4
Moreover we can suppose wlog that f(z) € [yig, Yig+1]; therefore d((), Yio) < 5 5 = 307-
Therefore (1%,3},%0) € A. Second we prove that when (1T,x,y,~) € A then d(f(a:),yi) < %

But this is true because of the promise on A. Indeed if (1%,$,yi) € A then d(f(z),y:) <
3, (3_16’)71 -1
2

2 k-

|

We now construct a mapping between APP and prBPP.
Consider the following two mappings

7. { APP - prBPP { prBPP — APP
f = (P,gr(f)) (Q,R) = for

Where fg r is defined as follows. Let {M;};>1 be an enumeration of all probabilistic
Turing machines solving (Q,R). Let M’ be the first (in lexicographical order). We define
fo,r(z) = Pry[M},(z) = 1]. The following result states that the two mappings ® and ¥ pre-
serve completeness.

Theorem 5 ¥ maps every APP Sm complete function f to a prBPP <k -complete problem
(P,gr(f)), and ® maps every prBPP <jcomplete problem (Q,R) to an APP Zh-complete
function fg. gr.

Proof

For ¥ the result immediately follows from Theorem 2. The Proof for ® follows.

First we prove that ® maps (P,gr(fcaprp)) to a APP Sh-complete function. Consider
h = ®(P,gr(fcaprp)). Let M be the first (in lexicographical order) probabilistic Turing machine
solving (P, gr(fcapp)). We have h(1%,z,y) = Pr[M,, (1%, 2,y) = 1].

Claim: h is APP Sh-complete.

Proof (of Claim). Let g € APP be any real-valued function, and let N be a probabilistic
polynomial Turing machine witnessing this fact. We construct a deterministic polynomial time

oracle Turing machine K, such that K" computes g. Here is a description of K* on input (1%, z).
1

Let red : {0,1}* — {0,1}* be a reduction in FP such that g(z) Z foapp(red(z))

e Divide the interval [0,1] into subintervals of size at most % Denote g, y1,... ,y; the
endpoints of those subintervals.

e Fori=0,1,...,t, query h(1%*,red(z),y;) with precision 11—0. Output the first y; satisfying

W%, red(a),) 2§~ 15 (1)

Let’s prove the correctness of K*. First we show that there is a y; satisfying (1). Indeed
we can suppose wlog that fcapp(red(z)) € [y;,yj+1]. Therefore wlog d(fcapp(red(z)),y;) < gz-
But thanks to the promise, we know that M decides (13¥,red(z), y;) correctly if d(fcapp (red(z)), y;)
<1i. ﬁ, which is true. Second we show that all y; satisfying (1) are such that d(y;, g(z)) < % In-
deed let y; (where 0 < i < t) be any y; such that h(13*, red(z), ;) > 3 — 11—0. Therefore M accepts
(12* red(z),y;) which implies, thanks to the promise, that d(fcapp(red(z)),yi) < 3 - 2= = o
which implies d(y;, g(z)) < 7.

Second we prove that ® preserves completeness. So let (S,7T) be any prBPP-complete
language. Therefore let reds be a reduction from (P,gr(fcapp)) to (S,T). Let N be the
first (in lexicographical order) probabilistic polynomial Turing machine that solves (S,T"). The
following probabilistic polynomial Turing machine M solves (P, gr(fcapp))- M on input x
computes and outputs N(redy(z)). The end of the proof is similar to the first case.

|

The following result states that deterministic polynomial time algorithms with oracle access
to APP, are as powerful as those having oracle access to prBPP.

Theorem 6 PAFPP — pprrBPP

Proof

First we prove that PAPP C PPBPP Tet [, be any language in PAPP and let M be
a deterministic polynomial time oracle machine, with oracle access to the complete function
foapp, deciding it. We construct a deterministic polynomial oracle machine N, having oracle
access to (P, gr(fcapp)) deciding L. On input z, N(P:97(fcapp)) simulates M/cAPP(z). Suppose
that during its computation, M/cAPP(z) queries string (1¥,C) to its oracle. Then divide the

interval [0, 1] into subintervals of size at most %, denote by yg,v1, ... ,y: the endpoints of those

subintervals. Query whether (1%,0, Yi) é (P,gr(fcapp)) for i = 0,1,... ,t. Denote by y; the
first 9; such that (1%,0, yi) € (P,gr(fcapp)). Answer MJ/caPPs query (1%, C) with y;.

Second we prove the other inclusion. Let L be any language in PPYBPP_and let M be a deter-
ministic polynomial time oracle machine, with oracle access to the complete set (P, gr(fcarp)),
deciding it. We construct a deterministic polynomial oracle machine N, with oracle access
to fcapp, deciding L. On input z, NfoApP gimulates M (P:97(fearr))(z). Suppose that dur-
ing its computation, M (P:97(fearP))(z) queries string (1%, C, %) to its oracle (i.e asking whether
fearp(C) L y). Then query (12¥, C) to the oracle for foapp, (denote the answer by %), and an-
swer M(P:97{foarp))’s query (1%, C,y) with “yes” iff d(j,y) < % It is clear that N/CAPP answers
M (P:gr(feaprp)) queries correctly inside the promise P.

5 Consequences for APP

Our results significantly simplify the proofs of important results on APP. First, it is shown
in [KRCO00] that similarly to the case of BPP, the interval of error probability for functions in

APP can be reduced from [—p(n), 1 +p(n)] to [2-9("), 1 —29()], for any polynomial p(n) and
g(n). We give a much simpler proof using error probability reduction in prBPP.

Theorem 7 Let f = {fn}n>0 : {0,1}* = [0,1] be a family of real-valued functions such that,
there exists a probabilistic, polynomial time transducer M and a polynomial p, such that, Vk,n €
N,vz € {0,1}",
i 1 1
Pr[M, (1%, z) £ >4 —
Pr{Ma (15,) £ fule)) 2 5 + s
then for any polynomial q, there exists a probabilistic, polynomial time transducer N, such that

Vk,n € Nz € {0,1}",

H

Pr[M, (15, 2) £ £, (2)] 2 1 — 2 2+

Proof

Let f ={fn}n>0:{0,1}* — [0,1] be a family of real-valued functions such that, there exists
a probabilistic, polynomial time transducer M and a polynomial p, such that, Vk,n € N,Vz €
{0, 13",

N 1 1
1Z}T[]V—[w(l 7$) = fn(x)] > 5 + m

It is clear that the [%, %] interval in the definition of the promise problem (Qpugpp, LprPP) iS
quite arbitrary and can be replaced by the interval [% - ﬁ,% + ﬁ], where t is any fixed

polynomial. Therefore applying Theorem 3, we have that (P, gr(f)) is solved by a probabilistic
Turing machine N that accepts (respectively rejects) with probability % + m whenever the
promise P holds. Now let ¢ be any polynomial. Using standard error reduction techniques for
BPP, we get a probabilistic Turing machine N’ such that when the promise P holds, N’ decides
the same language as N, and N’ accepts (respectively rejects) with probability > 1 — 9~ q(k+n)
(respectively < 2-9(k+7)) By Theorem 4 we obtain a probabilistic Turing machine M witnessing

the fact that f € APP and that errs with probability 2~ 2(k+n)
O

Second it is shown in [KRCO00], that the function fcapp : {0,1}* — [0,1] is APP-complete,
under polynomial time many-one approximate reduction. We cannot prove this directly from
our results. Still we can prove a slightly weaker result, namely the completeness of focapp under
polynomial time Turing approximate reduction.

Theorem 8 The function fcapp s APP-complete under polynomial Turing approzimate re-
duction.

Proof
Let f = {fu}n>0 : {0,1}* — [0,1] be any family of real-valued functions in APP. By
Theorem 2 we have that (P, gr(f)) € prBPP. Since the promise problem (P, gr(fcapp)) is
prBPP complete under uniform polynomial many one reduction (Theorem 2), there exists a
partial function in FP
red: {s € {0,1}*| P(s)} — {0,1}*
{ (N,z,1") = (11°, Cpnr 4, 1)

9

such that for any solution A of (P, gr(fcapp)), the set

[A(red(s)) if P(s)
B(s) = { 0 otherwise

is a solution of (P, gr(f)). So let A be a fixed solution of (P, gr(fcaprp)). We construct a
polynomial time deterministic oracle Turing machine N, with oracle access to fcapp, such that
Nfoapp computes f. Here is a description of N/cAPP on input (1%, z).

e Divide the interval [0, 1] into % subintervals of size at most % Denote by y1,... ,1y; the
endpoints of those subintervals.

e Test whether (1%,x,yi) € (P,gr(f)) for i = 1,2,...t, by computing B(l%,m,yi) =
A(Ted(l%,z,yi)) fori=1,2,...1.

e Qutput the first y; such that B accepts (1%,$,yi).

Let us check that N/cAPP computes f(z) correctly. So suppose wlog that f(z) € [y, yit1]-
Therefore wlog d(f(z),y;) < %% = ﬁ Thus there is at least one y;, where 0 < 7 < ¢, such that

B accepts (1%,17,%). Thanks to the promise, we know that B correctly rejects any (1%,% 2)
such that d(f(z),z) > 3 - (3)~! = ;. Therefore d(f(z),y;) < 1-
O

It is shown in [For01] that APP = AP iff prBPP is easy. We say that prBPP is easy if
for every promise problem (@, R) in prBPP, there is a language L € P, such that L decides R
when the promise holds, i.e. [Q(z) = R(z) = L(z)].

Theorem 9 APP = AP iff prBPP is easy.

Proof
Easy consequence of Theorem 6.

6 Final remarks

It would be interesting to see whether it is possible, while using our results, to prove the APP-
completeness of the function fcapp, under approximate many-one reduction (instead of Turing
reduction). The main difficulty here is that even if you are able to compute the graph of the
function fcapp, there is no easy way to compute the image fcapp(z), asking only one query to
its graph.

10

References

[BDGYI0] J. L. Balcazar, J. Diaz, and J. Gabarro. Structural Complezity II. EATCS Monographs
on Theorical Computer Science Volume 22, Springer Verlag, 1990.

[BDGY5] J. L. Balcazar, J. Diaz, and J. Gabarro. Structural Complezity I. EATCS Monographs
on Theorical Computer Science Volume 11, Springer Verlag, 1995.

[ESY84] S. Even, A. Selman, and Y. Yacobi. The complexity of promise problems with appli-
cations to public-key cryptography. Information and Control, 61:159-173, 1984.

[For01] L. Fortnow. Comparing notions of full derandomization. Proceedings of the 16th IEEE
Conference on Computational Complexity, pages 28-34, 2001.

[GS88] J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosystems.
Siam Journal on Computing, 17(2):309-335, April 1988.

[HH86] J. Hartmanis and L. Hemachandra. Complexity classes without machines: On com-
plete languages for UP. Proceedings of the Thirteenth International Colloguium on Au-
tomata, Languages, and Programming, 226 of Lecture Notes in Computer Science:123—
135, 1986.

[KF82] K. Ko and H. Friedman. Computational complexity of real functions. Theorical
Computer Science, pages 20:323-352, 1982.

[Ko91] K. Ko. Complezity Theory of Real functions. Birkhauser, Boston, 1991.

[KRCO00] V. Kabanets, C. Rackoff, and S. A. Cook. Efficiently approximable real-valued func-
tions. Technical Report 00-034, Electronic Colloquium on Computational Complexity,
April 2000.

[Mos02] P. Moser. Random nondeterministic real functions and Arthur Merlin games. Technical
Report 02-006, Electronic Colloquium on Computational Complexity, January 2002.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
New York, 1995.

[Sip82] M. Sipser. On relativization and the existence of complete sets. Proceedings of the
Ninth International Colloguium on Automata, Languages, and Programming, 140 Lec-
ture Notes in Computer Science:523-531, 1982.

11

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

