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Abstract. It is shown that the total wire length of layouts of a balanced
binary tree on a 2-dimensional grid can be reduced by 33 % if one does
not choose the obvious “symmetric” layout strategy. Furthermore it is
shown that the more efficient layout strategy that is presented in this
article is optimal, not only for binary trees but for m-ary trees with any
m > 2.

1 Introduction

One of the most fundamental problems that arises in the construction of circuits
with small total wire length (see [2]) is the question which layout of a balanced
binary tree (or more generally of a balanced m-ary tree for any m > 2) on
a grid has optimal total wire length. We assume here that all n roots of the
tree have to lie on adjacent intersection points on one horizontal row of the
grid. All intermediate nodes of the tree are to be placed on intersection points
of the grid and edges of the tree are required to be realized by edge-disjoint
paths along the grid lines. Since the vertical components of all wires contribute
in any reasonable layout just a linear term to the total wire length, it suffices
to focus on the horizontal components of the wires, and thus on the horizontal
coordinates of the inner nodes of the tree on the grid. Intuitively one might think
that a symmetric layout where the horizontal position of each node is as close as
possible to the middle between the horizontal position of its children is optimal.
However we show in this article that there exists another layout that reduces the
total wire length by 33 %. Furthermore we show that this other layout strategy
is asymptotically optimal.

For a recent survey on graph layouts we refer to [1]. The problem of minimiz-
ing the total wire length of a balanced tree has previously not been addressed.
We will give a precise definition of the problem in Section 2. In Section 3 we
will also give a simple argument which shows that the naive “symmetric” layout,
which requires a total wire length of % log, n+0(n), is not optimal. Furthermore
a general layout strategy for balanced binary trees is presented that uses a total
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project of the EC.



wire length of % log, n+O(n). In Section 4 this layout strategy is extended to the
case of balanced m-ary trees, yielding a total wire length of z—jr}n log,, n+0(n).
Finally it is shown in Section 5 that this layout strategy is optimal for any m > 2
in the sense that no other layout can achieve for any m > 2 a total wire length
a-n-log,n+ O(n) with a < Z—H This lower bound argument is of some in-
terest from the technical point of view since there exist many other layouts that
require less wire length on some levels of the tree, but have to spend then more
wire length on other levels of the tree. The lower bound argument has to take
care of all these possible trade-offs, and hence cannot be carried out by a simple

inductive proof.

2 Defining a Layout

We consider a directed graph G = (V, E), where V is the set of nodes and E is
the set of edges, E C V2. Since the graphs we consider are balanced trees, we
can level the nodes such that the root is in depth 0, all nodes that are incident
to the root are in depth 1 and so on. More formally, the depth of a node v is
the length of the shortest path from the root to v. The successors of a node v in
depth i is the set of nodes that are incident with v and have depth ¢ + 1.

We would like to define a layout of a graph G = (V, E), i.e. we would like
to map the graph onto the two dimensional plane. In our model, we consider a
2-dimensional grid with unit length in between neighboring grid-lines. We want
to embed the graph into this grid graph such that each node v € V' is mapped
onto a node of the grid-graph by an injective function. Furthermore, the edges of
the graph are mapped onto edge-disjoint paths of the grid-graph, connecting the
corresponding nodes. Thus, a layout can be defined by a graph Lg = (V', E')
which is a subgraph of the grid-graph (see Figure 1).

The total wire length TWL(Lg) of a layout Lg is the number of edges
used in the grid-graph. We refer to the horizontal wire length HW L(Lg) as
the number of horizontal wires and the vertical wire length VIWL(Lg) as the
number of vertical wires used in the grid-graph. For some layout Lg, it holds
that TWL(Lg) = HWL(Lg) + VW L(Lg).

O
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Fig. 1. A graph G (a) and a layout Lg of G in the grid-graph (b). In (b), filled circles
are nodes corresponding to nodes in G and bold lines are edges corresponding to edges
in G. HWL(L(;) = 3, VWL(L(;) =5 and TWL(L(;) =8.



3 Upper bounds for binary trees

We investigate layouts for binary trees with respect to total wire length. In this
section, we construct an algorithm which builds a tree of small total wire length.
In Section 5, we show that the horizontal wire length of this layout is optimal.
We will only consider full balanced trees, i.e. trees of minimal depth. We assume
that the leaves of the tree are given by consecutive nodes on a horizontal grid
line. Then, one can build a binary tree by inserting inner nodes and edges into
the graph. The common way of drawing trees is illustrated in Figure 2a. Each

Saah b

a) b)

Fig. 2. Different layouts for binary trees. Rectangles are leaves and circles are inner
nodes. The layout in (a) is not optimal, since one can shift the successors of the root
towards it (b). A strategy with short wires from the root (c) and one that minimizes
the wire-length of the sub-trees (d).

inner node is placed in the middle of its successors, as far as this is possible in
our grid model. The horizontal wire length of such a layout would be at least
%((logyn) — 1) 4 1. The proof is given in the Appendix.

This layout is not optimal, since one can reduce the horizontal wire length
by shifting these nodes towards the root. This is possible because the horizontal
wire length of the subtree is independent of the placement of its root, as long
as it stays in between its successors (see Figure 2b). However, Figure 2b merely
deals with a tree of depth 2. In trees of larger depth it is not so clear where to
place the successors of the root, since minimizing the length of wires from the
root will increase the wire length of the sub-trees. The layout in Figure 2c places
the inner nodes in such a way that the wire length is optimized for the root
wires, but not for the sub-trees. In Figure 2d, the subtrees are optimized, while
the wires needed to connect them to the root are longer. These effects cancel for
a depth 3 tree, but for trees of depth 4 or higher, the latter layout (Figure 2d)
guarantees a smaller total wire length.

To keep things simple, we assume that the number of leaves is n = 2¥ for some
natural number k& > 0. In the following, we describe easy rules that define a tree-
layout as given in Figure 2d. The underlying graph of the layout is constructed
in the common way: Insert the root r into the set of nodes V. Recursively build
the tree for the § leftmost leaves and the tree for the & rightmost leaves. Then,
connect the roots of these trees with r. Since the connectivity of the tree is given,
we can now describe the layout of the vertices and edges. Figure 2d indicates
that there are two ways to place a node. Either above its leftmost or above its



rightmost successor. This reflects the principle of minimizing the length to the
predecessor node without increasing the wire length of its sub-tree. The rules
can be described as follows (see Figure 3):

Let u be a node to be placed on the grid. Let T, denote the subtree which is
rooted at u. Let v be the predecessor of u.

— If T, is the leftmost sub-tree with respect to v (i.e. its leaves are to the left
of all other leaves in T}), place u above its rightmost successor.

— If T, is the rightmost sub-tree with respect to v (i.e. its leaves are to the
right of all other leaves in Ty,), place u above its leftmost successor.
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Fig. 3. u; is the root of the leftmost subtree with respect to v. Therefore, u; is placed
above its rightmost successor. u, is the root of the rightmost subtree with respect to
v. Therefore, u, is placed above its leftmost successor.

It is straight-forward to design an algorithm that constructs such a tree-layout.
Such an algorithm would start to place nodes that are incident to leaves, since
their placement is independent of the placement of other nodes. After these
nodes are placed, it places nodes that are incident with them and so on. We call
this algorithm Greed.The horizontal wire length of a layout produced by Greed
is given in the following theorem.

Theorem 1. If, for some k > 0, the n = 2% leaves of a totally balanced binary
are placed on consecutive grid nodes of a horizontal grid-line, then there exists
a layout in the grid model with horizontal wire length of

Inlogyn + b(n + (~1)(o8 W +1).

Proof. Let T, be a binary tree layout for n = 2* leaves constructed by Greed.
We define the root width b(k) to be the distance in between the successors of the
root (i.e. nodes of depth 1 in the tree). Figure 4 illustrates the root width of a
tree constructed by Greed. Since the subtrees of T,, are constructed in the same
manner, b(1),...,b(k) can be found within sub-trees of T},. To be more precise,
b(i) appears 2F~¢ times (see Figure 4), and the horizontal wire length of T}, is
the sum of these root widths:

k
HWI(T,) = 2¥7(i) (1)
i=1
A recursive formula for b(k) can be stated. Consider the line segment [ that
is defined by the leftmost and rightmost leaves as endpoints. [ isn —1 =2% —1
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Fig. 4. A binary tree layout. Rectangles are leaves and circles are inner nodes. The
root width of this tree is b(3) = 3. But since the subtrees are constructed in the same
manner, also b(2) and b(1) appear within this tree.

in length. Projecting the wires from the root to its successors onto [ results in an
interval of size b(k) on this line. The root is connected to two trees of root-width
b(k—1). Because of the placement of nodes, the projections of the root-widths of
the tree and its left and right subtrees are directly adjoining and non-overlapping
(see Figure 4). Projecting the root widths of leftmost and rightmost subtrees of
depth i for ¢ =1,...,k onto [ results in adjoining and non-overlapping intervals
that fully cover [. Hence, for any k > 1 it holds that

k-1
b(k) = (2F = 1) =2 b(i) (2)
i=1
and b(0) = 0. We show by induction on k > 0 that the following holds:
Lok k41
b(k) = 3 (2" + (=1)*"). 3)

Obviously, the induction hypothesis, Equation 3, is true for £k = 0. Using
Equation 2, we show the inductive step:

k k
bk +1) = (2" —1) =2 "b(i) = (2F —1) - ; > @+ (-1
21:1s | . | i=1
=@ —1)— 5(2 20+ (-1
=1 =1
2k —1) — %(2’“+1 -2+ %((—1)’chl +1)))
1 1 1 1 _ 1 1 1)+1
— 52164- _ g(_1)k+ — g(2k+ + (_1)(k+ )+ ).



We can now sum up the root widths that occur in our tree layout with
Equation 1 to compute the horizontal wire length of the layout.

k k

HWL(T,) =Y 26 p@) =Y 2+

=3 (Z ok 4 Z 2k—i(_1)i+1) =3 (ka + z Qj(_l)k—1+j)
i=1 i=1 =

We eliminate the remaining alternating sum with the formula

(21 + (_1)i+1)

Wl =

S oy = A C @

Since 2¥ = n and k = log, n, the horizontal wire length of this layout evaluates
to

1 1 1 1
HWL(T)) = §k2k ty (Zk + (—1)k+1) = §n10g2 n+g (n + (—1)Uos> ”)+1).

In the Section 5, we will show that this bound is optimal even if we do not restrict
inner nodes to lie on grid-points. As far as the vertical wire length is concerned,
there is one vertical wire for each node except for the root, which results in a
vertical wire length of VIWL(T,) = 2(n — 1). Hence, the total wire length of T},
is TWL(T,) = inlogyn + i(n+ (—1)1082+1) 4 2(n — 1) = Zlog, n + O(n).

4 Upper Bounds for balanced trees

The simplicity of the tree construction in Section 3 is instructive. However,
with a somewhat more elaborate model, one can generalize this construction to
balanced m-ary trees for any m > 2. We face the problem that for any m > 4,
there is no way to use edge-disjoint paths to connect nodes with their successors
(since the degree of inner nodes of the tree is more than 4). Hence, we have
to extend our model. Consider a computational circuit! C. This circuit has an
underlying directed graph G = {V, E} where V is viewed as the set of gates
and input-ports of the circuit and E defines connections between them. In a
physical implementation of C, if some gate g is connected to m successors, the
edges from g to its successors may be implemented by a wire that starts at g and
spreads later on to serve as input for the successors. Such a connection strategy
is reasonable as long as m is constant, i.e. does not grow with the size of the
circuit.

A convenient way to define such a layout is to insert nodes into V' that serve
as routing points for the edges. Hence we define a routing graph G' = (V', E')

! See e.g.[3] for a brief introduction in computational circuits.



where V' C V'. Nodes in V' — V are called routing nodes. Furthermore, each
edge (v;,v;) € E is mapped onto a path in G’ that starts with v; and ends
with v; and any other node on the path is a routing node. Since the graph G
is underlying some computational circuit, we need to be careful about routing
nodes. As the routing nodes do not represent computational units, it does not
make sense for routing nodes to have an in-degree larger than one?. To get a
layout Lg, we can map the nodes of G' onto nodes of the grid-graph by some
function pos : V! — N? and furthermore map the edges of G’ onto edge-disjoint
paths of the grid-graph. The horizontal, vertical, and total wire length can be
defined as in Section 2.

Ao

Fig. 5. A layout for a 3-ary tree of depth 3. Rectangles are leaves, open circles are
inner nodes, and filled circles are routing nodes. Note that all edges are directed from
nodes of smaller depth to nodes of larger depth.

Within this model, the principle of this layout given in Section 3 is also
applicable for m-ary trees where m is larger than 2. Figure 5 shows a layout for
a 3-ary tree of depth 3. In the following, we give simple rules on how to place
inner nodes on the grid that define a tree-layout with small total wire length®.

Let u be a node to be placed on the plane. Let T, denote the subtree with
root u and v denote the predecessor of u (see Figure 6).

— If T, is the leftmost sub-tree with respect to v (i.e. its leaves are to the left
of all other leaves in T,), place u above its rightmost successor.

— If T, is the rightmost sub-tree with respect to v (i.e. its leaves are to the
right of all other leaves in T7,), place u above its leftmost successor.

— Otherwise, u may be placed above any of its successors.

Again, it is straight-forward to design an algorithm Greed,,, that constructs
such a tree-layout. Greed,, start to place nodes that are incident to leaves, since
their placement is independent of the placement of other nodes. After these
nodes are placed, it places nodes that are incident with them and so on. The
horizontal wire length of a layout produced by Greed,, can be calculated in the
same manner as in Section 3.

% The in-degree of a node v in a graph G is defined as the number of edges (u,w)in G
with w = v. Similarly, the out-degree v is defined as the number of edges (u, w)in G
with u = v.

3 To keep things simple, we assume that the number of leaves is n = m"* for some
natural number k& > 0.
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Fig. 6. u; is the root of the leftmost subtree with respect to v. Therefore, u; is placed
above its rightmost successor. u, is the root of the rightmost subtree with respect to
v. Therefore, u, is placed above its leftmost successor. u,, may be placed above any of
its successors.

Theorem 2. If, for some k > 0, m > 2, the m = 2* leaves of a totally bal-
anced m-ary tree are placed on consecutive grid nodes of a horizontal grid-
line, then there exists a layout in the grid model with horizontal wire length

of Einlog,n + (S (n -+ (—1)1%En ),

The proof has been moved into the Appendix. Note that this upper bound is a
generalization of Theorem 1. If we set m = 2, we get exactly the bound given for
binary trees. In the following Section, we show that this general bound is optimal
even if we do not restrict inner nodes to lie on grid-points. The vertical wire
length of this layout is obvious. There is one vertical wire for each node except

for the root, which results in a vertical wire length of VW L(T) = 22=L — 1.

Hence, the total wire length of T is TWL(T") = Z—;}nlogm n + % (n +

(—1)0ogm n)+1) + Tn”_:ll —1= m—;inlogm n+ O(n).

5 Lower Bounds for balanced trees

We show that the bound given in Theorem 2 for the horizontal wire length of
a tree layout is tight. We relax the grid-model such that except for the leaves,
which are placed on successive nodes on a horizontal grid line as before, nodes
may be placed anywhere on the two-dimensional plane. The wire length of an
edge (u,v) in the routing graph is the Euclidean distance between u and v on
the plane. Since we merely consider the horizontal components of wires, we can
assume that all nodes lie on the horizontal line defined by the leaves of the tree.
Hence, the position of a node v € V' is defined by a function zpos : V! — R
which maps v onto its x-coordinate. The horizontal wire length of an edge (u,v)
is |zpos(u) — zpos(v)| (note that the graph involves also routing nodes).

Before we give the proof, we make another assumptions about a layout for
a balanced tree that minimizes the horizontal wire length. For this assumption,
we need the following definition. Consider two nonempty, disjunct sets of nodes
S1,52 € V of some layout L. We say that S; is horizontal non-overlapping with
So if some vertical line separates the nodes of S; and Sa, i.e. for each pair of
nodes v; € S; and vy € Sy, it holds that xpos(vi) < zpos(ve) or for each pair
v1 € S1 and vy € Sy, it holds that zpos(v1) > zpos(vz). If this is not the case,



we say that S; is horizontal overlapping with Ss. Consider a layout for a m-ary
balanced tree T'. The root of the tree is connected to m subtrees T, ...,T,,. We
say that T is horizontal overlapping, if for some i,j € {1,...,m} with i # j,
the set of leaves of T; is horizontal overlapping with the set of leaves of Tj.
Otherwise, we say that T is horizontal non-overlapping. The following lemma
states that without loss of generality, we can assume that a tree layout with
minimal horizontal wire length is horizontal non-overlapping.

Lemma 1. For any layout T of a balanced tree in the model given above with
horizontal wire length HW L(T'), there exists a layout T' where T' is horizon-
tally non-overlapping and the horizontal wire length of T' is smaller or equal to
HWL(T).

Due to space limitations, the proof has been moved into the Appendix.

Theorem 3. For integers k > 1 and m > 2, any layout of a balanced tree
with n = m"* leaves that lie on a horizontal line with unit distance in between
neighboring leaves has horizontal wire length of at least

1108, 1+ Gty (n + (—1)(108m MF),

Proof. We prove the theorem by induction on % for all n of the form n = m*. To
avoid cumbersome notation, we introduce the shortcut f,,(n) = m—;inlogm n+
%(n + (=1)0o8m )+1) to denote the bound given above. We will prove a
stronger result that implies the theorem. Since the m* leaves are placed on a
horizontal line, one can define the midpoint p,, of the leaves, which is the point
that minimizes the maximal distance to a leaf. Let r be the root of the tree.
The deviation z of the root is defined by z = zpos(w) — zpos(py). The wire
length of the tree layout will increase if the absolute value of the deviation is
too big. On the other hand, we can give a region around the midpoint where
no increase in wire-length occurs. This bound region for a tree of n leaves is
defined by an interval of length b,,(n) = 2(%—111)(n+ (—1)eg2m)+1) £ both sides
of the midpoint. If the root is placed within this interval, the wire length needed
is independent of the deviation. If the root is placed outside this interval, the
wire length increases linearly with the deviation. Hence, we define the limited
deviation to be T = max{0,|z| — b, (n)}. The horizontal wire length of the
balanced tree is at least f,,,(n) + Z.

Observation 4 Consider a layout for a m-ary tree with n leaves, deviation x
and limited deviation T. Then the following holds:

a) T+x > —bp(n),

b) 7 —x > —bny(n),

¢) bp(mn) + by(n) = "(m;l), and

d) mfn(n) = fm(mn) — (m — 1)n + 2b(n).

The proof can be found in the Appendix. Observation 4c¢ proves that the bound
region b(mn) of a tree of mn leaves is directly adjoining the bound region of its
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leftmost (respectively rightmost) subtree of n leaves as shown in Figure 7. This
becomes clear if one takes into account that the distance between the midpoint

of a tree with mn leaves and the midpoint of its leftmost (respectively rightmost)
subtree is % = by (mn) + by (n) (as shown above we can assume that the

leaves of the leftmost subtree are the n leftmost leaves of the tree). Now we

b(n) b(mn)
<C 44
M

© o 0 o o 0 © O i Q
n-1 n-1 1 n-1

1 !

/2 n(m-1) !

mn-1

Fig. 7. Bound regions of a tree. Filled circles are the root and its successors and open
circles are leaves of a tree. Bold lines indicate the bounded regions of the tree and its
sub-trees. These regions are directly adjoining.

are ready to give the inductive proof. Our hypothesis is that any layout for a
balanced tree of n = mF* leaves that lie on a row of grid-points needs a horizontal
wire length of at least f(n) + %, where Z is the limited deviation of the root. In
the case of n = 1, the minimal wire length needed for a tree is the wire needed to
route the only leaf to the position of the root, which is |z|. Our bound evaluates
to f(1) + Z = Z = max{0, |z| — 0} = |z|. For the induction step, we consider an
arbitrary layout T' for mn leaves. The root r of T' is connected to m subtrees
Ti,...,T,, of n leaves each.

Because we can assume that the tree is horizontal non-overlapping, there is
a leftmost and a rightmost subtree, where leaves of the leftmost (respectively
rightmost) subtree are the n leftmost (respectively rightmost) leaves of T'. Let
Tr. be the leftmost subtree, r1, be its root, Tr be the rightmost subtree and rg
be its root. Furthermore let z; denote the displacement of r;, , g denote the
displacement of rg, and x denote the displacement of r. Because of symmetry,
we can assume without loss of generality that the root r is placed to the right
of the midpoint. The situation is illustrated in Figure 8. We consider two cases,
whether r is displaced by at most b,,(mn) or by more than b, (mn).

In the first case we have z < b,,(mn) and therefore Z = 0. The horizontal
wire length of the tree is the sum of the wire lengths of the sub-trees and the
wires to connect these trees. At least, there is a wire from the root to ry and rg.
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leftmost
subtree

rightmost
subtree

1/ (m=-1)n 1/ (m=-1)n
2 2

Fig. 8. Inductive step: A m-ary tree with mn leaves. Only the leftmost and the right-
most sub-tree is shown. The root r is displaced by x from the midpoint. The rr is
displaced by zr from its midpoint and rg is displaced by zr from its midpoint.

HWL(Trp) > Y HWL(T;) + (m — 1)n — z, + 2

i=1

>mfm(n)+ T +Zr+ (m—1)n—25 + 2R

> fm(mn) — (m — Dn+2b,(n) + (m —1)n+ 2, — 2z +Tr + R
> fm(mn) + 2bpm(n) — bm(n) — by (n)

> fm(mn) > f(mn) + .

In the second case, we have > b,,,(mn) and therefore T > 0. Suppose that
zpos(r) < xzpos(rr) (i.e. r is not to the right of rg, see Figure 9a). Since > 0,
it follows that b,,(n) + x, > & (this is also shown in Figure 9a). Hence,

HWL(Ty,) >mfm(n) +Zr +Zr+ (m—1)n—xp + xR
>fm(mn)+2b (n)+ %L — 2z +Tr+ 2R
> fm(mn) + by, (n) + Tr + TR
>fm(mn) (TL)+ZUR me(mn)+§:
Suppose that r is to the right of rg. In Figure 9b, it is illustrated that the wire

needed to connect rg to r is T — (b, (n) + zgr) long. The wire needed to connect
rr, and rg is as before n(m — 1) — z1, + zg in length. Hence,

HWL(Tpn) > Y HWL(T) +n(m — 1) — 21, + 25 + & — (b (n) + zr)
i=1
> fm(mn) +2by,(n) + I —zL +ZTr+ 2R + T — bp(n) —
> fm(mn) +byp(n) + F —xp + Tr + T > f(mn) + Z.
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Fig. 9. The root r is out of its bounded region. a) The root is not to the right of rg.
One can see that b(n) + z, > Z. b) The root is to the right of rz. The wire needed to
connect rg to r is T — (b(n) + zr).

Hence, the layout in Section 4 is optimal with respect to the horizontal wire
length. Furthermore, this shows that no layout for an m-ary tree can achieve for

any m > 2 a total wire length a - n -log,, n + O(n) with a < Z—..

6 Discussion

We have exhibited in this article layouts of balanced m-ary trees on a grid that
are optimal with regard to their total wire length (up to lower order terms).
Neither the construction of the optimal layout, nor the proof of its optimality,
are obvious. One may interpret this as an indication that the construction of
circuits with small total wire length does not only produce circuit architectures
that are more interesting from the point of view of physical implementations,
but also that this new circuit complexity measure gives rise to a number of
interesting new theoretical problems.
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A Appendix

We show that the naive layout of a binary tree has at least a horizontal wire
length of % ((logyn) —1) + 1.
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Proof. The naive layout places each node horizontally in the middle of its suc-
cessors. We first assume that this is possible, although it is not always possible in
the grid model. Then we correct the bound by the maximal error we made by this
assumption. This maximal error is at most half a grid unit for each inner node of
the tree and we assume that the horizontal wire length of the layout is reduced by
placing nodes onto grid-nodes. This amounts to a reduction of at most 1 (n — 2)
in the horizontal wire length. If we assume that we can always place a node in the
middle of its successors, the horizontal wire length of a naive layout T, with n
leaves can be described by the recursive formula HW L(T,,) = § +2HW L(T),/2)
with the additional constraint that HWL(Ty) = 0. This recursmn evaluates
to 3 log, n. Together with the correction term this results in a horizontal wire
length of at least % ((log,n) — 1)+ 1. |

We prove Theorem 2:

Proof. Let T[n”’c be a m-ary tree layout constructed by Greed,,. We define the
root width by, (k) to be the maximum over all horizontal distances in between
pairs of nodes that are incident with the root (i.e. nodes of depth 1 in the tree).

Using the same argument as in Section 3, the horizontal wire length of Tn"jk is
HWL(T ka b (5)

The root width b,,,(k) of a layout by Greed,, for a tree T:nnk is given by the
recursive equation

k
b (k) = (m* =1) =2 bm (i) (6)
i=1
for any k£ > 1 and b(0) = 0. As in Section 3, one can show that
m—1, 4 k41
m(k) = ——= — 1)k,
bun(k) = g (o (<1)4) (7

Again, simple algebra is used to compute the horizontal wire length of the layout
by Equation 5.

HW L(T ka B
k m—1
_ k= — L1, _1yi+l
—;m m+1(m +(=1) )

=m+1(2m +Zm —i( "H)

k—1

m—1 . .

ey ]
m+1(m +j_0m( )
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We eliminate the alternating sum with the formula

ko ] k+1 4 (_1)k

3 mi(—1)kH = w (8)
‘ m+1
7=0

Since m* = n and k = log,, n, the horizontal wire length of this layout evaluates

to
m—1 m—1

HWIL(T?) = k k -1 k+1
W) m+1km * (m+1)2(m +(=1) )
m—1 m—1
— - _1\(log,, n)+1
m+1nlogmn+(m+1)2<n+( 1) ) 9)
|

In the following, we give the proof of Lemma 1:

Proof. We construct a horizontal non-overlapping layout T out of T' with smaller
or equal horizontal wire length. This is done by constructing a layout where no
paths cross. In the following, we define an operation on a layout that achieves
this goal if applied correctly. Furthermore, we construct a layout Ry out of 7' to
show on which nodes to apply the operation.

One can assume that all nodes of T are on the horizontal line defined by
the leaves. If this is not the case, shrink the layout to this line and consider this
layout. Let 7 be the root of T.In the first step of the construction of 7", we delete
all routing nodes out of T and for each node v € V — {r} we place a routing node
sy on the same position as v. We connect each routing node s, with its corre-
sponding node v. Then for each node u and its successors uq,- .., U, connect
u to the corresponding routing nodes with minimal total wire length (i.e. chain
the routing nodes as shown in Figure 10). Note that the positions of nodes in V'
are not altered and the way to connect nodes with their successors is optimal,
hence the wire length of the layout does not increase by this manipulation.

O
ug us us

Fig. 10. Filled circles are routing nodes. Given the positions of the nodes (open circles),
this is an optimal way to connect u to its successors with regard to the horizontal wire
length. The nodes u1,u2,us are on the same position as their corresponding routing
nodes. The vertical displacement of nodes in the figure is for clarity.

We are now defining an operation on the layout that does not increase the
horizontal wire length of the layout. We call such an operation a flip-operation.
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Consider two inner nodes u and v and the sets of their successors S, and S,.
Assume that u is to the left of v or placed on the same location as v. The
operation connects u to the m leftmost nodes in the set of their successors
S, U S, and v to the m rightmost nodes in S, U S,. This operation does not
increase the horizontal wire length of the resulting layout. We formalize this idea:
Suppose that posz(u) < posz(v). Chose disjunct subsets S}, S, € S, US, of size
m each with the condition that for any pair of nodes v’ € S}, and v' € S it
holds that zpos(u') < zpos(v'). The flip-operation flip,, , deletes all connections
in between u and its successors and v and its successors and connects u to the
nodes in S!, and v to S} in an optimal way. This will not increase the horizontal
wire length of the layout.

We will use this operations to construct a horizontal non-overlapping tree
out of T". In order to figure out on which nodes to do that, we construct two
other layouts R; and R» out of T'.

We construct R; out of T such that we delete routing nodes and connect
graph nodes by direct edges. Furthermore, all nodes of depth ¢ are placed on a
horizontal line at y-coordinate —i and the x-coordinates are unchanged. Such a
stretched layout is given in Figure 11a.

a) b)

Fig. 11. a) A stretched layout. Nodes of depth ¢ are placed at y-coordinate —i. b) We
separate nodes that are placed on the same position by a small amount. A detail of
the layout in (a) is shown.

In order to handle nodes that are on the same position on the plane , we
construct another layout Ry out of Ry by the algorithm given in Figure 12. We do
that by displacing nodes of same position by a small amount d in the x-direction,
such that no two nodes are at the same x-position after the transformation. Let €
be the minimum horizontal distance greater than 0 between nodes of the layout.
d must be chosen sufficiently small, so that if a node v is to the left of u in Ry,
then v is to the left of u in Ry. This can be guaranteed by choosing d = €¢/2. In
R, paths can only cross by edge-crossings.

Figure 11b shows a detail of the transformed version of the layout of Figure
11a. In the layout Ra, there are no two nodes that are placed on the same
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Let d be sufficiently small.

FOR all nodes u,v with pos(u)=pos(v) DO
Set xpos(u) :=xpos(u)-d/2
Set xpos(v) :=xpos(v)+d/2
d :=d/2

DONE

Fig. 12. An algorithm that produces a layout R» out of R;.

position. All edge crossings in R» are due to crossings that were in Ry or or due
to nodes that were at the same location in R;. Suppose that there are nodes u, v
such that edges (u,u’) and (v,v") cross in R,. A flip operation flip, , on T' and
the corresponding change in the connectivity in R, can be used to eliminate all
crossings within edges from u and v to their successors. Hence, all the crossings
in Ry can be eliminated without increasing the horizontal wire length in T".
We show that after crossings were eliminated in Ra, Rs is horizontal non-
overlapping. Suppose that Ry is horizontal overlapping (see Figure 13). There
exist successors of the root I, with xpos(l) < zpos(r) in Rs such that for some
leaves u, v of the subtree defined by I and w of the subtree defined by r it holds
that zpos(u) < zpos(w) < xpos(v). There are paths from [ to u, from [ to v and
from r to w that do not visit the root of Ry. Since zpos(u) < zpos(w) < zpos(v),
the path from r to w crosses one of the other paths. Since no two nodes share
the same location on the plane, edges cross. Hence, if there are no crossings in
Ry, then Ry is horizontal non-overlapping. T" is also horizontal non-overlapping,
since its underlying graph has the same connectivity and the leaves are placed
in the same order on the horizontal line. |

Fig. 13. A tree layout Ry where | and r are successors of the root. If R» is horizontally
overlapping, then a path from ! crosses with a path from r.

The proof of Observation 4 is given below:

Proof. Observations 4a,b are easy to verify. Suppose that |z| < by, (n). Then
I +x==+x > —by(n). Suppose that |z| > by (n). Then T £z = |z| — by(n) £



z > —bp(n). Observation 4c is proven by by, (mn) + by,

(=1)'8n ") + 5=t (n+ (=
show Observation 4d:

1)logm nt1) = 2(m+1) (mn+n) =

17

(n) = sp=y(mn +

n(";_l) . Finally, we

mfm(n) = Z—:(mn) log,, n + %(mn) i (::_:11) (—1)(108, W) +1

- Z—_'__i(mn) log,,, (mn) — Z—;i(mn) N (5;11)2 )
+%m(_1)uogm n)+1

= :—:(mn) log,,, (mn) + m(mn) + %(_1)@&" mn)+1
—Z—:(mn) + %(m +1)(=1){08m )41

= f(mn) — Z_:( n) + _( )08 W41

— f(mn) + 2bm(n) — 2b,(n) — m—ﬁ(m”) m = ( )08, )+

= J(mn) + () = T+ (1) o5 n>+1) - i(m”)
+Z_:(_1)(logm w1

= f(mn) + 2by(n) —n(m + 1)2_:
= f(mn) — (m = 1)n + 2by(n).
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