
Neural Circuits for Pattern Recognition with
Small Total Wire Length

�

Robert A. Legenstein & Wolfgang Maass
Institute for Theoretical Computer Science

Technische Universität Graz, Austria�
legi, maass � @igi.tu-graz.ac.at

October 24, 2001

Abstract

One of the most basic pattern recognition problems is whether a certain
local feature occurs in some linear array to the left of some other local fea-
ture. We construct in this article circuits that solve this problem with an
asymptotically optimal number of threshold gates. Furthermore it is shown
that much fewer threshold gates are needed if one employs in addition a
small number of winner-take-all gates. In either case the circuits that are
constructed have linear or almost linear total wire length, and are therefore
not unrealistic from the point of view of physical implementations.

1 Introduction

Biological neural circuits can solve a number of complex pattern recognition tasks
very fast, in 100 - 150 milliseconds, see (Thorpe et al., 1996). Since the compu-
tational units of neural circuits are relatively slow compared with a transistor, ob-
servation gives rise to some optimism regarding the possibility to build artificial
circuits, for example analog VLSI chips, that solve complex real-world pattern�

Research for this article was partially supported by the the Fonds zur Förderung der wis-
senschaftlichen Forschung (FWF), Austria, project P12153, and the NeuroCOLT project of the
EC.

1

E
lectronic C

olloquium
 on C

om
putational C

om
plexity, R

eport N
o. 71 (2001)

ISSN
 1433-8092

recognition tasks in real-time. Classical circuit complexity theory is of little help
in the search for such super-efficient circuit designs. Apparently there are two
reasons for this. The complexity of circuits is usually analyzed in terms of their
number of gates, and much of the existing work focuses on the derivation of poly-
nomial upper bounds for the number of gates. But most circuits that appear to
be feasible from this point of view cannot be practically implemented, especially
if the number � of input variables is very large (like for example in vision tasks
where often ��� �����	�

. Furthermore even those circuit designs where one has
been able to derive linear or almost linear upper bounds for the number of gates
can usually not be implemented in VLSI because the required number of wires
(= edges), or the required length of wires grows too fast with the number � of
input variables. Therefore we focus in this article directly on the total wire length
(the definition is given below) as the most salient complexity measure, the usu-
ally most restricted and hence arguably most relevant complexity measure for the
practical implementation of an abstract circuit design.

Another obstacle for the application of classical circuit complexity theory to
the design of efficient circuits for pattern recognition arises from the fact that
most complexity studies focus on arithmetic and graph-theoretic problems, rather
than on those computational tasks that typically arise in the context of pattern
recognition. Both, in common machine vision approaches and in biological neu-
ral circuits for vision, the raw pixel image is first preprocessed by an array of
local feature detectors (e.g.for the detection of edge segments, line segments, Ga-
bor filters). Hence pattern recognition problems in vision typically require to find
particular spatial arrangements of those local features, that are reported by local
feature detectors. The local feature detectors are typically arranged in a one- or
two- dimensional array that reflects the geometrical relationship between their re-
ceptive fields in the sensory space. In order to initiate a computational complexity
analysis of algorithmic problems of this type we investigate in this article the ar-
guably most simple problem of this type. We assure that there are two types of
local feature detectors with binary output that are linearly arranged at � positions:
detectors
�����������
������ for feature
 and detectors ������������������� for feature � . The
pattern recognition task is to decide whether feature
 is reported at a location � to
the left of some location � where feature � is reported. In other words, we analyze
the circuit complexity of the Boolean function � ���� from � �"!$# � into � �"! with

� ��"�&%
'�	��������
(�)����	����������� �+*-, � if .'�/0� % �213� and
(4 * �65 *7���� else �
2

We investigate in this article circuits that compute � �"� with two types of gates
that are both frequently discussed in models for neural computation: threshold
gates and winner-take-all (WTA) gates. Both of these gates can be implemented
very efficiently in analog VLSI, with an area that grows just linearly with the
number � of inputs to the gate, see (Mead, 1989), and (Lazzaro et al., 1989). A
threshold gate computes a Boolean function ��� � �"!���� � ��! of the form
� %	� � ������� � � � * ��
 � �4� ��� 4 � 4�� � � . A winner-take-all gate with weights
� � ������� � � computes a Boolean function � � � ��! � � � �"! � where for input
� � ������� � � the � th output is 1 if and only if � 4 � 4�� � 5 � 5 for all ���* � .

We propose the following abstract model for estimating the total wire length
required for the neural implementation of an abstract circuit design (which is for-
mally defined as a directed graph with nodes labeled by specific types of gates, or
by input- or output variables):

Gates, input- and output-ports of a circuit are placed on different nodes of a
2-dimensional grid (with unit distance 1 between adjacent grid nodes). Connec-
tions between them are represented by (unidirectional) wires that run through the
grid-plane in any way that the designer wants, in particular wires may cross and
need not run rectilinearly (wires are thought of as running in the 3 dimensional
space above the plane, without charge for vertical wire segments)1. We define the
minimal value of the sum of all wire lengths that can be achieved by any such
arrangement as the total wire length of the circuit.

We would like to make this model also applicable to cases where for �����
threshold-, or winner-take-all functions of � inputs are computed in analog VLSI
by efficient subcircuits that employ a number of transistors, total wire length and
area that are all linear in � , with a setting time that is independent of � 2. We model
such computational modules as “threshold gates” or “winner-take-all gates” of �
inputs, that take one unit of time for their computation like all the other gates, but
which occupy each a set of � intersection points of the grid that are all connected
by an undirected wire (whose length contributes to the total wire length) in some
arbitrary fashion3.

The attractiveness of this model lies in its mathematical simplicity, and in its
generality (see (Legenstein et al., 2001) and (Legenstein et al. ,2001b) for a more

1We will allow that a wire from a gate or input port may branch and provide input to several
other gates. For reasonable bounds on the maximal fan-out (����� in the case of neural circuits) this
is realistic both for neural circuits and for VLSI.

2see (Lazzaro et al., 1989)
3Any one of these � nodes may be used to provide one of the � inputs or to extract one of the

outputs of the function.

3

detailed analysis of the complexity measure total wire length, and results on the
total wire length of circuits that solve two other pattern recognition tasks). It
provides a rough estimate for the cost of connectivity both in artificial (basically
2-dimensional) circuits and in neural circuits, where 2-dimensional wire crossing
problems are apparently avoided (at least on a small scale) since dendritic and
axonal branches are routed through 3-dimensional cortical tissue. We also give
bounds on the complexity of our circuit designs in the common abstract model for
VLSI.

We refer to Section 12.2 in (Savage, 1998) for the precise definition of the
abstract model for VLSI-area to which the theorems in this article refer. One as-
sumes there that gates, input- and output-ports and wires cover rectilinear areas
with a width and separation of at least � . Areas occupied by different gates, input-
and output-ports are not allowed to intersect with one another. Areas occupied by
wires may intersect with areas occupied by gates, input- and output-ports and also
with other wires, but there is a constant bound � on the number of wire areas to
which a point of the plane may belong. The complexity measure induced by this
model is the area of the smallest rectangle that encloses the circuit. We follow
(Savage, 1998) in assuming that in the VLSI-model one unit of time is needed to
transmit a bit along a wire (of any length), and also for each gate switching. How-
ever in contrast to (Savage, 1998) we always assume that all inputs are presented
in parallel.

We will show in Theorem 2.1 that � ��"� can be computed by a circuit consisting
of � %������ � � threshold gates in depth � , with a total wire length of � % � �	��� � � .
Theorem 2.2 implies that no feedforward circuit can compute � ��"� with fewer
threshold gates. Finally it is shown in Theorem 2.3 that � ��"� can be computed
by a circuit of depth 2 consisting of two winner-take-all gates and one threshold
gate, with total wire length � % � � . This result demonstrates that winner-take-all
gates can in some contexts be computationally much more powerful than threshold
gates, although they do not require much more area in analog VLSI (see (Maass,
2000) for some more general results in this direction).

2 Global Pattern Detection in 1-Dimensional Maps

We start the analysis of this pattern recognition task by showing that � ��"� can be
computed very fast by a circuit consisting of � %������ � � threshold gates. We also
give bounds on the total wire length of this circuit and the area that it occupies in
a VLSI layout.

4

Theorem 2.1. � ���� can be computed by a feedforward circuit of depth 2, con-
sisting of � ����� ��� �

threshold gates with total wire length � % � ����� � � and area
� % � ��� � � � in a VLSI layout.

Proof: Denote with
 * %
)����������
(����� � and � * % ������������������� � the two vec-
tors of input features. It will be convenient to denote the position � of the left-
most occurring feature
 with � � � %
 � and the position � of the rightmost occur-
ring feature � with �
 � % � � . Note that these functions are not defined if there
is no feature
 respectively � present. The following precise definition elimi-
nates this ambiguity. We define � � � %
 � * � � � $���
 4 * �"!

if
 �* % � ������� �(� and� � � %
 � * ��� �
otherwise. Furthermore we define �
 � % � � * �
 � $��� ��4 * �"!

if� �* % � ������� �(� and �
 � % � � * �
otherwise. Note that with this simple definition,� ���� %
 �� � * �
 � � � %
 � 1��
 � % � � . We construct a threshold circuit which

computes the binary encoding of � � � %
 � and �
 � % � � in its first layer. Let us
call the function that maps
 onto the binary representation of � � � %
 � MinMux
and the function that maps � onto the binary representation of �
 � % � � MaxMux
respectively. The comparison of their outputs yields the desired output of � ���� .

For convenience, let � * � � for some natural number � . The precise defini-
tions of the functions MinMux and MaxMux are as follows.	 � � 	�
 � � �) � �"! � � � ��! � is defined by	 � � 	�
 � � %
 �+*� binary encoding of � � � $���
�4 * �"! if .'� %
�4 * �$�

binary encoding of ��� � otherwise �	
 � 	�
 � � �) � �"! � � � ��! � is defined by	
 � 	�
 � � % � �+* � binary encoding of �
 � $��� �	4 *7�"! if .'� % ��4 * ���
binary encoding of

� otherwise �
This comparison of the two �	��� � -bit binary numbers represented by	 � � 	�
 � and

	
 � 	�
 � can be carried out by an additional threshold gate with
weights linear in � .

In the following, we construct a circuit consisting of �	��� � threshold gates that
computes MinMux. Note that, for any input assignment, setting
 ����� * �

does
not change the value of the function. We will use this trick to make sure that the
output of the circuit is the binary encoding of ��� � if there is no feature
 present.

Let � 5 denote the � -th output bit of
	 � � 	�
 � � (

��� � � ��� �
), such

that � � � %
 � *�� � ���5 � � 5 � 5 . The � -th bit of the binary encoding of some natural
number � is

�
if ���#������ ��� ��� � and

�
otherwise.

5

This leads to the following threshold function for � 5 :
� 5 %
(����������
������ � * � � if

� �����4 �
�4 � ����4 % � �$� ���������� �	��
��� #�� � �� otherwise �
Let � * � � � %
 � and suppose that � �# � � � � � � � � . It follows that������ 4 �
(4	� ����4 % � �$� ������� �� ����
��� #�� �

� ����� % � �$� � ������4 ���� � � ����4 �
� � ����� � ����� ���� 4 � � 4 � � � 1 �

and the output of the threshold gate is
�
. Suppose that � �# � � � ��� � � � . It

follows that ������ 4 �
(4	� ����4 % � �$� ������� �� � ��
��� #�� �
� ����� % � ��� � ������4 ���� � � ����4 �
� ����� � ����� ���� 4 � � 4 � �

and the output of the threshold gate is
�
. Hence, � 5 is the � -th bit of the binary

representation of � � � %
 � .
MaxMux can be constructed in a similar manner. Hence, each � 5 can be

computed by one threshold gate and the depth and size of the circuit given in
Theorem 2.2 follow.

The VLSI-layout of the circuit for ������ is shown in Figure 1a. We place the
gates for

	 � � 	
 � on rows beneath
�����������
������ and the gates for
	
 � 	
 � on

rows beneath ������������������� . Since the circuit consists of ����� � gates for
	 � � 	�
 � �

and �	��� � gates for
	
 � 	�
 � � this occupies � % �	��� � � rows. The comparison gate

can be placed in the column between those gates. Hence, the layout of the circuit
occupies � % � �	��� � � area. A layout to estimate the total wire length is similar. The

6

layout of the circuit for � ���� in is shown in Figure 1b. Simply replace a threshold
gate of � inputs by � nodes that are connected by a common wire to sum up the
inputs. This results in a wire length of � % � � within each gate. The wire from an
input port to its successor gates may spread and hence is � % �	��� � � in length. The
comparison gate has a total wire length of � % ��� � � � . Summing up those lengths,
results in a total wire length of � % � ����� � � .

P
LR
4

b b bb0 1 2 3

a)

P
LR
4

a a a a1 2 30 b b bb0 1 2 3

b)

a a a a1 2 30

Figure 1: a) The VLSI-circuit layout for � ���� . The gates for
	 � � 	�
 � and	
 � 	�
 � are placed on rows beneath the inputs. The area used by this lay-

out is � % � �	��� � � . b) A layout to estimate the total wire length of the circuit. A
threshold gate of � inputs is represented by � nodes that are connected by a wire
(wires without arrows). Such gates are indicated by a dashed rectangle. The total
wire length is � % � �	��� � � .

The following lower bound result shows that the number of threshold gates
used by the circuit of Theorem 2.1 is asymptotically optimal:

Theorem 2.2. Any feedforward circuit consisting of threshold gates needs to have
at least

� % ��� � � � gates for computing � ���� .

We use the gate-elimination method to prove Theorem 2.2. The gate-
elimination method was used widely in classic circuit complexity theory. It was

7

used in the context of threshold circuits in a paper by Georg Schnitger and Bhaskar
DasGupta (see (DasGupta et al., 1996)). In our case we have to exhibit some
properties of � ��� that allow us to assign constants to inputs of a circuit �&� that
computes � ��"� , such that the circuit computes � ��� on the remaining non-constant
variables. Furthermore, we use these properties to show that at least one threshold
gate computes a constant after the assignment of constants to at most

��� �� � of its

input variables. We use this restriction to construct a circuit that computes � ��� � ����
and has at least one gate less that � � . Hence, the size of � � is at least � ��� � � � �

,
which we use as an induction step. The induction hypothesis is that a circuit � �
that computes � ��"� consists of at least � �	��� � � � � threshold gates 4.

Proof: We will at first exhibit the three properties of � �"� that will be the basis
for the proof. Then we will show, how to eliminate one threshold gate in a circuit
computing � ��� by assigning constants to a fixed fraction of its inputs. Finally, we
will use this gate-elimination to give an inductive prove of the lower bound.

The properties of � ��� given below are easy to verify.

property 1:

� ���� %
(����������
�4 ���� � �
�4 � �	��������
(�����	���������������4 ��� � ���4 � �	��������������� � *� �������� %
(���������
�4 ���	�
(4 � � ������ �
������	��	������������4 ���	���4 � � ��������������� �
for all ���3 � ����������� ��!

.

property 2:

� ��"� % � ������� � �
 � � ����������
������	 � ������ � �� � � �	��������������� �+*� ��� ��"� %
 � � �	��������
������	�� � � �	��������������� � for all ��� � �������/��� � ! .

property 3:

� ��"� %
�����������
(�����0� � � ������� � ����������� ��������0� � � ������ �(�+*� ��� ��"� %
'�	��������
������0� � ���� ���������������0� � � for all ��� � �������/��� �"!
.

Let � � be a threshold circuit computing � ��"� . We show how to eliminate one gate
in � � by exploiting the properties of � ��� given above. We assume that � is a
power of 64. If it is not, use property 1 to obtain a threshold circuit such that the
number of non-constant inputs to the circuit is the next lower power of 64.

4 �
	�� denotes the floor of 	 , which is �
	��������	������������ � �"! �$#%	 � .

8

Let � be a gate in � � which does not have an output of a gate as one of its
inputs. Then � computes the function

� %
 �� � * , � if
� �4 �
 4
�4 � � �4 ��� 4 ��4 ���� else �

First, we need all the weights for
 to have same sign and all the weights for � to
have same sign, where ����� � %	� � ��� � � � � �"! is � � for all � �	� ��
 �)! and� � otherwise. More formally, we want

�����)� %
 4 � * ����� � %
 5 � for all i,j

����� � % � 4 � * ����� � % � 5 � for all i,j .

This can be achieved by setting at most ������ variables in
 and at most "�����
variables in � to constant zero. By property 1, the circuit computes � ��� ���� on the re-
maining non-constant variables. We renumber the remaining � * ����� variables
in
 , the ����� remaining variables in � (we preserve the order) and the correspond-
ing weights. Let � � * ��� � # ���4� �
 4 , � # * ��� ���4 � � #
 4 , � � * ��� � # ���4 � � 4 and

� # * ��� ���4 � � # � 4 . We consider four cases:

case 1: �����)� %
 4 � * � � , ����� � % � 4 � * � � for all � * � ������ �� �
case 1.1: � � � � ��� # ���

We set
(� *������ *
 � � # ��� * �
and �	� *������ * � � � # ��� * �

. By

property 2 of � ��� , the circuit computes � � � #��� on the remaining non-
constant variables. It follows that

� � � ��� � � ����4 � � # �
 4 �
�4 �
� ����4 � � # � � 4 � ��4 1�� ��� # ��� # �

� ����4 � � # � � 4 � ��4 1�� .

Hence � %
 �� � * �
for all possible values of
 � � # ��������
 � ��� and� � � # ������ �� � ��� .

case 1.2: � � � � � � # ���
We set
 � � # * �����&*
 � ��� * �

and � � � # *!����� * � � ��� * �
. By

property 3 of � ��� , the circuit computes � � � #��� on the remaining non-
constant variables. It follows that
� � # ���� 4 � �
 4 �
(4 � � � # ���� 4 � � � 4 � ��4���� # � � � # ���� 4 � �
 4 �
(4 ��� � ��� � � � ��� ��� ��� .

9

Hence � %
 �� � * �
for all possible values of
)����������
 � � # ��� and������������� � � # ��� .

In case 1, there remain � � � ��� * � � ��� � non-constant variables after the
restriction.

case 2: �����)� %
 4 � * � � , ����� � % � 4 � * � �
We can treat this case in a similar manner as case 1.

case 3: �����)� %
 4 � * � � , ����� � % � 4 � * � �
case 3.1: � � ���

We set
(� *������ *
 � � # ��� * �
and �	� *������ * � � � # ��� * �

. By

property 2 of � ��� , the circuit computes � � � #��� on the remaining non-
constant variables. Furthermore it follows that � %
 �� �3* �

for all
possible values of non-constant inputs.

case 3.2: � # ���
We set
 � � # * �����&*
 � ��� * �

and � � � # *!����� * � � ��� * �
. By

property 3 of � ��� , the circuit computes � � � #��� on the remaining non-
constant variables. It follows that � %
 �� � * �

for all possible values of
non-constant inputs.

After any of these restrictions, � � ��� � non-constant variables remain and the
circuit computes � ������"� . For the following restriction, we can assume � � 1��
and � # 1 � . In this case, the weights for the second half of the remaining
inputs to � are small. So our aim will be to eliminate variables with large
weights in � . Then, the sum of the remaining inputs to � will be too small to
reach the threshold and the gate will output a constant for all possible values
of non-constant inputs. In a first step, we set all inputs that contribute to � �
and � � constant zero. The effect is that all weights of
 ’s are small. We use
another restriction to maintain small weights for non-constant � ’s. Then we
set the inputs that have largest weights constant zero. We need to do this
for at most ��� of the remaining variables to let the gate output zero for all
possible values of non-constant inputs.

case 3.3 � � 1�� , � # 1��
We set
(� * �����(*
 � � # ��� * �	� * ������* � � � # ��� * �

. By property 1 of

10

� ��� , the circuit computes � � � #��� on the remaining non-constant vari-
ables. Let l= � � � * ��� � . Again, renumber the non-constant variables
and corresponding weights of � , so that

� %
 �� � * , � if
� � ���4 �
 4
�4 � � � ���4� � � 4 ��4 ���� else �

Let ��� � * � � � # ���4 �
 4 , ���# * � � ���4 �� � #
 4 , ���� * � � � # ���4� � � 4 and ���# *
� � ���4��� � # � 4 . Since ��� � � ���# * � # 1 � , we have ��� � 1 � . If ���� � � ,
case 3.1 applies and �# * ��� ��� variables remain. Finally we consider
weights such that ��� � 1 � and ���� 1 � . In this case, we set
(4 * ��4 * �
for � * �# ������� � � �

to eliminate the second half of the inputs (prop-
erty 1 of � ��� applies). Then, by property 1 of � �"� , we set those ��� �
remaining variables in
 to zero that have maximal weights. We also
eliminate those ��� � remaining variables in � with maximal weights. It
follows that the overall sum of the remaining variables cannot reach �
and � %
 �� � * �

for all possible values of non-constant inputs. There
will remain at least � �� * � �� � non-constant variables.

case 4: �����)� %
 4 � * � � , ����� � % � 4 � * � �
We can treat this case in a similar manner as case 3.

We have constructed a threshold circuit that has at least one gate less and computes� ��� � ���� .
We use this property of � � to give an inductive proof of the lower bound. The

inductive hypothesis is, that �����
	 % � � � � � ��� � � � � � . Since we use the floor of
�	��� � � � in the bound, we can use induction on � for all � of the form � *�� � � for
some natural number � .

In the basis case, we have � *�� � . Use property 1 to obtain a circuit that
computes � #�"� . Since, � #�"� %
����
'� ��������� � *
(�� ��� , a circuit that computes � � ����
consists of at least one threshold gate. Hence, the hypothesis holds for the in-
duction basis. For the induction step, consider a threshold circuit � � that com-
putes � ���� . We show that, if the size of � � is small, then we can construct a
circuit � �"� � � with smaller size than possible. Suppose that �����
	 % � � � 1 ����� � � � .

Construct a circuit � ��� � � that computes � ��� � ���� by eliminating one gate in � � . Then,
������	 % � ��� � � � � �����
	 % � � � � � 1 ����� � � � � � * ����� �� � . This is a contradiction. Hence,
������	 % � � � � �	��� � � � .

11

In analog VLSI the area occupied by a subcircuit that implements a winner-
take-all gate is comparable to that for a threshold gate. Hence the next theorem
demonstrates a drastic gain in efficiency if one employs modules for computing
winner-take-all in addition to threshold gates. It combines the minimal possible
computation time of 2 with a linear total wire length.

Theorem 2.3. � ��"� can be computed by a feedforward circuit of depth 2, consist-
ing of two winner-take-all gates and one threshold gate, with total wire length and
area � % � � .

Proof: Denote with
 * %
)����������
(����� � and � * % ������������������� � the two vectors
of input features. We construct a circuit that consists of two winner-take-all gates
in the first layer and one threshold gate in the second layer. One winner-take-
all gate marks the position of the leftmost occurring feature in
 and the other
winner-take-all gate marks the position of the rightmost occurring feature in � . In
the second layer, a single threshold gate with linear weights can compute the value
of � ���� %
 �� � .

Let
 � * %

� � ������ �

������ � * � ��� % � � �
(��������� � ����� �
������ � denote the output
vector of a winner-take-all gate with the inputs
)����������
������ weighted by integer
weights � ��������� � ����� . Set the weights of the winner-take-all gate such that:
 � * � ��� % % � � ��� �
����� �
'� % ��� �$� �
 # ������� � �
(�����	 �$� �
If
 * % � ������� ��� ,

�� wins (i.e.
 �� is the only non-zero output of the gate). Other-
wise,
 �4 wins if and only if � * � � � � �
"5 * �"!

, for
� � � � � � �

. Furthermore,
set the weights of the second winner-take-all gate such that:� � * � ��� % � � ���� � ��� � � � # ������� % � � �$� � ������� ��� �
If � * % � ������ �(� , � �� wins. Otherwise, �	4 wins if and only if � * �
 � � � �/5 *7�"!

,
for

� � � � � � �
. A simple threshold gate with
 � and � � as its inputs can be used

to compute the value of � ���� %
 �� � :
� ���� * � � if

� �����4 � % � �4 � % � � �$� �

�4 � % � � ���/� � � �� � % � � �$� �

�� � % � � �$� � �� otherwise �
If there is no feature
 present,

�� wins and the gate outputs

�
. The same holds

for the case that no feature � is present. Otherwise, since there is exactly one
 �4
12

and exactly one � �5 nonzero, if
 �4 * �
and � �5 * �

and � 1 � , the weighted sum is
above the threshold and the gate outputs

�
. The sum is beyond the threshold for� � � and the gate outputs

�
.

Any gate can be implemented with linear wire length in our model. So the
total wire length is � % � � . A similar VLSI layout uses linear area.

In contrast to the threshold circuit of Theorem 2.1 just linear size integer
weights are needed for this circuit.

3 Discussion

We have shown that the basic pattern recognition problem whether a certain local
feature
 occurs to the left of some other local feature � can be solved by circuits
that require very little total wire length, and hence can potentially be implemented
in analog VLSI. Furthermore it was shown that a circuit with � % �	��� � � threshold
gates can solve this problem, and that this number of threshold gates is asymptot-
ically optimal. Finally it was demonstrated that the same problem can be solved
more efficiently if winner-take-all gates are employed in addition to a threshold
gate. This gives rise to the question which other concrete computational tasks can
be carried out more efficiently by circuits that use winner-take-all gates besides
(or instead of) threshold gates.

References
DasGupta, B., Schnitger G. (1996). Analog versus Discrete Neural Networks. Neural

Computation, 8:819–842.

Lazzaro, J., Ryckebusch, S., Mahowald, M. A., Mead, C. A. (1989). Winner-take-all
networks of ������� complexity. Advances in Neural Information Processing Systems,
vol. 1, Morgan Kaufmann (San Mateo), 703–711.

Legenstein, R., Maass, W. (2001). Foundations for a circuit complexity theory of sensory
processing. Advances in Neural Information Processing Systems, vol. 13, MIT Press,
259–265.

Legenstein, R., Maass, W. (2001b). Total Wire Length as a Salient Circuit Complexity
Measure for Sensory Processing. Submitted for publication.

Maass, W. (2000). On the computational power of winner-take-all. Neural Computation,
12(11):2519–2536.

13

Mead, C. (1989). Analog VLSI and Neural Systems. Addison-Wesley (Reading, MA,
USA).

Savage, J. E. (1998). Models of Computation: Exploring the Power of Computing.
Addison-Wesley (Reading, MA, USA).

Thorpe, S., Fize, D., Marlot, C. (1996). Speed of processing in the human visual system.
Nature, 381, 520–522.

14

ftpm
ail@

ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://w

w
w

.eccc.uni-trier.de/eccc
E

C
C

C

ISSN
 1433-8092

