(T002) 02 "ON Hodsy ‘A1xe|dwod feuoirendwod uo wninbojjo) J1uoN%s 3

DDA

Total Wire Length as a Salient Circuit Complexity
Measure for Sensory Processing’

Robert A. Legenstein
Institute for Theoretical Computer Science
Technische Universitit Graz, Austria
E-mail: legi@igi.tu-graz.ac.at

and

Wolfgang Maass
Institute for Theoretical Computer Science
Technische Universitat Graz, Austria
E-mail: legi@igi.tu-graz.ac.at

Version: October 24, 2001

We introduce total wire length as salient complexity measure for analyzing the circuit
complexity of sensory processing in biological neural systems and neuromorphic engineer-
ing. The new complexity measure is applied in this paper to two basic computational
problems that arise in translation- and scale-invariant pattern recognition, and hence ap-
pear to be useful as benchmark problems for sensory processing. We exhibit new circuit
design strategies for these benchmark functions that can be implemented within realistic
complexity bounds, in particular with linear or almost linear total wire length. In addi-
tion we derive general bounds for the total wire length of circuits in terms of traditional
complexity measures.

Key Words: circuit complexity; total wire length; sensory processing;

1. INTRODUCTION

In recent years interest has grown in understanding the complexity of circuits for
early sensory processing, both from the biological point of view and from the point
of view of neuromorphic engineering (see [10]). There is growing demand for energy-
efficient hardware for sensory processing, and complexity issues are critical since
the number n of parallel inputs which such circuits have to handle is usually quite
large (for example n > 10% in the case of many visual processing tasks). However
classical circuit complexity theory provides little guidance for the design of efficient
circuits for sensory processing tasks, both because its focus lies on a different set of
computational problems, and because its traditional complexity measures are not
tailored to those resources that are of primary interest in the analysis of neural
circuits in biological organisms and neuromorphic engineering.

The most frequently considered complexity measures in traditional circuit com-
plexity theory are the number (and types) of gates, as well as the depth of a circuit.

IResearch for this article was partially supported by the the Fonds zur Forderung der wis-
senschaftlichen Forschung (FWF), Austria, project P12153, and the NeuroCOLT project of the
EC.

We will follow traditional circuit complexity theory in assuming that the underlying
graph of each circuit is a directed graph without cycles. Neural circuits in “wet-
ware”, as well as most circuits in analog VLSI, contain in addition to feedforward
connections also lateral and recurrent connections. This fact presents a serious
obstacle for a direct mathematical analysis of such circuits. The standard math-
ematical approach is to model such circuits by larger feedforward circuits, where
new “virtual gates” are introduced to represent the state of existing gates at later
points in time. The depth of a circuit is defined as the length of the longest directed
path in the underlying graph, and can also be interpreted as the computation time
of the circuit. Most research had focused on the classification of functions that can
be computed by circuits whose number of gates is bounded by a polynomial in the
number n of input variables. This implicitly also provides a polynomial — although
typically quite large — bound on the number of “wires” (defined as the edges in the
underlying graph of the circuit), but no bound on the total length of these wires.

In contrast to these traditional complexity measures in circuit complexity the-
ory, it has frequently been pointed out that “economizing on wire is the single most
important priority for both nerves and chips” [10]. This view has been adopted by
quite a number of neuroscientists as a guiding principle for understanding cortical
circuitry. In [11] the partition of the neocortex into areas, and in [4] and [6] the
ocular dominance patterns of visual cortex were derived from this principle. The
goal of this article is to make this principle also applicable to computational tasks.
We introduce a simple method for estimating the total wire length required by a
specific circuit design. Furthermore we show that it is feasible to use the minimiza-
tion of total wire length as a guiding principle for the design of efficient algorithms
and circuits for concrete computational problems.

We propose the following abstract model for estimating the total wire length
required for the neural implementation of an abstract circuit design (which is for-
mally defined as a directed graph with nodes labeled by specific types of gates, or
by input- or output variables):

Gates, input- and output-ports of a circuit are placed on different nodes of a 2-
dimensional grid (with unit distance 1 between adjacent grid nodes). Connections
between them are represented by (unidirectional) wires that run through the grid-
plane in any way that the designer wants, in particular wires may cross and need
not run rectilinearly (wires are thought of as running in the 3 dimensional space
above the plane, without charge for vertical wire segments). We define the minimal
value of the sum of all wire lengths that can be achieved by any such arrangement
as the total wire length of the circuit.

We would like to make this model also applicable to cases where for k > 2 some
special functions of k inputs such as the function computed by a threshold gate?
are computed by neural microcircuits or in analog VLSI by efficient subcircuits that
employ a number of transistors, total wire length and area that are all linear in
k, with a setting time that is independent of k (see [8]). In the relatively abstract
context of this model we model such computational modules as “threshold gates” of
k inputs, that take one unit of time for their computation like oll the other gates,
but which occupy each a set of k intersection points of the grid that are all connected
by an undirected wire (whose length contributes to the total wire length) in some
arbitrary fashion. Any one of these k nodes may be used to provide one of the k

2 A threshold gate computes a Boolean function T : {0, l}k — {0,1} of the form T'(z1,...,zx) =
1< ZLI w;T; > Wo.

FIG. 1 The relationship between cortical circuitry and a simple mathematical
model is explained by a projection onto a 2-dimensional plane.

inputs or to extract one of the outputs of the function.

We will allow that a wire from a gate or input port may branch and provide
input to several other gates. For reasonable bounds on the mazimal fan-out (10* in
the case of neural circuits) this is realistic both for neural circuits and for VLSL

The attractiveness of this model lies in its mathematical simplicity. Neverthe-
less it provides a useful criterion for judging whether an abstract circuit design
is biologically realistic from the point of view of the total length of axonal and
dendritic branches that it requires. The relationship between the new complexity
measure total wire length and traditional circuit complexity measures is discussed
in Section 3 of this article.

In the cortex, neurons do not occupy the nodes of a 2-dimensional grid, but
a roughly 2 mm thick 3-dimensional sheet of “grey matter”. However since there
exists a strikingly general bound on the order of 10° for the number of neurons
under any mm? of cortical surface, the density of neurons in these circuits remains
bounded if the circuits are projected onto a 2-dimensional plane running parallel to
the cortical surface, (see Figure 1). This observation provides the justification for
the assumption of our abstract model that the neurons are positioned at the nodes
of a 2-dimensional grid. It also yields a biologically realistic estimate for the length
of an edge between two nodes in this grid: 10752 mm. Since we are considering
just the 2-dimensional projection of a 3-dimensional neural circuit, we can estimate
in this way only the contribution of all horizontal components of all connections.
However since there exist quite good estimates for the total amount of dendritic and
axonal wires under any mm? of cortical surface (8 km according to [7]), we know
that also the horizontal component of all connections adds up to at most 8 km.
This implies that the average cortical circuit with j neurons has an implementation
in our simple 2-dimensional grid model where its total wire length is at most 25300
j grid units. The total length of axons and dendrites under any mm? of cortical
surface is estimated to be on the order of 8 km [7]. If one divides this number
by the estimate 10° for the number of neurons under any mm?, one arrives at an
average wire length of 80 mm per neuron. Translated into our grid unit measure,
this is equivalent to 80 - 10%/2 = 25300 grid units. The total bound of 25300 j grid
units for the total wire length of cortical circuits with j neurons is likely to be an

overestimate, since the preceding argument assumes that all of the 8 km of wires
under a mm? of cortical surface can be used for horizontal connections. In this setup
we arrive at a heuristic condition for any abstract circuit design with j neurons to
be biologically realistic: it must have an implementation in our 2-dimensional grid
model with a total wire length of at most 25300 - j grid units.

In circuit complexity theory it is customary to express the total amount of
resources used in terms of the number n of circuit inputs. For the sake of simplicity
we denote in the formal results of this article the number of pixels by n, and the
actual number of circuit inputs is some constant multiple of n. Several empirical
studies provide estimates for the order of magnitude for the number n of inputs and
the number of neurons in biological neural circuits for sensory processing, see [1, 7,
13, 2].3 Collectively they suggest that only those circuit architectures for sensory
processing are biologically realistic that can be implemented in our 2-dimensional
grid with a number of gates that is almost linear in the number n of inputs, and
a total wire length that is quadratic or subquadratic in n — with the additional
requirement that the constant factor in front of the asymptotic complexity bound
needs to have a value not larger than 1. Since most practically arising asymptotic
bounds involve larger constant factors, one should focus on circuit architectures
that can be implemented in our model with clearly subquadratic bounds for their
total wire length.

Our model for estimating the total wire length is easy to handle since one does
not have to worry about how exactly the wires need to be routed in order to avoid
interference. This laxness may be justified for modeling cortical circuits — since
their 2 mm vertical dimension leaves a lot of room to route axons whose thickness
lies in the pm range. But it is not a priori justified for estimating the actual total
wire length required by a VLSI-implementation of the same circuit, since currently
available VLSI-technologies allow just a small number (typically less than 10) of
horizontal layers in which wires can be routed. However it turns out that those
circuit designs that we consider in this article require in the common abstract model
for VLSI-area an area that is asymptotically as small as the total wire length that
they require in the more abstract model introduced in this article. This suggests
that the circuit designs that we consider in this article do not only satisfy the
complexity requirements imposed by cortical circuitry, but can potentially also be
implemented in VLSI.

3The number of neurons that transmit information from the retina (via the thalamus) to the
cortex is estimated to be around 10% (all estimates given are for primates, and they only reflect
the order of magnitude). The total number of neurons in the primary visual cortex of primates is
estimated to be around 10%, occupying an area of roughly 104 mm? of cortical surface. Since the
total length of axonal and dendritic branches below one mm? of cortical surface is estimated to be
at most 8 km, this yields an upper bound of 10! mm for the total wire length of primary visual
cortex. Thus if one assumes for example that 100 separate circuits are implemented in primary
visual cortex, each of them can use 107 neurons and a total wire length of 10° mm. Hence
realistic bounds for the complexity of a single one of these circuits for visual pattern recognition
with n = 10° inputs are 107 = n7/® neurons, and a total wire length of 1011-> < n? grid units in
the framework of our model.

The whole cortex receives sensory input from about 108 neurons. It processes this input with
about 1010 neurons and less than 10'2 mm total wire length. If one assumes that 103 separate
circuits process this sensory information in parallel, each of them processing about 1/10th of the
input, one arrives at n = 107 inputs for each circuit, and an average circuit can use on the order
of n neurons and a total wire length of 10113 < n2 grid units in the sense of our model. The
actual resources available for sensory processing are likely to be substantially smaller, since most
cortical neurons and circuits are believed to have many other functions (for example related to
memory, learning and attention) besides online sensory processing.

FIG. 2 Examples of some local features (marked), whose spatial arrangement is
essential for recognizing an object.

We refer to Section 12.2 in [12] for the precise definition of the abstract model
for VLSI-area to which the theorems in this article refer. One assumes there that
gates, input- and output-ports and wires cover rectilinear areas with a width and
separation of at least A. Areas occupied by different gates, input- and output-ports
are not allowed to intersect with one another. Areas occupied by wires may intersect
with areas occupied by gates, input- and output-ports and also with other wires,
but there is a constant bound g on the number of wire areas to which a point of
the plane may belong. The complexity measure induced by this model is the area
of the smallest rectangle that encloses the circuit.

Since we consider in this article also circuits that involve gates with a large
number of inputs such as threshold gates, we extend the model for VLSI-area by
assuming that a threshold gate with k inputs can be implemented by k + 1 gates
(k of them for multiplying a binary input with a weight, one for comparing the
weighted sum with the threshold) that are linearly connected by a wire. We follow
[12] in assuming that in the VLSI-model one unit of time is needed to transmit
a bit along a wire (of any length), and also for each gate switching. However in
contrast to [12] we always assume that all inputs are presented in parallel.

In this article we begin the investigation of circuits for basic pattern recognition
tasks that can be implemented within biologically realistic bounds with regard to
their number of gates and their total wire length. We show in Section 2 that
two basic pattern recognition tasks can be solved under these severe complexity
constraints, one of them even with a number of gates and a total wire length
that are both linear in the number n of inputs. Obviously the algorithmic design
and architecture of such circuits has to differ from previously proposed circuits for
sensory processing. It turns out that the same circuit design techniques that we
introduce in this article also yield circuits that require relatively little area in the
common abstract model for VLSI-area.

In Section 3 we derive general bounds for the total wire length of a circuit in
terms of the number of gates and in terms of the VLSI area required by the circuit.

2. GLOBAL PATTERN DETECTION IN 2-DIMENSIONAL MAPS

For many important sensory processing tasks — such as for visual or somatosen-
sory input — the input variables are arranged in a 2-dimensional map whose struc-
ture reflects spatial relationship in the outside world. We assume that local feature
detectors are able to detect the presence of salient local features in their specific “re-
ceptive field”, such as for example a center which emits higher (or lower) intensity
than its immediate surrounding, or a high-intensity line segment in a certain direc-
tion, the end of a line, a junction of line segments, or even more complex local visual
patterns like an eye or a nose. The ultimate computational goal is to detect specific

global spatial arrangements of such local patterns (see Figure 2), such as the letter
“T”, or in the end also a human face, in a translation- and scale-invariant manner.
We will use in the following the customary notation O(...). A function X of n is
said to be O(f(n)) if there exist constants Co, Cy such that A(n) < C; - f(n) + Co
for all n € N. Thus O(n) simply means: bounded by a function that is linear in
n. Whenever needed we assume for simplicity that n is such that /n,logn etc.
are natural numbers. The arrangement of the input variables on the grid will in
general leave many nodes empty, which can be occupied by gates of the circuit.

We formalize such 2-dimensional global pattern detection problems by assuming
that the input consists of arrays a = {a1,-..,an),b = (b1,...,b,), etc. of binary
variables that are arranged on a 2-dimensional square grid. Fach index i of an input
variable can be thought of as representing a location within some corresponding
square in the outside world. We assume that a; = 1 if and only if feature a is
detected at location i and that b; = 1 if and only if feature b is detected at location
i. In our formal model we reserve a sub-square within the 2-dimensional grid for
each index 4, where the input variables a;, b;, etc. are given on adjacent nodes of
this grid. To make this more precise we assume that indices ¢ and j represent pairs
(41,%2), {41, j2) of coordinates. Then “input location j is above and to the right of
input location 4” means: i; < j; and i3 < ja. The circuit complexity of variations
of the function PJ; where one or both of the “<” are replaced by “<” is the same.
Since we assume that this spatial arrangement of input variables reflects spatial
relations in the outside world, many salient examples for global pattern detection
problems require the computation of functions such as

1, if there exist ¢ and j so that a; = b; = 1 and input location j
Pp(a,b) = is above and to the right of input location 4
0, else.

THEOREM 1. The function P} can be computed — and witnesses i and j with
a; = bj =1 can be exhibited if they exist — by a circuit with total wire length O(n),
consisting of O(n) Boolean gates of fan-in 2 (and fan-out 2) in depth O(logn -
loglogn).

The depth of the circuit can be reduced to O(logn) if one employs threshold gates
with fan-in logn. This can also be done with total wire length O(n).

In the VLSI-model, this circuit uses O(n) area.

Proof. This circuit design is based on a divide-and-conquer approach. On first
sight it appears that such an approach is bound to fail for computing P}, since
there may exist for example just a single pair of witnesses ¢ and j with the desired
properties, but the chosen subdivision of the input area happens to assign ¢ and j
to different components of the subdivision. Hence the evaluation of Pp for each of
the components is of little help for the evaluation of Pp for the full input area.

In order to make the divide-and-conquer approach feasible it is essential that
one computes for each component of the subdivision more than just whether Pp
holds for this component. If one divides iteratively each square into 4 sub-squares
C1,Cs,C3,Cy, (see Figure 3) then it suffices to compute for each sub-square C}, the
following data:

left(Ck)
right(Cr) := the x-coordinate of the rightmost location j in Cj with b; =1

the x-coordinate of the leftmost location 4 in Cy with a; =1

FIG. 3 The input area C is divided into four sub-squares C}, which are numbered
in a counterclockwise fashion.

down(Cy) := the y-coordinate of the lowest location ¢ in Cy with a; =1
up(Cr) := the y-coordinate of the highest location j in C} with b; =1
{ 1, if Pp applied to C} outputs 1

found(Cy) :=
0, else.

We assume that each of the first four functions assumes the value 0 on C}, if and
only if there exists no location i or j in C} with the desired property. Thus all
coordinates are assumed to be numbers > 1.

The essential property of these 5 functions is that left(C), right(C), down(C),
up(C) and found(C) can be computed from the values of these 5 functions for
the 4 sub-squares Cy,Cs, C3,C4. This is obvious for left(C), right(C), down(C),
up(C), requiring just comparisons of pairs of (b + 1)-bit natural numbers if each
C} is responsible for a sub-square of the input-array of size 2° x 2°. The value of
found(C) can be computed in the following fashion, assuming that the components
C) that make up C are numbered in a counterclockwise fashion, starting with C}
in the upper left quadrangle (see Figure 3):

4
found(C) =1 & \/ found(Cr) =1V
k=1
0 < down(C1) < up(C4) V
0 < down(Cs) < up(Cs3) V
(0 < down(Cs) A0 < up(Cy)) V
0 < left(Cs) < right(Cy) vV
0< left(03) < ’I“ight(C4)

Obviously this algorithm makes use of the fact that the area is not subdivided in
an arbitrary fashion into components, but in a way which is consistent with the
map, i.e. with the spatial relationship of locations in the outside world. Or, with
a variation of a well-known design philosophy of Carver Mead, one could say that
space represents itself in this algorithm design.

a) b)

FIG. 4 The H-tree layout. Dark rectangles are leaves, light rectangles are inner
nodes. a) H; is a tree layout for 4 leaves. b) Hs. Hy41 is constructed recursively
by replacing the leaves of Hy with H-trees H; . (Figure taken from [12])

The layout of a circuit for P} with small total wire length is based on a variation
of the well-known H-tree (see, e.g. [12]), which we will call an extended H-tree. An
H-tree makes optimal use of area and wire length if the n inputs are allowed to
be arranged as an \/n X \/n array on the plane. Figure 4a shows the H-tree H;
with 4 darkly shaded leaves (inputs) and lightly shaded inner nodes of the binary
tree. Hy41 can be constructed by replacing the leaves of Hj, with H-trees Hy. Since
H, is a tree with four leaves, H}, has 4% leaves. In Figure 4b, each leaf of H; was
replaced by an H-tree H;.

The depth of a node v in an H-tree is the length of the shortest path from v
to a leaf. Note that a recursive step in the construction of an H-tree adds depth
2 to the graph. Hence, it will be more convenient to talk about levels rather than
depth, where a node v is on level ¢ if v is in depth 2 — 1 or in depth 2i. So, the
nodes in depth 1 and 2 are on level 1 (these are the nodes of the last recursive step
in the construction of the H-tree), and the root of an H-tree Hy, is on level k. Our
layout will differ from the H-tree layout in a crucial point. Internal nodes of the
H-tree are replaced by groups of several gates, and the connections between these
groups consist of “busses” rather than of single wires. More precisely, each “node”
on level i of an H-tree is a circuit with O(i) gates and O(i?) total wire length and
area with side length O(i). Instead of a single edge in an H-tree one has a “bus”
consisting of O(4) wires if the bus connects a node on level ¢ with a node on level i
ori+1.

This layout extends the capabilities of the H-tree since it allows a node with m
inputs in its subtree to transfer O(logm) bits of information to its successor node.
This is why we call this layout an extended H-tree. One has to be careful in talking
about levels and nodes in an extended H-tree, since the circuit in a “node” might
consist of several gates and might have even non constant depth. However each
extended H-tree has an underlying H-tree and the levels are counted with regard
to this underlying H-tree.

We now show how the extended H-tree can be used as a layout strategy for a

circuit that implements the previously developed algorithm for solving Pj. The
extended H-tree layout implements the structure of the algorithm by recursively di-
viding the input-area into four axis-parallel sub-squares. The computations needed
in a node on level 7 of the H-tree can be carried out by a circuit of size O(i) and
0O(i?) total wire length and area, which is placed at that node. The depth of a
circuit at a node is O(1) if threshold gates of fan-in O(logn) are used and O(log1)
if Boolean gates of fan-in 2 are used. Lemma 1 shows that the extended H-tree
stays within the claimed complexity bounds. The depth of an H-tree is O(logn),
hence if the circuits at the nodes have depth O(1), the extended H-tree has depth
O(logn). If the circuits at the nodes have depth O(log i), the depth of the extended
H-tree is O(logn - loglogn).

An extension to the circuit that reports a pair of witnesses is straight forward.

LEMMA 1. The extended H-tree layout on n leaves can be implemented with
O(n) gates and total wire length.
In the VLSI-model, the layout uses O(n) area.

Proof. We will not only derive asymptotic bounds, but also pay attention to the
size of constant factors. To achieve this, we will use the recursive construction of
the extended H-tree to derive recursive formulas on size, side-length and total wire
length of the layout. The nodes on level 1 play a special role in the circuit. There
are 7 extended H-trees H; on level 1 that compute, in parallel, the basic values
for the subsequent “conquer steps”. Let S(H:), C(Hi) and TW L(H,) denote the
side-length, size and total wire length of one such Hj-circuit.

We start the proof by deriving an upper bound on the side-length S(Hy) of
the extended H-tree Hi. We assume that the side-length of a node on level i is
bounded by ci for some suitable constant ¢. The side-length of Hy, is the sum of
the side-lengths of two H-trees Hy_; and the side length of a node on level k (see

Figure 5). Hence, the following recurrence holds:
S(Hk) ZQS(Hk_l)-l-Ck . (1)

The solution of Eq. (1) yields the bound S(Hj) < 2¥=1S(Hy)+ 222*%. Since n = 4%,
we have S(Hy) < \/ﬁ(@ + 38) = O(y/n). The area of the layout is
S(H1) 3c

2 + ?)271 = 0(n)

area(Hy) = S*(Hy) < (

A similar recurrence holds for the number of gates C(Hy) in the circuit for the
H-tree Hy: Let the number of gates at a node on level i of the extended H-tree be
bounded by si for a suitable constant s (recall that a recursive step in the H-tree
layout adds 3 inner nodes). We get a recursive formula which we iterate k—1 times:

C(Hy) < AC(Hp-1)+3-s-k (2)
k—2
< 4FIC(H) +3-5) 4 (k—j)
3=0

Since Y i_347(k—j) < ZL4k the solution of Eq. (2) is

1 7
C(Hk) S n(—C’(Hl) + ES

:) 3)

Now we use a similar argument to estimate the total wire length. The total
wire length of the layout consists of the wire lengths at the inner nodes and the
wire lengths of the “busses”. Let d be a constant such that the total wire length
of a node on level i is bounded by d- 42 . Also, let the number of wires of a “bus”
from a node on level i to a node on level ¢ or ¢ + 1 be bounded by e - ¢. The basis
for the recursive calculation of the total wire length for an extended H-tree H; is
illustrated in Figure 5. We get a recursive formula which we iterate k£ — 1 times:

TWL(H) < 4TWL(Hyp_1)+2k-e-S(Hp_1)+3d-k? (4)
< ATWL(Hg_1)+k-e(S(Hy) + 3¢)2" ' +3d- k?
k—2
TWL(Hy) < 4 'TWL(Hy)+ 2" "e(S(Hy) +3c) Y 2/ (k — j)
§=0
k—2
+3dY 4 (k—j)> . (5)
j=0

Since Y hT22/(k—j) < 32% and Ef;g 49 (k- j)? < £L4k we get:

TWL(H;) < 4F'TWL(H,) + gzzk—le(S(Hl) +3c) + %dzlk

1
< e TWL(H;) + §n -e(S(Hy) +3¢) + %d N

4
TWL(H,) < n(iTWL(Hl)+§e(S(H1)+3c)+%d):O(n) . ®)

The linear total wire length of this circuit is up to a constant factor optimal for
any circuit whose output depends on all of its n inputs. Note that most connections
in this circuit are local, just like in a biological neural circuit. Thus, we see that
minimizing total wire length tends to generate biology-like circuit structures.

However, the tree-like circuit structure results in considerable circuit-depth for
large input-size. In biological neural systems, neural gates of large fan-in are used
to implement shallow circuits, whereas the circuit design above is based on gates
of fan-in 2 or log(n) which is comparatively small. The next theorem shows that
one can compute PP faster (i.e. by a circuit with smaller depth) if one can afford
a somewhat larger total wire length. This circuit construction, that is based on
AND/OR gates of limited fan-in A, has the additional advantage that it can not
just exhibit some pair (i,j) as witness for P3(a,b) = 1 (provided such witness
exists), but it can exhibit in addition all j that can be used as witness together with
some i. This property allows us to “chain” the global pattern detection problem
formalized through the function PJ, and to decide within the same complexity

bound whether for any fixed number k of input vectors a'V,...,a® from {0,1}"
(m)

there exist locations iV, ...,i*®) so that Ay = 1 for m = 1,...,k and location
i{m+1) lies to the right and above location i™ for m = 1,...,k — 1. In fact, one
can also compute a k-tuple of witnesses (1), ..., i*) within the same complexity
bounds, provided it exists. This circuit design is based on an efficient layout for

prefix computations.

THEOREM 2. For any givenn and A € {2,...,4/n} one can compute the func-
tion PR in depth O(l%ogg%) by a feedforward circuit consisting of O(n) AND/OR

10

S(Hi.1)

TWL(H; ;) TWL(H; ;)
[l Il
di? di? di?

TWL(H; ;) TWL(H; ;)

™~ ei wires

FIG. 5 The H-tree H; has wires from four H-trees H;_1, the wires of three inner
nodes, and the wires of the busses. An inner node has a total wire length of d -2,
and a bus consists of e - i wires.

gates of fan-in < A, with total wire length O(n - A - l%ogg%).
In the VLSI-model, the circuit uses O(n - (A -]%ogg%)z) area.

Proof. The main idea in the construction of the circuit is illustrated in Figure
6. In Figure 6a, a two dimensional input-assignment for Pp is shown. Crosses
mark locations where a feature a is present and open circles mark locations where
a feature b occurs. Every feature b that is located in the shaded region in Figure
6b is located to the right and above of some present feature a. Hence, if there is
some location j that is in the shaded region of Figure 6b and b; = 1, then the value
of Pf(a,b) is 1. We introduce indicator variables aj (j=1, ..., n), where aj = 1 if
the location j is to the right and above to some location ¢ with a; = 1, and a;- =0
otherwise. (in Figure 3b, aj = 1, if j is a location in the shaded region). It follows
that Pp has value 1 if there exists some location j such that a; A b; = 1.

Hence, the problem is reduced to the problem of computing the values of a} for
all locations j = 1,...,n. A straight-forward implementation would lead either to
large depth or to large total wire length. In a one dimensional scenario, the problem
would be equivalent to the following one. Suppose one has a one dimensional
array of pixels zi,...,z,. Then the equivalent problem to computing a;- would
be to compute the values of z7,...,z; where 2’ = 1 if and only if there is a
x; = 1 that is to the left of z;. This is the problem of computing the prefizes:
Ty =21, =21 VZ2, 5 =21 V22V I3,..., 2, =21 VT3 VI3 V...V, Sucha
computation is called a prefix computation. There exist efficient circuits for such
computations (see e.g. [12]). In the 2-dimensional case, we just need to apply
these computations on all rows and columns. By applying the prefix computation
on rows of @, one can determine the locations in the input plane that are in the
same row as some feature a; = 1 and located to the right of a;. This is illustrated

11

a b c

FIG. 6 Computing Pp with prefix circuits. Crosses mark locations where a feature
a occurs, open circles mark locations where a features b is present. a) All locations
that are in the same row and to the right of some feature a = 1 are marked as
dotted lines. b) All locations that are to the right and above of some feature a = 1
are shaded. ¢) All locations 7 with b; = 1 in this area are marked with filled circles.

in Figure 6a. Here, the horizontal lines in the input space represent locations
where indicator variables have value 1 after that step. Let us call the outputs
of the horizontal prefix circuits a;, where j = 1,...,n denotes locations in the
same manner as the inputs are indexed. Then, a location j is in the right spatial
relation to some feature a; = 1 at location i, if it is above of some location k with
ar = 1. Hence, we can successively apply the same prefix-operation on columns of
these intermediate variables a1, . .., a, to compute the correct value of all indicator
variables (see Figure 6b). Now, b; = a} A b; has value 1 if location i is in the right
spatial relation with some present feature a and b; = 1. (This is not exactly what
we want, since this would also mark b-features that lie in the same row or column
with some a-feature. However, we can also AND the b-feature with the marking-bit
that is one pixel to the left and below it.) In Figure 6c, the locations ! with b; =1
are marked with filled circles. Finally, an OR over all b}’s outputs Pp(a,b) for all
inputs a,b € {0,1}".

Let C(PREF™), depth(PREF™) and TW L(PREF™) denote the size, depth
and total wire length of a prefix circuit with n inputs. The circuit consists of prefix
computations for every row and every column of features a (24/n many), each
consisting of OR gates only. Furthermore, n AND gates are used. Finally, there is
one OR with inputs b, ...,b,,. This OR could be implemented also by a circuit of
OR gates with smaller fan-in in order to reduce the total wire length. Hence, the
circuit has size 2,/nC(PREFVY™) + n + 1 and depth 2depth(PREFV™) + 2.

In the following, we give upper bounds on total wire length and area for this
circuit. Lemma 2 gives upper bounds on total wire length and area for an efficient
prefix circuit consisting of gates with maximal fan-in A (A € {2,...,+/n}). There
is a prefix computation of y/n inputs for each row of g in the input plane. We can
place this prefix circuits in between the rows of inputs. Note that if these circuits
would need too many rows, we had to place the input rows far away from each
other which would influence the total wire length of the subsequent prefix circuits.
But, since the prefix circuits use a constant number of rows in our model , the
computations for rows and columns do not affect each other and the wire length
used for this part of the computation is O(\/ﬁ\/ﬁAl%"g%) = O(nAl%Ogg%). The AND
gates that compute b} = a; A b; need O(n) total wire length all together. We
implement the OR of b}, ...,b, as a 2 dimensional tree of fan-in A. This influences

12

the size and the depth of the circuit only by a constant factor. It can be shown
that a 2 dimensional tree of fan-in A has total wire length O(nv/A). Hence, the

circuit has TWL = O(n -A - 1%53%), depth = O(l%’gg%), and size = O(n).

The situation is different in the VLSI-model. The crucial part of the layout are
the prefix circuits. In the VLSI-model, these circuits have side-lengths O(Al%’gg%)
and O(y/n) each (see proof of Lemma 2). Nevertheless, we layout these circuits in
the same manner as above. Since we need one prefix circuit for every row and every

column, the side length of the layout for the prefix circuits is O(\/ﬁAl%’g%). Hence,

2
the circuit for P} can be implemented within an area of O(n . (A . 1%55%)) '

An advantage of this approach is that we computed all the witnesses in b for Pp.
Hence we can use this information to compare these witnesses with some features
c. In other words, we can compute if there is some feature a beneath and to the
left of some feature b which is beneath an to the left of some feature ¢ and so on.
Denote this function with Pg’k for some k > 2. We give a formal definition of
PB”“ . Consider k > 2 different feature types a(!,...,a®). We recursively define a
function W™* : {0,1}¥" — {0,1}" that outputs witnesses for Pp":

W™%(a,b) = (w1,...,w,) ,where
1, if b; =1 and there exist ¢ so that a; = 1 and input location j
wj = is above and to the right of input location 4

0, else.
Wn,k(g(1)7 o ,Q(k)) — Wn’Q(Wn’k_l(g(l), o ,Q(kfl)),g(k))

Recall that we computed wy,...,w, in the circuit for PJ} and called these values

I,...,bl, in the proof of Theorem 2. Hence, by the recursive definition of W™k,
one just has to apply this circuit k¥ — 1 times to compute W™*. Now we can define
PB’2(Q(1),Q(2)) = P3(aM,a®) and Pg’k for k > 3:

Pyt = PR @, ..., a* 1), a®)

Given this definition of Pj*, Corollary 1 holds:

COROLLARY 1. For any given n, k > 2 and A € {2,...,4/n} one can compute
the function Pg’k in depth O(kl%zg%) by a feedforward circuit consisting of O(k - n)

AND/OR gates of fan-in < A, with total wire length O(k -n - A - {%8%) and area

. log A
O~ (k-A- loxny),

The proof of Theorem 2 relied on parallel prefix circuits. We show how a parallel
prefix circuit can be implemented in our and the VLSI-model. Consider a set X
of elements with an associative binary operation. We denote the binary operation
by juxtaposition of the elements in X. Suppose we have functional gates such that
each with inputs zi, ...,z computes the product zizs ...z, for some fan-in k.
Lemma 2 gives upper bounds on a circuit of such gates with maximal fan-in A that
computes the prefixes x1,21%2,...,21%2 ... T,. For simplicity, we assume that n is
a power of A.

13

X11X12%13 X1a Xo1X02X03 Xpu

compute
w1 prefixes

on (n/A) inputs

Y1Y12Y13 Yia Yo1Y22Y23

FIG. 7 Layout of an efficient prefix circuit with fan-in A. Dark shaded boxes are
gates, the light shaded box is the recursive application of the circuit.

LemMMA 2. If n inputs x1,...,%, are arranged on a row of a grid, then the
prefixes x1,T1Ta,...,L1T2 ... L, can be computed by a circuit with mazimum fan-
in A € {2,...,n}, size < 2n in depth = 21%085%. In our model the circuit uses

only a constant number of rows and the total wire length is O(l%ogg%nA). In the
VLSI-model the circuit uses an area < nAXET .

log A~
Proof. We divide the inputs z1,...,, into } consecutive subintervals and re-
name the inputs to z1,1,...,21,A, 22,1, - . x27A, cy TRy, T AL We denote the
outputs of the circuit as y1,...,yn such that y; = =1 ...x;. It will be convenient
to divide the outputs into consecutive subintervals in the same manner as the inputs.
Then, the outputs of the circuit can be written asy1,1,. .., y1,A,Y2,1,- - -, Y2,45- - Y2 15+, Y2 A

where y; ; = y(i—1)a+;- These intervals for inputs and outputs are illustrated in
Figure 7.

In a first step, we compute the prefixes for each group of inputs z;1,...,z; A,
i.e. we compute 7} ; = @i 1%z ...z fori =1,..., x and j = 1,..., A. In a second
step, we recursively apply the prefix computation on zj A, %5 A, -, m’% A» gaining

the prefixes y; A = z1z2...2;5.A. In a third step, we finally fill up the gaps between
those prefixes with y; ; = y_1)azj,; fori=2,..., 2 and j = 1,...,A — 1. The
layout and structure of the circuit is shown in Figure 7. Figure 8 shows the whole
circuit for A = 2,n = 8.

Since the construction of the circuit and layout is recursive, we can give recursive
formulas for size, depth, area and total wire length of the circuit. Let PREF™
denote such a layout with n inputs. The circuit consists of % (A — 1) gates in the
first computation step, gates in the recursive step and % (A — 1) gates in the third
computation step:

C(PREF") < (A —1)+C(PREF%)+ %(A —1

n
A

14

First recursive step
> tree-like structure

Second recursive step
>~ fill the gaps

FIG. 8 The prefix circuit for A = 2 and n = 5. It can be decomposed in a
tree-structure and a post-processing. (Based on Figure 2.13 in [12].)

= - 2% + C(PREF%)
The solution to this recurrence is C(PREF™) < 2n, since C(PREF') = 0. Each
recursive step adds depth 2 to the circuit depth:

depth(PREF™) = 2 + depth(PREF %)

The solution to this recurrence is depth(PREF™) = Q;Sggg, since depth(1) = 0. To

bound the occupied area in the VLSI-model, we compute the vertical side length
S(PREF™) of the layout. Let area(L) denote the area used by a layout L.

S(PREF') = 0
S(PREF™) < (A-1)+S(PREF%)+1= Allsggz (7)
" ny logn
area(PREF™) < nS(PREF)_nAlogA . (8)

Note that this area bound is derived for the VLSI-model. In our model, there is a
better layout since we do not need space for wires. Nevertheless, Figure 7 gives an
idea of a recursive formula for the total wire length of horizontal wires:

TWL(PREF') = 0
TWL(PREF") < %AQ + ATWL(PREF%) +n
= nA+n+ATWL(PREF%)
logn
= n(A+1
n(A+)logA

Since the circuit has logarithmic depth, wvertical wires have a summed length of
O(nAl%"gg%) and the upper bound for total wire length is:

logn

TWL(PREF") = O(nAlog N 9)

15

The advantage of this circuit in our model is that one can implement it in area
O(n) without increasing the total wire length. As shown in Figure 8, the circuit
implements a A-ary tree to compute larger and larger prefixes (first recursive step)
and then fills up gaps in the computed prefixes (second recursive step). We will
show that the tree can be implemented within two rows. This area efficient layout
does not preserve the horizontal order of inner nodes. Since the horizontal order of
some inner nodes is important for the subsequent computation, we will route their
outputs to a more meaningful location.

The area-efficient implementation of a tree is illustrated in Figure 9. Consider a
A-ary tree where an inner node is placed beneath the rightmost root of its subtrees.
This layout has total wire length O(nlogn). We show how to rearrange the inner
nodes to achieve an area-efficient layout. We place an inner node beneath the
leftmost leaf of its rightmost subtree. Note that this location is always free (also
in our prefix circuit), and that the total wire length of this layout is bounded from
above by the total wire length of the previous layout. But it uses just two rows on
the grid.

In a prefix-circuit with this efficient tree layout, if the output of an inner node
is needed for further computation, we will need to route it such that the horizontal
ordering of the computed values is correct. In the upper layout of Figure 9, the
nodes are in the correct horizontal order. The root of the tree in the lower layout
of Figure 9 is horizontally displaced. So, we will need to route back some of the
outputs of the displaced inner nodes. For simplicity, we assume that all displaced
inner nodes are rooted back. As shown in Figure 9, we level the nodes of the tree
such that leaves are in level 0, inner nodes which are incident to leaves are in level 1
and so on. More formally, a node v is in level i if the shortest path from v to some
leaf has i edges. There are ;% nodes in level i. The horizontal displacement of a
node in level 5 is A~ and nodes in level 1 are not displaced. Hence, the summed
displacement of nodes is: El;ff TAFLE <R %gg%.

It remains to be shown that the computations in the second recursion step (see
Figure 8) can be implemented in one row. Just observe that whenever there is a
gate in this second recursive step, it computes an output of the circuit. Hence in
the second recursive step, every output needs at most one gate and they can be
arranged in one row. Also, since this does not further increase the total wire length,
the vertical side length of the layout is constant.

1

Another essential ingredient of translation- and scale-invariant global pattern
recognition is the capability to detect whether a local feature ¢ occurs in the middle
between locations i and j where the local features a and b occur. This global pattern
detection problem is formalized through the following function PP : {0,1}3" —
{0,1}:

If a =Y b =1 then PP*(a,b,c) = 1, if and only if there exist i,j,k so
that input location k lies on the middle of the line between locations i and j, and
a; = bj =Cp = 1.

This function Pf* can be computed very fast by circuits with the least possible
total wire length (up to a constant factor), using threshold gates of fan-in up to
Vv

THEOREM 3. The function P* can be computed — and witnesses can be exhibited
— by a circuit with total wire length and area O(n), consisting of O(n) Boolean gates
of fan-in 2 and O(\/n) threshold gates of fan-in \/n in depth 7.

16

level O

level 1

level 2

level 3

FIG. 9 Tree layout on a grid for A = 3. The upper layout shows a leveled arrange-
ment of inner nodes. The arrows and filled circles indicate the rearrangement of
inner nodes. We gain a layout which uses just two rows (lower layout).

Proof. We construct a circuit that projects the inputs a and b onto the hori-
zontal and vertical axis of the input plane and computes the midpoints of these
1-dimensional projections (see Figure 10). This approach is not obvious since one
can easily construct an example where there are two c-features that lie in the mid-
dle of the projections, but none of them lies in the middle of the occurring features
in the 2-dimensional spatial constellation. One can handle this problem by tracing
back the computed 1-dimensional midpoints to the 2-dimensional input plane and
looking for a pixel where there is a horizontal as well as a vertical midpoint and a
feature ¢ present.

A more formal description of the circuit follows. To project the inputs onto one
dimension we compute

(12 = \/ a; b; = \/ bj (10)

j is in the i-th column j is in the i-th column
"n__) "no__)
a; = \/ a; b = \/ b . (11)
j is in the i-th row j is in the i-th row

These values are computed with a circuit of depth 1 consisting of O(y/n) threshold
gates of fan-in y/n. The total wire length needed is O(n).

Then we compute the vertical and horizontal midpoints of these projected in-
puts. For the horizontal midpoint, we define variables h; (1 < i < 4/n), where the
value of hy, is 1 if and only if m is in the middle of some i,j with a; = b} = 1.
For the vertical midpoint, we define variables v; (1 < ¢ < 4/n) in a similar man-
ner, where the value of vy, is 1 if and only if m is in the middle of some 4, j with
ai = b =1 . Since the midpoint of 4, is %l, we compute h,, by comparing %1
with m, where i is a location with aj =1 and j is a location with b; = 1:

1, if ymrngmdb el 4ib>2m
Gm = i=max{1,2m—n} i i (12)
0, else.
1, if et ial+idi<om
0, else.

17

Input plane

L projected inputs

FIG. 10 The projection of the input plane onto its horizontal and vertical axis.
A circle represents an occurring feature a and a cross an occurring feature b. In
the horizontal projection, features occur at locations i and j. We compute the
midpoints of the projections and trace them back onto the input plane.

hm = gmAg, - (14)

hi,...,h s can be computed by a circuit of depth 2, consisting of O(,/n) threshold
gates of fan-in < /n and O(y/n) AND gates of fan-in 2. The total wire length
needed is O(n). Note that one can define a region where the c-feature may lie by
changing the thresholds in Egs. (12) and (13).

Finally, we need to trace back those values and compute the witnesses w;. If
is a location in the z-th column and y-th row, then w; = hy A vy A ¢;. This can be
implemented with O(n) AND gates of fan-in 2, depth 2 and total wire length O(n).
It follows that Pf*(a,b,c) = /i, w; and this OR can be computed with \/n + 1
threshold-gates of fan-in 1/n, linear total wire length and depth 2. Hence, the total
wire length of this circuit is bounded by O(n) and the circuit has depth 7.

In the VLSI-model, we will need to model the threshold gates that project the
inputs onto one dimension (Egs. (10) and (11)) as /n rectilinear parts of one
input each on a common wire in order to be able to project onto the horizontal
and vertical axis. Then the area needed is O(n). To compute the midpoint in one
dimension (see Egs. (12) to (14)), we can use 24/n threshold gates of y/n area each
and /n AND gates of constant area. So the area needed to compute the midpoints
is O(n) and the final tracing back and witness-computation can be done with wires
that need O(n) area and O(n) gates of constant area each. 1

3. RELATIONSHIP BETWEEN TOTAL WIRE LENGTH AND OTHER
CIRCUIT COMPLEXITY MEASURES

The most common complexity measure in traditional circuit complexity theory
is the circuit size C'(f) of a Boolean function f : {0,1}" — {0,1}. C(f) is the
smallest number of gates in any feedforward circuit for f over some basis 2. The
basis Q is normally indicated by writing Cq(f). We omit this index and assume
that gates of the optimal circuits for C(f) and TW L(f) are drawn from the same

18

Gli G,0 GgO s GC(f)

FIG. 11 A layout for an arbitrary circuit whose total wire length can easily be
estimated in terms of n and C(f). Filled circles 1, ..., z, are input ports and open
circles Gy, ...,Gg(y) are gates.

basis 2. We assume that f depends on each of its n variables. The relationship
between the total wire length and the circuit size of a function is given by the
following lemma.

THEOREM 4. The total wire length TW L(f) of a function f :{0,1}™ — {0,1}
relates to its circuit size C(f) in the following manner:

O() +n =1 < TWL(f) < SC()O() ~1) +nmas{n, C(f)}.

Proof. To show the first inequality, note that each input to the circuit as well
as each gate of the circuit contributes to the output. Hence there is at least one
edge from each input port to some gate and each gate except the output gate has
fan-out at least one. Since gates and input ports are separated by unit distance,
each such connection has at least unit length. The first inequality follows.

To show the second inequality, we construct a layout for some circuit C' with
circuit size C(f). Since the circuit is feedforward, we can label the gates of C by
G1,...,Go(y) such that G; does not get input from gate G forall 1 < i < j < C(f).
Arrange the gates on a row of the grid such that gate G; is one unit to the left of
Git1 (1 <1< C(f)). In this arrangement all gates that receive input from some
gate G; are to the right of G; (see Figure 11). Since outputs may spread, the wire
length to connect G; to all of its successors is at most C(f) — 4. This results in a
total wire length of 1C(f)(C(f) — 1) for connections between gates of the circuit.
Furthermore, arrange the input ports of the circuit on the row one unit above the
gates. In the worst case, each input port is connected to each gate. The wire length
needed to connect one of the n input ports with all the gates is bounded by n if
n > C(f) and by C(f) if n < C(f). Hence, the total wire length needed to connect
input ports to gates is at most nmax{n, C(f)}. This yields the second summand
in the claimed upper bound for TWL(f).

Another interesting question is, how the total wire length of a function f relates
to the area needed to implement f in VLSI. For the VLSI-model discussed in Section
1 with gates of fan-in 2, we show that the total wire length is bounded by the area
needed to compute f.

THEOREM 5. If the function f:{0,1}™ — {0,1} can be computed in a feedfor-

ward manner in VLSI with p layers, separation \ and area A, then the total wire

length of f is bounded by
TWL(f) = 0(%,4).

19

Proof. We construct from a given VLSI-circuit for f a layout in our model for
bounding its total wire length. We first superimpose a grid of grid-width A/2 and
area, A over the VLSI-layout. Since gates, ports and wires have at lest width A
there is a grid-point in any gate and any two grid-points in connected gates can be
connected by a grid-path that runs in the area of the gates and their connecting
wire.

Consider a gate G with two inputs Ig,1, Ig,2 and output Og. Define edges
(nrg,;,nj, ;) on the grid graph such that nj_ is inside the area of the gate and
nig,; is outside the area of the gate but inside the area of the i-th input wire
(i = 1,2). Define edges (nog,np,,) for the output in a similar way (see Figure 12).
Build a spanning tree on grid nodes and edges inside the area of G that connects
Ny, > N, and ng, . We call this tree the inner tree of G. Consider the three
paths of minimal length that connect two of these three nodes within the spanning
tree (i.e. one paths connect nj_ with nj_,, one nj_ with ng_, and another
path connects n’IG’2 with ng,). There is exactly one node ng that is contained in

each of these three paths*. In our construction, the gate G is mapped onto ng and
the inner tree is part of the connection-graph of the layout.

We treat an input-port G like a gate with m > 1 outputs and no input. Define
edges (nog.,np,,) in a similar way (i = 1,...,/m). Build the inner tree that
connects all the nodes ng,, ... ,ng, , and define one of these nodes to be the
mapping of G onto the grid. Output-ports can be treated in a similar way like
gates with one input and no output. We will not distinguish between ports and
gates in the following.

To connect a gate G with its successors Hy, ..., H,,, build a spanning tree on
grid nodes and edges in the area of the VLSI-wires from G to its successors that
connects no, with the corresponding input-nodes nry, ,...,nr, . We refer to the
spanning tree from ng , to n}Hl yen- ,n’,Hm as the output-tree of G (note that this
definition involves nodes inside the gate-areas). The tree that connects a gate
G with its successors Hi,...,H,, in the VLSI-Layout can therefore be mapped
onto the output-tree of G together with parts of the inner trees such that ng is
connected to gy, - -.,nm, (one may skip edges in the trees that are not needed for
these connections). Hence, a gate G is connected to some gate H in the constructed
layout, if and only if G is connected to H in the VLSI-circuit.

We show that for a given grid-edge, there are at most u output-trees and at
most one inner tree that contain this edge in the constructed layout. Consider an
edge e of the grid-graph. Since wires in a layer are separated by at least A and e has
length A/2, at most one VLSI-wire per layer intersects e (i.e. e is partly or fully
in the area of this wire). Since there are y VLSI-layers for wires, this shows that
there are at most p VLSI-wires that intersect e. Since, by construction, any edge
in an output-tree intersects with a VLSI-wire, this shows that there are at most p
output-trees that contain e. Furthermore, since gates are separated by at least A,

40n a tree, denote a path without cycles from a node a to a node b by P, 5. Note that this
path is unique, since otherwise there would be a cycle in the tree. For a tree with 3 leafs A, B and
C, let D be the last node on the paths P4 p and P4 ¢ that is visited on both paths (this node
exists, since each path is unique and both start from the same node A). Since P4 p and Pp p
constitute P4, g, the only node common to both is D (in P4, g, each tree-node is visited at most
once). The paths Pg p and Pp ¢ constitute a path without cycles from B to C which uniquely
defines Pp ¢. This shows that D is visited in each of these 3 paths.

The only nodes that are common to P4 g and Pa ¢ are the nodes in P4, p. The only nodes
that are common to P4, p and Pp ¢ are the nodes in Pg p. Hence, the only node that is common
to Pa,B, Pa,c and Pg ¢ is D, which is the only node common to P4,p and P p.

20

gate G

FIG. 12 A mapping of a VLSI-gate onto our model. Unique nodes inside and
outside the gate are defined for input and output. The nodes are connected by a
(minimal) spanning tree. The gate is mapped onto the node ng, the node that is
common to any path that connects two leaves of the spanning tree.

at most one gate fully covers e (note that we tread inputs and output ports like
gates and there is only one layer for gates and ports). Hence e is part of at most
one inner tree. Since each tree uses e only once, e is used at most p + 1 times in
the whole constructed graph.

We can bound the number of edges in a grid-graph of area A and grid-width A/2
by O(A/A?). Since each grid edge is used at most p + 1 times and grid edges have
length 1 in our model for total wire length, the total wire length of the constructed
layout is O(5z 4).

4. DISCUSSION

We have introduced a new complexity measure, total wire length, that provides
a useful criterion for judging whether a proposed circuit design is realistic from
the point of view of a possible physical implementation in hardware or wetware.
In particular we have shown that well-known empirical data from neurobiology
suggest that biological neural circuits that solve global pattern recognition tasks
have a total wire length that scales up subquadratically with the number of input
variables. The relevance of the total wire length of cortical circuits had previously
been emphasized by numerous neuroscientists, from Cajal (see for example p. 14 in
[3]) to [5].

In Section 2 we have analyzed the total wire length required for solving two con-
crete computational problems that are inherent in many global pattern recognition
tasks. It turns out that both of these problems can be solved by circuits whose
total wire length is almost linear. Furthermore these examples demonstrate that
the design of circuits with small total wire length yields circuit architectures that
differ significantly from those that arise if just the traditional circuit complexity
measures (number of gates, depth) are minimized. We expect that in general the

21

construction of circuits with small total wire length produces circuit architectures
that are less unrealistic from the point of physical implementation. In particular
this strategy may help to ”guess” circuit design strategies that are implemented
in biological neural systems. We also show that the new complexity measure total
wire length is related to the complexity measure area in abstract VLSI-designs.
However in contrast to VLSI-design, which are necessarily much more detailed, it
is in general much easier to estimate the total wire length of a circuit architecture
in the model that we have proposed in this article. Hence the new circuit complex-
ity measure total wire length may represent a useful compromise between practical
relevance and mathematical simplicity.

REFERENCES

[1] M. Abeles, “Corticonics: Neural Circuits of the Cerebral Cortex”, Cambridge
Univ. Press, 1999.

[2] V. Braitenberg and A. Schiiz, “Cortex: Statistics and Geometry of Neuronal
Connectivity”, 2nd ed., Springer Verlag, 1998.

[3] S. R. Cajal, “Histology of the Nervous System”, volumes 1 and 2, Oxford
University Press (New York), 1995

[4] D. B. Chklovskii and A. A. Koulakov, A wire length minimization approach to
ocular dominance patterns in mammalian visual cortex, Physica A, 284(1-4)
(2000), 318-334.

[5] D. B. Chklovskii and C. F. Stevens, Wiring optimization in the brain. Advances
in Neural Information Processing Systems vol. 12 (2000), MIT Press, 103-107.

[6] D. B. Chklovskii, Binocular disparity can explain the orientation of ocu-
lar dominance stripes in primate primary visual area (V1), Vision Research,
40(13)(2000), 1765-1773.

[7] C. Koch, Biophysics of Computation, Oxford Univ. Press, 1999

[8] J. Lazzaro, S. Ryckebusch, M. A. Mahowald and C. A. Mead, Winner-take-
all networks of O(n) complexity, Advances in Neural Information Processing
Systems, vol. 1(1989), Morgan Kaufmann (San Mateo), 703-711.

[9] C. Mead and M. Rem, Cost and performance of VLSI computing structures,
IEEE J. Solid State Circuits SC-14(1979), 455-462.

[10] C. Mead, Analog VLSI and Neural Systems, Addison-Wesley (Reading, MA,
USA), 1989.

[11] G. Mitchison, Axonal trees and cortical architecture, Trends in Neuroscience,
15(4)(1992), 22-26.

[12] J. E. Savage, Models of Computation: FEzploring the Power of Computing,
Addison-Wesley (Reading, MA, USA), 1998

[13] G. M. Shepherd, The Synaptic Organization of the Brain. 2nd ed., Oxford
Univ. Press, 1998

22

