Electronic Colloguium on Computational Complexity, Revision 2 of Report No. 72 (2001)

Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption

Ronald Cramer* Victor Shoup!

December 12, 2001

Abstract

We present several new and fairly practical public-key encryption schemes and prove them
secure against adaptive chosen ciphertext attack. One scheme is based on Paillier’s Decision
Composite Residuosity (DCR) assumption, while another is based in the classical Quadratic
Residuosity (QR) assumption. The analysis is in the standard cryptographic model, i.e., the
security of our schemes does not rely on the Random Oracle model.

We also introduce the notion of a universal hash proof system. Essentially, this is a special
kind of non-interactive zero-knowledge proof system for a language. We do not show that
universal hash proof systems exist for all NP languages, but we do show how to construct very
efficient universal hash proof systems for a general class of group-theoretic language membership
problems.

Given an efficient universal hash proof system for a language with certain natural cryp-
tographic indistinguishability properties, we show how to construct an efficient public-key en-
cryption schemes secure against adaptive chosen ciphertext attack in the standard model. Our
construction only uses the universal hash proof system as a primitive: no other primitives are re-
quired, although even more efficient encryption schemes can be obtained by using hash functions
with appropriate collision-resistance properties.

We show how to construct efficient universal hash proof systems for languages related to the
DCR and QR assumptions. From these we get corresponding public-key encryption schemes
that are secure under these assumptions. We also show that the Cramer-Shoup encryption
scheme (which up until now was the only practical encryption scheme that could be proved
secure against adaptive chosen ciphertext attack under a reasonable assumption, namely, the
Decision Diffie-Hellman assumption) is also a special case of our general theory.

First version, October 12, 2001.

Second version, December 12, 2001: numerous minor notational changes and expositional improvements
have been made, and additional and different variations on the basic DCR-based and QR-based schemes
have been added.

*BRICS & Dept. of Computer Science, Aarhus University. Email: cramer@brics.dk
tIBM Zurich Research Laboratory. Email: sho@zurich.ibm.com

ISSN 1433-8092

1 Introduction

It is generally considered that the “right” notion of security for security for a general-purpose
public-key encryption scheme is that of security against adaptive chosen ciphertext attack.

This notion was introduced by Rackoff and Simon [RS]. While there are weaker notions of
security, such as that defined by Naor and Yung [NY2], experience in the design and analysis
of cryptographic protocols has shown that security against adaptive chosen ciphertext attack is
both necessary and sufficient in many applications. Dolev, Dwork, and Naor [DDN] introduced
the notion of non-malleable encryption, which turns out to be equivalent to the notion of security
against adaptive chosen ciphertext attack (at least, when one considers the strongest possible type
of adversary).

Although Rackoff and Simon defined the notion of security against adaptive chosen ciphertext
attack, they did not actually present a scheme that satisfied this property. Indeed, although they
present an encryption scheme, it requires the involvement of a trusted third party that plays a special
role. Dolev, Dwork, and Naor present a scheme that can be proven secure against adaptive chosen
ciphertext attack under a reasonable intractability assumption. However, although their scheme is
polynomial time, it is horrendously impractical, and so although their scheme is a valuable proof
of concept, it appears that it has no practical significance.

Up until now, the only practical scheme that has been proposed that can be proven secure
against adaptive chosen ciphertext attack under a reasonable intractability assumption is that of
Cramer and Shoup [CS]. This scheme is based on the Decision Diffie-Hellman (DDH) assumption,
and is not much less efficient than traditional ElGamal encryption.

Other practical schemes have been proposed and heuristically proved secure against adaptive
chosen ciphertext. More precisely, these schemes are proven secure under reasonable intractability
assumptions in the Random Oracle model [BR]. The Random Oracle model is an idealized model of
computation in which a cryptographic hash function is modeled as a black box, access to which is
allowed only through explicit oracle queries. While the Random Oracle model is a useful heuristic,
it does not rule out all possible attacks: a scheme proven secure in this model might still be subject
to an attack “in the real world,” even though the stated intractability assumption is true, and even
if there are no particular weaknesses in the cryptographic hash function (see [CGH]).

1.1 Our contributions

We present several new and fairly practical public-key encryption schemes and prove them secure
against adaptive chosen ciphertext attack. One scheme is based on Paillier’s Decision Composite
Residuosity (DCR) assumption [P], while another is based in the classical Quadratic Residuosity
(QR) assumption. The analysis is in the standard cryptographic model, i.e., the security of our
schemes does not rely on the Random Oracle model.

We also introduce the notion of a universal hash proof system. Essentially, this is a special kind
of non-interactive zero-knowledge proof system for a language. We do not show that universal hash
proof systems exist for all NP languages, but we do show how to construct very efficient universal
hash proof systems for a general class of group-theoretic language membership problems.

Given an efficient universal hash proof system for a language with certain natural cryptographic
indistinguishability properties, we show how to construct an efficient public-key encryption schemes
secure against adaptive chosen ciphertext attack in the standard model. Our construction only
uses the universal hash proof system as a primitive: no other primitives are required, although
even more efficient encryption schemes can be obtained by using hash functions with appropriate
collision-resistance properties.

We show how to construct efficient universal hash proof systems for languages related to the
DCR and QR assumptions. From these we get corresponding public-key encryption schemes that
are secure under these assumptions.

The DCR-based scheme is very practical. It uses an n-bit RSA modulus N (with, say, n = 1024).
The public and private keys, as well as the ciphertexts, require storage for O(n) bits. Encryption
and decryption require O(n) multiplications modulo N?2.

The QR-based scheme is somewhat less practical. It uses an n-bit RSA modulus N as above, as
well as an auxiliary parameter ¢ (with, say, ¢ = 128). The public and private keys require O(nt) bits
of storage, although ciphertexts require just O(n + t) bits of storage. Encryption and decryption
require O(nt) multiplications modulo N.

We also show that the original Cramer-Shoup scheme follows from of our general construction,
when applied to a universal hash proof system related to the DDH assumption.

1.1.1 Organization of the paper

The sections of this paper are organized as follows:
§2 recalls some basic terminology;

§3 recalls the classical notion of “universal hashing,” and introduces a generalization which we
call “universal projective hashing.”

84 formalizes the notion of a “subset membership problem”;

85 introduces the notion of a “universal hash proof system,” which is based on “universal pro-
jective hashing,” and “subset membership problems”;

86 presents a general framework for building a secure public-key encryption scheme using a
“universal hash proof system” for a “hard subset membership problem.”

§7 shows how to build practical “universal hash proof systems” for a general class of group-
theoretic “subset membership problems.”

88 presents several new and fairly practical encryption schemes based on the preceding general
constructions, including one based on the DCR assumption, and one based on the QR as-
sumption, and also shows that the original Cramer-Shoup encryption scheme follows from
these general constructions as well.

2 Some preliminaries

We recall some basic terminology and notation.

A function f(¢) mapping non-negative integers to non-negative reals if called negligible (in £) if
for all ¢ > 1, there exists £y > 0 such that f(£) < 1/¢¢ for all £ > £.

Let X and Y be random variables taking values in a finite set S. The statistical distance between
X and Y is defined to be

DM@Q@:%E]mm:q—mW:ﬂy
SES

Equivalently,
mmxﬂ=y@HW€ﬂ—HW€wk
'c

We shall say that X and Y are e-close if Dist(X,Y) <e.

Let X = (X¢)¢>0 and Y = (Y;)r>0 be sequences of random variables, where for each £ > 0, X,
and Yy take values in a finite set Sy. Then we say that X and Y are statistically indistinguishable
if Dist(Xp, Yy) is a negligible function in £. For computational purposes, we will generally work in
a setting where the sets Sy can be encoded as bit strings whose length is polynomial in ¢. For any
probabilistic algorithm A that outputs 0 or 1, we define the distinguishing advantage for A (with
respect to X and Y) as the function

Dist'Y (¢) = |Pr[A(1%, X,) = 1] — Pr[A(1%,Y,) = 1]|.

Here, the notation 1¢ denotes the unary encoding of £ as a sequence of £ copies of 1, and the
probability is with respect to the random coin tosses of the algorithm A and the distributions of
Xy and Yy. We say that X and Y are computationally indistinguishable if for all probabilistic,
polynomial-time A, the function Dist’"Y (¢) is negligible in £.

For a positive integer Z, Zpy denotes the ring of integers modulo N, and Z} denotes the
corresponding multiplicative group of units. For a € Z, (a mod N) € Zy denotes the residue class
of a modulo N.

For an element g of a group G, (g) denotes the subgroup of G generated by g. Likewise, for a
subset U of G, (U) denotes the subgroup of G generated by U.

3 Universal projective hashing

3.1 Universal hashing

Before defining universal projective hash functions, we recall some definitions relating to the classical
notion of “universal hashing” [CW, WC].

Let X and II be finite, non-empty sets. Let H = (Hy)rex be a collection of functions indexed
by K, so that for every k € K, Hj, is a function from X into II. Note that we may have Hy = Hy
for k £ k. We call F = (H, K, X,II) a hash family, and each Hy a hash function.

Definition 1 Let F = (H, K, X,II) be a hash family, and consider the probability space defined by
choosing k € K at random.

We call F pair-wise independent if for all z,x* € X with x # z*, it holds that Hy(x) and
Hy(z*) are uniformly and independently distributed over II.

Note that there are many well-known, and very simple constructions of pair-wise independent
hash families.

3.2 Definition of universal projective hashing

We now introduce the concept of universal projective hashing. Let F = (H, K, X,II) be a hash
family. Let L be a non-empty, proper subset of X. Let S be a finite, non-empty set, and let
a: K — S be a function. Set H= (H, K, X, L, 11, S, a).

Definition 2 H = (H, K, X, L,11, S,), defined as above, is called a projective hash family (for
(X, L)) if for all k € K, the action of Hy on L is determined by a(k).

In other words, for all k£ € K, the value a(k) “encodes” the action of Hy on L (and possibly
more than that), so that given a(k) and = € L, the value Hi(x) is uniquely determined.

Definition 3 Let H = (H, K, X, L,I1, S,) be a projective hash family, and let ¢ > 0 be a real
number. Consider the probability space defined by choosing k € K at random.
We say that H is e-universal if for all s € S, x € X \ L, and = € 11, it holds that

Pr[Hi(z) =7 A a(k) = s] < ePr[a(k) = 3.

We say that H is e-universaly if for all s € S, z,z* € X, and m,7* € Il with x ¢ LU {z*}, it
holds that

Pr[Hy(z) =7 A Hp(z") = 7" A a(k) = s] < ePr[Hg(z") =" A a(k) = s]

We will sometimes refer to the value of € in the above definition as the error rate of H.

Note that if H is e-universalp, then it is also e-universal (note that | X| > 2).

We can reformulate the above definition as follows. Let H = (H, K, X, L,I1, S, a) be a pro-
jective hash family, and consider the probability space defined by choosing k € K at random. H
is e-universal means that conditioned on a fixed value of a(k), even though the value of Hj is
completely determined on L, for any z € X \ L, the value of Hy(x) can be guessed with probability
at most €. H is e-universaly means that in addition, for any z* € X \ L, conditioned on fixed
values of a(k) and Hy(z*), for any z € X \ L with z # z*, the value of Hy(z) can be guessed with
probability at most e.

3.2.1 Motivation

We now discuss the motivation for Definition 3. Let H be a projective hash family, and consider
the following game played by an adversary.

At the beginning of the game, k € K is chosen at random, and the adversary is given s = a(k).
Initially, the adversary has no other information about &, but during the course of the game, he is
allowed to make a sequence of oracle queries to learn more about k.

There are two types of oracle queries. One type of oracle query is a test query: the adversary
submits z € X and « € II to the oracle, and the oracle tells the adversary whether or not Hy(z) = .
The other type of oracle query is an evaluation query: the adversary submits z* € X to the oracle,
and the oracle tells the adversary the value 7* = Hy(z*).

During the course of the game, the adversary is allowed to make an arbitrary number of test
queries, but only one evaluation query. Moreover, after the evaluation query, he is not allowed to
submit (z*,7*) to the oracle in any subsequent test queries.

We say the adversary wins the game if he submits a test query (z,n) with z € X \ L and
Hy(z) = .

That completes the description of the game. Note that in this game, the adversary’s strategy is
quite arbitrary, and need not be efficiently computable. Moreover, the strategy may be adaptive,
in the sense that an oracle query made by the adversary may depend in an arbitrary way on all
information available to the adversary at that time.

It is easy to see from the definition that if H is e-universaly, then regardless of the adversary’s
strategy, he wins the game with probability at most @ - €, where () is a bound on the number of test
queries made by the adversary. Note that while this property is a consequence of the definition of
e-universaly, it is not necessarily equivalent to the definition of e-universal,. In fact, this property
suffices to prove the main results of this paper, and indeed, all we need is this property in the case
where z* is chosen at random from X \ L, and where the adversary is computationally bounded.

3.2.2 Trivial constructions

Families satisfying Definition 3 are trivial to construct, at least from a combinatorial point of view.
For instance, let F = (H, K, X,II) be a pair-wise independent hash family, let L be a non-empty,
finite subset of X, and let my € II. Then let H = (H', K, X, L,11, S, @), where for all £ € K and
z € X, we define Hy (z) = mg if z € L, and H(r) = Hy(z), otherwise. We also define S = {m} and
a(k) = mp for all k € K. It is clear that H is a 1/|II|-universal, projective hash family. However,
in our applications later on, we want these hash functions to be efficiently computable on all of X,
even if L is hard to distinguish from X \ L. Therefore, this trivial “solution” is not useful in our
context.

3.3 Smooth projective hashing

We will need a variation of universal projective hashing, which we call smooth projective hashing.

Let H = (H,K,X,L,II, S,a) be a projective hash family. We define two random variables,
U(H) and V(H), as follows. Consider the probability space defined by choosing k € K at random,
z € X\ L at random, and 7’ € IT at random. We set U(H) = (z, s,n’) and V(H) = (z, s, 7), where
s = a(k) and 7 = Hi(z).

Definition 4 Let € > 0 be a real number. A projective hash family H is e-smooth if U(H) and
V(H) are e-close.

3.4 Approximations to projective hash families

Our definition of universal and universals projective hash families are quite strong: so strong,
in fact, that in many instances it is impossible to efficiently implement them. However, in all
our applications, it is sufficient to efficiently implement a projective hash family that effectively
approrimates a universal or universaly projective hash family. To this end, we define an appropriate
notion of distance between projective hash families.

Let H = (H,K,X,L,I1,S,«a) be a projective hash family. Counsider the distribution defined
by sampling k£ € K at random, and define the random variable View(H) = (Hy, a(k)). Note that
View(H) comprises the value of Hy, at all points z € X.

Definition 5 Let § > 0 be a real number. Let H = (H,K,X,L]1II S «a) and H* =
(H*,K*, X, L,I1, S, *) be projective hash families. We say that H and H* are §-close if View(H)
and View(H*) are §-close.

Note that if H and H* are §-close for some “small” value of ¢, and if H* is e-universal or
e-universaly for some “small” value of €, this does not imply that H is ¢’-universal or ¢-universaly
for any particularly small value of ¢/. However, if H and H* are d-close and H* is e-smooth, then
it is clear that H is (e 4 ¢)-smooth.

3.5 Some elementary reductions

We show some elementary reductions among the various notions introduced. Most of the reductions
given here are primarily theoretically motivated. Later on, in a specialized context, we present
reductions that are considerably more efficient.

3.5.1 Reducing the error rate

Let H = (H,K, X, L,II, S,) be an e-universal (respectively, -universalz) projective hash family.
The construction below reduces the error rate from e to €', by simple ¢-fold “parallelization.”

Let ¢ be a positive integer, and let H = (H, K?, X, L,TI*, S*, &), where H and @ are defined as
follows.

For k = (ki,...,k;) € K' and z € X, we define Hp(z) = (Hg,(2),...,H,(z)), and we define
a(k) = (a(k1),- .., a(k)).

The proof of the following lemma is straightforward, and is left to the reader.

Lemma 1 Let H and H be as in the above construction. If H is an e-universal (respectively,
-universalp) projective hash family, then H is an €' -universal (respectively, -universaly) projective
hash family.

3.5.2 From universal projective to universal, projective

Let H= (H,K, X, L,11, S, @) be an e-universal projective hash family. The next construction turns
H into an e-universaly projective hash family H' for (X, L).

Let us assume that we have injective functions I' : X — {0,1}" and T : TT — {0,1}" for some
appropriately large positive integers n and n’. Let Hf = (H', K?", X, L, {0, 1}"',52",&‘), where
H' and o' are defined as follows.

For E = (kl,O,kl,l,- . -,kn,O;kn,l) € K2n, and z € X with F(I) = (’)’1,. .. ,’)’n) € {0,1}", we
define

k() = DT (., (@)

and
af (k) = (a(kr0), (ki,), - - -, alkny), (kn,1)).

Here, “@” denotes the bit-wise “exclusive or” operation on n'-bit strings.

Lemma 2 Let H and H' be as defined in the above construction. If H is an e-universal projective
hash family, then HY is an e-universaly projective hash family.

PRrROOF. It is immediate that Definition 2 is satisfied.

The proof that Definition 3 is satisfied follows from a simple “conditioning argument,” the
details of which we now provide.

Consider the probability space defined by choosing k € K at random. To show that HT is
e-universaly, we have to show that for any z,z* € X with z ¢ L U {z*}, conditioned on any fixed
values of H g.(:v*) and af(k), the value of H I];.(m) can be guessed with probability at most e.

Let I'(z) = (71,---,7) € {0,1}" and TI'(z*) = (v7,...,7:) € {0,1}". Since z # z*, we must
have «y; # 7} for some 1 <14 < n, and without loss of generality, let us assume that ¢ = n.

In addition to conditioning on fixed values of H ;i.(:v*) and o (K), let us further condition on fixed

values of k1,0,k1,1,...,kn—1,0,kn—1,1, as well as k;, ,x (consistent with the fixed values of Hg(x*) and
af(k)). In this conditional probability space, the value of H g(:c) determines the value of Hy, (),

and thus, if the value of Hl];.(:z;) could be guessed with probability greater than €, then so could
the value of Hy, . (z). But since H is e-universal, it follows that the value of Hy, . () cannot be
guessed with probability greater than e. We conclude that value of H %(:1:) cannot be guessed with

6

probability greater than e in this conditional probability space. Since this holds for all fixed values
of k19,k1,1,---,kn—1,0,kn—1,1, and ky 5+ under consideration, it holds as well in the conditional

probability space where just H g.(m*) and aT(E) are fixed, which proves the theorem. A

The following construction is a variation on Lemma 2. It extends the sets X and L by taking
the Cartesian product of these sets with a fixed, finite set E. Such extensions will prove useful in
the sequel.

Let H= (H,K,X,L,11, S,) be an e-universal projective hash family. Let E be a non-empty,
finite set.

Let us assume that we have injective functions T' : X x E — {0,1}" and T : TT — {0,1}"
for some appropriately large positive integers n and n'. Let Hf = (H} K?" X x E,L x
E,{0,1}",5?" ot), where Ht and o are defined as follows.

For k = (k10,5115 knoskn1) € K2, and (z,e) € X xE withT'(z,e) = (y1,-..,7a) € {0,1}",
we define

H%(w, e) = @ PI(Hkim (z))

and
ot (k) = (a(kip), ki), - - clkno), alkn))-

The proof of the following lemma, is essentially the same as the proof of Lemma 2.

Lemma 3 Let H and HY be as defined in the above construction. If H is an e-universal projective
hash family, then HY is an e-universaly projective hash family.

3.5.3 From universal projective to smooth projective

Let H= (H, K, X, L,II, S, @) be an e-universal projective hash family. The next construction turns
H into a d-smooth projective hash family H* for (X, L), where the hash outputs are a-bit strings,
provided € and a are not too big, and § is not too small.

The construction is a simple application of the Leftover Hash Lemma (a.k.a., Entropy Smoothing
Lemma; see, e.g., [L, p. 86]).

Let F = (H,K,II,II) be a pair-wise independent hash family, where IT = {0,1}* for some
integer @ > 1. Such a hash family can easily be constructed using well-known and quite practical
techniques based on arithmetic in finite fields. We do not discuss this any further here.

Let H* = (H*,K x K, X, L,11, S x K, o*), where H* and o* are defined as follows. For k € K,
ke K, and z € X, we define H;:,ic = Hy(Hy(z)), and we define o*(k, k) = (a(k), k).

Lemma 4 Let H, F, H*, and a be as in the above construction. Suppose that H is an e-universal
projective hash family. For any integer b > 0 such that a + 2b < logy(1/€), H* is a 2=+ _smooth
projective hash family.

PROOF. It is clear that H* satisfies the basic requirements of a projective hash family.

Consider the random variables U(H*) and V (H*), as defined in the paragraph preceding Def-
inition 4. That is, consider the probability space where k € K, keK, zeX \ L, and 7 € I
are chosen at random, and set U(H*) = (z, s, k,7') and V(H*) = (z, s, k, %), where s = a(k) and
= Hy(Hy(x).

Consider any conditional probability space where particular values of z € X \ L and s € S are
fixed, and let U(H* | z,s) and V(H* | z, s) be the random variables in this conditional probability

space corresponding to U(H*) and V(H*). In such a conditional probability space, by the definition
of e-universal projective hashing, the distribution of Hy(z) has min-entropy at least log,(1/€), and
k is uniformly and independently distributed over K. The Leftover Hash Lemma then directly
implies that U(H* | z,s) and V(H* | z,s) are 2-(®+tY_close. Since this bound holds uniformly for
all , s, it follows that U(H*) and V (H*) are also 2~ ®+1)_close. A

4 Subset membership problems

In this section we define a class of languages with some natural cryptographic indistinguishabil-
ity properties. The definitions below capture the natural properties of well-known cryptographic
problems such as the Quadratic Residuosity and Decision Diffie-Hellman problems, as well as
others.

A subset membership problem M specifies a collection (Iy)¢>o of distributions. For every value
of a security parameter £ > 0, I, is a probability distribution of instance descriptions.

An instance description A specifies the following:

e Finite, non-empty sets X, L, and W, such that L is a proper subset of X.
e A binary relation R C X x W.

For all £ > 0, [I;] denotes the instance descriptions that are assigned non-zero probability in
the distribution I,. We write A[X, L, W, R] to indicate that the instance A specifies X, L, W and
R as above.

For z € X and w € W with (z,w) € R, we say that w is a witness for . Note that it would be
quite natural to require that for all z € X, we have (z,w) € R for some w € W if and only if z € L,
and that the relation R is efficiently computable; however, we will not make these requirements
here, as they are not necessary for our purposes. The actual role of a witness will become apparent
in the next section.

A subset membership problem also provides several algorithms. For this purpose, we require
that instance descriptions, as well as elements of the sets X and W, can be uniquely encoded as
bit strings of length polynomially bounded in £. The following algorithms are provided:

e a probabilistic, polynomial time sampling algorithm that on input 1¢ for £ > 0 samples an
instance A according to the distribution I,.

We do not require that the output distribution of the sampling algorithm and I, are equal;
rather, we only require that they are +(£)-close, where +(£) is a negligible function. In partic-
ular, with negligible probability, the sampling algorithm may output something that is not
even an element of [I].

We call this algorithm the instance sampling algorithm of M, and we call the statistical
distance ¢(¢) discussed above its approzimation error.

e a probabilistic, polynomial time sampling algorithm that takes as input 1¢ for £ > 0 and an
instance A[X, L, W, R| € [I;], and outputs a random z € L, together with a witness w € W
for z.

We do not require that the distribution of the output value z and the uniform distribution
on L are equal; rather, we only require that they are ¢/(£)-close, where i/(£) is a negligible
function. However, we do require that the output z is always in L.

We call this algorithm the subset sampling algorithm for M, and we call the statistical distance
/' (£) discussed above its approzimation error.

e a deterministic, polynomial time algorithm that takes as input 1¢ for £ > 0, an instance
A[X,L,W,R] € [Ij], and ¢ € {0,1}*, and checks whether ¢ is a valid binary encoding of an
element of X.

This completes the definition of a subset membership problem.

We next define the notion of a hard subset membership problem. Essentially, this means that
it is computationally hard to distinguish random elements of L from random elements of X \ L.
We now formulate this notion more precisely.

Let M be a subset membership problem as above. We define two sequences of random variables,
(Ue(M)) >0 and (V;(M))g>0, as follows. Fix £ > 0, and consider the probability space defined by
sampling A[X, L, W, R] from I;, and choosing z € L at random and =’ € X — L at random. Set
U(M) = (A, z) and V;(M) = (A, z').

Definition 6 Let M be a subset membership problem. We say that M is hard if (U;(M))s>o and
(Ve(M)) >0 are computationally indistinguishable.

5 Universal hash proof systems

5.1 Hash proof systems

Let M be a subset membership problem, as defined in §4, specifying a sequence (I;);>¢ of instance
distributions.

A hash proof system (HPS) P for M associates with each instance A[X, L, W, R] of M a pro-
jective hash family H = (H, K, X, L,I1, S, «) for (X, L).

Additionally, P provides several algorithms to carry out basic operations we have defined for an
associated projective hash family; namely, sampling k¥ € K at random, computing a(k) € S given
k € K, computing Hy(z) € II given k € K and z € X. We call this latter algorithm the private
evaluation algorithm for P. Moreover, a crucial property is that the system provides an efficient
algorithm to compute Hy(z) € II, given a(k) € S, z € L, and w € W, where w is a witness for z.
We call this algorithm the public evaluation algorithm for P. The system should also provide an
algorithm that recognizes elements of II.

We now discuss the above-mentioned algorithms in a bit more detail. In this discussion,
whenever A[X,L,W,R] € [I;] is fixed in some context, it is to be understood that H =
(H,K,X,L,11,S «) is the projective hash family that P associates with A. These algorithms
work with bit strings of length bounded by a polynomial in £ to represent elements of K, II and
S. We also assume that these algorithms use the same encodings of the sets X, L and W as the
algorithms from the subset membership problem M.

The system P provides the following algorithms:

e a probabilistic, polynomial time algorithm that takes as input 1¢ and an instance A € [I,],
and outputs k € K, distributed uniformly over K.

e a deterministic, polynomial time algorithm that takes as input 1¢, an instance A € [I,], k € K,
and outputs s € S such that a(k) =s.

e a deterministic, polynomial time algorithm that takes as input 1¢, an instance A € [Ig], k € K
and z € X, and outputs 7 € II such that Hy(z) = .

This is the private evaluation algorithm.

e a deterministic, polynomial time algorithm that takes as input 1¢, an instance A € [I;], s € S
such that a(k) = s for some k € S, and =z € L together with a witness w € W for z, and
outputs m € II such that Hy(z) = 7.

This is the public evaluation algorithm.

e a deterministic, polynomial time algorithm that takes as input 1¢, an instance A € [I;], and
¢ € {0,1}*, and determines if ¢ is a valid encoding of an element of II.

5.2 Universal hash proof systems

Definition 7 Let €(£) be a function mapping non-negative integers to non-negative reals. Let M
be a subset membership problem specifying a sequence (I)g>o of instance distributions. Let P be
an HPS for M.

We say that P is e(£)-universal (respectively, -universaly, -smooth) if there ezists a negligible
function 6(£) such that for all £ > 0 and for all A[X,L,W,R] € [I,], the projective hash family
H = (H,K,X,LIILS, «) that P associates with A is 6(£)-close to an e(£)-universal (respectively,
-universaly, -smooth) projective hash family H* = (H*, K*, X, L, 11, S, o*).

Moreover, if this is the case, and €(£) is a negligible function, then we say that P is strongly
universal (respectively, universaly, smooth).

We shall call the function §(£) in the above definition the approzimation error of P, and we
shall refer to the projective hash family H* as the idealization of H.

It is perhaps worth remarking that if a hash proof system is strongly universal, and the under-
lying subset membership problem is hard, then the problem of evaluating Hy(x) for random k € K
and arbitrary z € X, given only z and «(k), must be hard.

We also need an extension of this notion.

The definition of an ezxtended HPS P for M is the same as that of ordinary HPS for M, except
that for each £ > 0 and for each A = A[X, L, W, R] € [Ii], the proof system P associates with A a
finite set E along with a projective hash family H = (H, K, X x E,Lx E, 11, S,) for (X XE,Lx E).
Note that in this setting, to compute Hy(z,e) for z € L and e € E, the public evaluation algorithm
takes as input a(k) € S, z € L, e € E, and a witness w € W for z, and the private evaluation
algorithm takes as input k¥ € K, z € X, and e € E. We shall also require that elements of E are
uniquely encoded as bit strings of length bounded by a polynomial in £, and that P provides an
algorithm that efficiently determines whether a bit string is a valid encoding of an element of FE.

Definition 7 can be modified in the obvious way to define extended €(£)-universaly, HPS’s (we
do not need any of the other notions, nor are they particularly interesting).

5.2.1 Constructions

Note that based on the constructions in Lemmas 1, 2, 3, and 4, given an HPS that is (say) 1/2-
universal, we can construct a strongly universal HPS, a (possibly extended) strongly universal,
HPS, and a strongly smooth HPS. However, in most special cases of practical interest, there are
much more efficient constructions.

10

6 A general framework for secure public-key encryption

In this section, we present a general technique for building secure public-key encryption schemes
using appropriate hash proof systems for a hard subset membership problem. But first, we recall
the definition of a public-key encryption scheme and the notion of security against adaptive chosen
ciphertext attack.

6.1 Public-key encryption schemes

A public key encryption scheme provides three algorithms:

e a probabilistic, polynomial-time key generation algorithm that on input 1¢, where £ > 0 is a
security parameter, outputs a public-key /private-key pair (PK, SK).

A public key PK specifies an finite message space Mpk. The message space should be easy
to recognize; that is, there should be a deterministic, polynomial-time algorithm that takes
as input 1¢ and PK, along with a bit string ¢, and determines if ¢ is a proper encoding of an
element of Mpg.

e a probabilistic, polynomial-time encryption algorithm that on input 1¢, PK, and m, where
£ > 0, PK is a public key associated with security parameter £, and m € Mpg, outputs a bit
string o.

e a deterministic, polynomial-time decryption algorithm that on input 1¢, SK, and o, where
£ > 0, SK is a private key associated with security parameter £, and o is a bit string, outputs
either a message m € Mpgk, where PK is the public-key corresponding to SK, or a special
symbol reject.

Any public-key encryption scheme should satisfy a “correctness” or “soundness” property, which
loosely speaking means that the decryption operation “undoes” the encryption operation. For our
purposes, we can formulate this as follows. Let us call a key pair (PK, SK) bad if for some m € Mpk,
and for some encryption ¢ of m under PK, the decryption of ¢ under SK is not m. Let us call a
public-key encryption scheme sound if the probability that the key generation algorithm on input
1¢ outputs a bad key pair is a negligible function in £.

For all encryption schemes presented in this paper, it is trivial to verify this soundness property,
and so we will not explicitly deal with this issue again.

Note that in this paper, we only work with finite message spaces.

6.2 Adaptive chosen ciphertext security

Counsider a public-key encryption scheme, and consider the following game, played against an arbi-
trary probabilistic, polynomial-time adversary.

1. Key-Generation Phase. Let £ > 0 be the security parameter. We run the key-generation
algorithm of the public-key encryption scheme on input 1¢, and get a key pair (PK, SK).

We equip an encryption oracle with the public key PK, and a decryption oracle with the secret
key SK.

The public-key PK is presented to the adversary.

11

2. Probing Phase I. In this phase, the attacker gets to interact with the decryption oracle in an
arbitrary, adaptive fashion. This phase goes on for a polynomial amount of time, specified
by the adversary.

More precisely, in each round of this interaction, the adversary sends a query o to the de-
cryption oracle. A query is a bit string chosen by the adversary.

The decryption oracle in turn runs the decryption algorithm on input of the secret key SK
and the query o, and responds to the query by returning the output to the adversary.

Note that a query is not required to represent an encryption (under PK) of a message; a query
can indeed be any string designed to probe the behavior of the decryption oracle.

The interaction is adaptive in the sense that the next query may depend on the history so
far, in some way deemed advantageous by the adversary.

3. Target-Selection Phase. The adversary selects two messages mg and m; from the message
space, and presents (mg,m1) to the encryption oracle.

The encryption oracle selects a random 8 € {0, 1}, and encrypts mg under PK.

The resulting encryption o*, the target ciphertext, is presented to the adversary.

4. Probing Phase II. This phase is as Probing Phase I, the only difference being that the de-
cryption oracle only responds to queries o that are different from the target ciphertext o*.

5. Guessing-Phase. The adversary outputs a bit B.

The adversary is said to win the game if B = . We define the advantage (over random guessing)
of the adversary as the absolute value of the difference of the probability that he wins and 1/2.

A public key encryption scheme is said to be secure against adaptive chosen ciphertext attack if
for all polynomial time, probabilistic adversaries, the advantage in this guessing game is negligible
as a function of the security parameter.

6.3 The generic scheme and its analysis

We now describe our generic method for constructing a secure public-key encryption scheme.

Let M be a subset membership problem specifying a sequence (I;),>¢ of instance distributions.
We also need a strongly smooth hash proof system P for M, as well as a strongly universaly
extended hash proof system P for M. We discuss P and P below in greater detail.

To simplify the notation, we will describe the scheme with respect to a fixed value £ > 0 of
the security parameter, and a fixed instance description A[X, L, W, R] € [I;]. Thus, it is to be
understood that the key generation algorithm for the scheme generates this instance description,
using the instance sampling algorithm provided by M, and that this instance description is a part
of the public key as well; alternatively, in an appropriately defined “multi-user setting,” different
users could work with the same instance description.

With A fixed as above, let H = (H, K, X, L,II, S, @) be the projective hash family that P
associates with A, and let H = (H K,X xII, L x 1,11, §, &) be the projective hash family that P
associates with A. We require that II is an abelian group, for which we use additive notation, and
that elements of Il can be efficiently added and subtracted.

We now describe the key generation, encryption, and decryption algorithms for the scheme, as
they behave for a fixed instance description A, with corresponding projective hash families H and
H, as above. The message space is 1I.

12

Key Generation X)
Choose k € K and k € K at random, and compute s = a(k) € S and § = @(k) € S. Note
that all of these operations can be efficiently performed using the algorithms provided by P
and P.

The public key is (s, §).
k).

The private key is (k

Encryption
To encrypt a message m € Il under a public key as above, one does the following.

Generate a random z € L, together with a corresponding witness w € W, using the subset
sampling algorithm provided by M.

Compute m = Hy(z) € II, using the public evaluation algorithm for P on inputs s, z, and w.

Compute e = m + « € II.

Compute © = H(z,e) € ﬂ, using the public evaluation algorithm for P on inputs 8, x, e,
and w.

The ciphertext is (z, e, 7).

Decryption
To decrypt a ciphertext (z,e,@) € X x II x II under a secret key as above, one does the
following.

A

Compute 7' = H;(z,e) € I1, using the private evaluation algorithm for P on inputs %, z, and
e.

Check whether # = #'; if not, then output reject and halt.
Compute m = Hy(z) € II, using the private evaluation algorithm for P on inputs k£ and z.

Compute m = e — «w € II, and output the message m.

It is to be implicitly understood that when the decryption algorithm is presented with a ci-
phertext, this ciphertext is actually just a bit string, and that the decryption algorithm must parse
this string to ensure that it properly encodes some (z,e,7) € X x II x IT; if not, the decryption
algorithm outputs reject and halts.

We remark that to implement this scheme, all we really need is a 1/2-universal HPS, since we
can convert this into appropriate strongly smooth and strongly universal, HPS’s using the general
constructions discussed in §5.2.1. Indeed, the Leftover Hash construction in Lemma 4 gives us a
strongly smooth HPS whose hash outputs are bit strings of a given length a, and so we can take
the group II in the above construction to be the group of a-bit strings with “exclusive or” as the
group operation.

Theorem 1 The above scheme is secure against adaptive chosen ciphertext attack, assuming M
is a hard subset membership problem.

ProOF. We show that the existence of an efficient adaptive chosen ciphertext attack with non-

negligible advantage implies the existence of an efficient distinguishing algorithm that contradicts
the hardness assumption for M.

13

We define the following game between a simulator and an adversary that carries out an adaptive
chosen ciphertext attack. The simulator takes as input 1¢, for £ > 0, along with A[X, L, W, R] € [I],
and z* € X.

The simulator provides a “simulated environment” for the adversary as follows. In this descrip-
tion, H and H are fixed as in the description above of the encryption scheme.

In the Key-Generation Phase, the simulator runs the key-generation as usual, using the given
value of A.

In both Probing Phases I and II, the simulator runs the decryption algorithm, as usual, using
the secret key generated in the Key-Generation Phase.

In the Target-Selection Phase, the attacker presents messages mg and m; of his choice to the
simulator. The simulator flips a random coin £, and computes the target ciphertext (z*,e*,#*),
where z* is the value input to the simulator, in the following way. It first computes 7* = Hy(z*)
using the private evaluation algorithm for P on inputs k¥ and z*. It then computes e* = mg + 7*.
Finally, it computes #* = H i (2%, e*), using the private evaluation algorithm for P on inputs k, z*,
and e*.

In the Guessing Phase, the adversary outputs a bit B . The simulator outputs 1 if 8 = B, and 0
otherwise, after which, the simulator halts.

For each value of the security parameter £ > 0, we consider the behavior of this simula-
tor/adversary pair in two different experiments. In the first experiment, the simulator is given
(A, z*), where A[X, L, W, R] is sampled from I, and z* is sampled at random from L; let 7} be the
event that the simulator outputs a 1 in this experiment. In the second experiment, the simulator
is given (A, z*), where A[X, L, W, R] is sampled from I;, and z* is sampled at random from X \ L;
let Ty be the event that the simulator outputs a 1 in this experiment.

Let AdvDist(¢) = |Pr[T;] — Pr[T}]|; that is, AdvDist(¢) is the distinguishing advantage of our
simulator. Let AdvCCA({) be the adversary’s advantage in an adaptive chosen ciphertext attack.
Our goal is to show that AdvCCA(¥) is negligible, provided AdvDist(¢) is negligible.

To make the proof more concrete and the efficiency of the reduction more transparent, we
introduce the following notation. We let Q(£) denote an upper bound on the number of decryp-
tion oracle queries made by the adversary; we assume that this upper bound holds regardless of
the environment in which the adversary operates. Next, we suppose that P is €(£)-smooth with
approximation error 4(£), and that P is é(£)-universal, with approximation error 6(£). Also, we
assume that the instance sampling algorithm for M has approximation error ¢(£), and that the
subset sampling algorithm for M has approximation error ¢/(£).

Case z* € L. In this case, the simulation is perfect, except for the approximation errors introduced
by the instance and subset sampling algorithms for M. Thus, we have

| Pr[T7] — 1/2| > AdvCCA(2) — (.(£) + /' (£)). (1)

Case z* € X \ L. To analyze the behavior of the simulator in this case, it is convenient to
make a sequence of modifications to the simulator. We refer to the experiment run with the
unmodified simulator as experiment 0, and to the experiments run with subsequent modifications
as experiments 1, 2, etc. Each of these experiments are best viewed as operating on the same
underlying probability space; we define the event TZ(Z), for ¢ > 0, as the event that the simulator in
experiment ¢ outputs a 1. Note that unlike the original simulator, these modified simulators need
not be efficiently implementable.

14

Ezperiment 1. To define experiment 1, we modify the simulator as follows. We replace the projective
hash family H that P associates with A with its idealization, which is an €(£)-smooth projective
hash family that is 6(¢)-close to H. We also replace the projective hash family H that P associates
with A with its idealization, which is an é(£)-universaly projective hash family that is §(£)-close to
H. By definition, we have

| Pr{1V] = Pr{T,”]| < 6(0) + 6(0).)

To keep the notation simple, we refer to these idealized projective hash families as H and H as
well, and continue to use the notation established in the description of the encryption scheme for
these two projective hash families.

Ezperiment 2. In experiment 2, we modify the simulator yet again, so that in addition to rejecting
a ciphertext (z,e,#) € X x I x IT if ﬂk(m, e) # 7, the decryption oracle also rejects the ciphertext
if z ¢ L. Let Fy be the event in experiment 2 that some ciphertext (z,e,7) € X x IT X 11 with
z ¢ L is rejected by the decryption oracle but I;Tk(m, e) = 7.

We claim that

Pr{F;] < QUO)E(L). (3)

To prove (3), let us condition on a fixed value of A[X, L, W, R] (which determines the projec-
tive hash families H and I:I), as well as fixed values of k, §, and the adversary’s coins. These
values completely determine the public key, and all the decryption queries of the adversary and
the responses of the simulator in Probing Phase I, and also determine if the adversary enters the
Target-Selection Phase, and if so, the corresponding values of my and my. Consider any ciphertext
(z,e,7) € X xII x fl, with z ¢ L, that is submitted as a decryption oracle query during Probing
Phase 1. In this conditional probability space, x, e, and 7 are fixed, whereas k is still uniformly
distributed over K, subject only to the constraint that ée(fc) = §, where § is fixed as above. There-
fore, from the é(¢)-universaly property of H, the probability that H ;(z,e) = 7 in this conditional
probability space is at most ().

Now assume that in this conditional probability space, the adversary enters the Target-Selection
Phase. Let us now further condition on fixed values of 5 and z* (which determine 7* and e*), as well
as a fixed value of 7*. These values completely determine all the decryption queries of the adversary
and the responses of the simulator in Probing Phase II. Consider any ciphertext (z,e,#) € X x TIXII,
with z ¢ L, that is submitted as a decryption oracle query during Probing Phase II.

e Suppose that (z,e) = (z*,e*). Since we must have (z,e,7) # (z*,e*,7*), it follows that

A

7t # 7*, and hence H;(z,e) # 7 with certainty.

e Suppose that (z,e) # (z*,e*). In this conditional probability space, z, e, and 7 are fixed,
whereas k is still uniformly distributed over K, subject only to the constraint that &(k) =
5 and Hp(z*,e*) = 7%, where 3, z*, €*, and 7* are fixed as above. Therefore, from the

€(£)-universaly property of H, the probability that A ;(7,e) = 7 in this conditional probability
space is at most ().

The above arguments show that for any individual ciphertext (z, e, #) € X x I x II, with = ¢ L,
that is submitted to the decryption oracle, the probability that H;(z,e) = 7 is at most é(£), from
which the bound (3) immediately follows.

Note that experiments 1 and 2 proceed identically until event F5 occurs. More precisely, TZ(Z) A

—Fy occurs if and only if Tz(l) A = F5 occurs, which implies that

| Pr{1{?] - Pr[T{V]| < Pr[)]. (@)

15

Ezperiment 3. In experiment 3, we modify the simulator yet again. This time, in the encryption
oracle, instead of computing 7* as H(z*), the simulator sets 7* = 7/, where n’ € II is chosen at
random. Now, let us condition on a fixed value of A[X, L, W, R] (which determines the projective
hash families H and I:I), as well as fixed values of lAc, B, and the adversary’s coins. In this conditional
probability space, since the action of Hy on L is determined by s, and since the simulator rejects
all ciphertexts (z,e,#) with z ¢ L, it follows that the output of the simulator in experiment
2 is completely determined as a function of z*, s, and Hy(z*), while the output in experiment
3 is determined as the same function of z*, s, and 7«’. Moreover, by independence, the joint
distribution of (k,z*,7') does not change in passing from the original probability space to the
conditional probability space. It now follows directly from the €(£)-smooth property of H that

|Pr{TY] - Pr{T?)| < €(0). (5)

It is evident from the definition of the simulator in experiment 3 that the adversary’s output B
in this experiment is independent of the hidden bit 8; therefore,

Pr{T¥] = 1/2. (6)
Putting it all together. Combining the relations (2)-(6), we see that
| Pr(Ty] — 1/2] < 8(8) + €(£) + 8(£) + Q(O)e(®). (7)
Combining the inequalities (1) and (7), we see that
AdvCCA(£) < AdvDist(£) + 6(£) + e(£) + 6(£) + Q(L)E(L) + (£) + 1/ (£), (8)

from which the theorem immediately follows. A

7 Universal projective hash families: constructions

We now present group-theoretic constructions of universal projective hash families.

7.1 Diverse group systems and derived projective hash families

Let X, L and II be finite abelian groups, where L is a proper subgroup of X. We will use additive
notation for these groups.

Let Hom(X, IT) denote the group of all homomorphisms ¢ : X — II. This is also a finite abelian
group for which we use additive notation as well. For ¢, ¢’ € Hom(X,II), z € X, and a € Z, we

have (¢ + ¢)(z) = ¢(z) + ¢/(z), (¢ — ¢)(z) = d(x) — ¢'(x), and (ag)(z) = ad(z) = ¢(az). The
zero element of Hom (X, IT) sends all elements of X to 0 € II.

Definition 8 Let X, L,II be as above. Let H be a subgroup of Hom(X,II). We call G =
(H, X, L,1I) a group system.

Let G = (H,X, L,1I) be a group system, and let g1,...,g94 € L be a set of generators for L.
Let H= (H,K, X, L, 11, S, o), where

e for randomly chosen k € K, Hj is uniformly distributed over H,

e S=TI% and

16

e the map a: K — S sends k € K to (¢(g1),---,9(gq)) € S, where ¢ = Hy.

It is easily seen that H is a projective hash family. To see this, note that if x € L, then there
exist wi,...,wq € Z such that x = Zle w;gi; now, for k € K with Hy, = ¢ and a(k) = (u1,-- -, iq),
we have

d d d
Hy(z) = ¢(D_ wigi) = Y wid(gi) = > wipsi.
i=1 i=1 i=1
Thus, the action of Hy on L is determined by «(k), as required.

Definition 9 Let G be a group system as above and let H be a projective hash family as above.
Then we say that H is a projective hash family derived from G.

Looking ahead, we remark that the reason for defining « in this way is to facilitate efficient
implementation of the public evaluation algorithm for a hash proof system with which H may be
associated. In this context, if a “witness” for z is (w1, ..., wy) as above, then Hy(z) can be efficiently
computed from a(k) and (w,...,w,), assuming arithmetic in II is efficiently implemented.

Our first goal is to investigate the conditions under which a projective hash family derived from

a group system is e-universal for some € < 1.

Definition 10 Let G = (H,X,L,II) be a group system. We say that G is diverse if for all
z € X \ L, there exists ¢ € H such that ¢(L) = (0), but ¢(z) # 0.

It is not difficult to see that diversity is a necessary condition for a group system if any derived
projective hash family is to be e-universal for some € < 1. We will show in Theorem 2 below that
any projective hash family derived from a diverse group system is e-universal, where ¢ = 1/p, and
p is the smallest prime dividing |X/L|.

7.2 A universal projective hash family

Throughout this section, G = (H, X, L,II) denotes a group system, H = (H,K, X, L,1I, S, a)
denotes a projective hash family derived from G, and p denotes the smallest prime dividing | X/L|.

Definition 11 For a set Y C X, let us define A(Y) to be the set of ¢ € H such that ¢(x) =0 for
all z € Y'; that is, A(Y') is the collection of homomorphisms in H that annihilate Y.

It is clear that A(Y) is a subgroup of H, and that A(Y) = A((Y)).
The following is a straightforward re-statement of Definition 10.

Lemma 5 G is diverse if and only if for all x € X \ L, A(L U {z}) is a proper subgroup of A(L).
Lemma 6 If p is a prime dividing |A(L)|, then p divides | X/L|.

PROOF. Let p be a prime dividing |A(L)|. Then there exists an element ¢ € A(L) of order p.
Let a = | X/L|, and note that for all z € X, we must have ax € L, since a is the order of the factor
group X/L. Therefore, for all z € X, we have (a - ¢)(z) = ¢(azx) = 0, the latter equality holding
since ¢ annihilates L and ax € L. It follows that p divides a. A

Definition 12 For z € X, let £, : H — II be the map that sends ¢ € H to ¢(z) € II. Let us also
define Z(z) = E;(A(L)).

17

Clearly, &; is a group homomorphism, and Z(z) is a subgroup of II.
Lemma 7 If G is diverse, then for all z € X \ L, |Z(z)| is at least p.

PrROOF. Let z € X \ L. Consider the restriction of the map &, to A(L). The image of this
map is Z(z), and the kernel is A(L U {z}). Therefore, Z(z) is isomorphic to the factor group
A(L)/A(L U{z}). Since G is assumed diverse, by Lemma 5, A(L U {z}) is a proper subgroup of
A(L). Thus, the order order of Z(x) is a divisor of A(L) not equal to 1, and so is divisible by some
prime p dividing A(L). By Lemma 6, this prime p divides |X/L|. YA

Lemma 8 Let s € a(K) be fived. Consider the probability space defined by choosing k € o 1(s) at
random, and let p = Hy. Then p is uniformly distributed over a coset s + A(L) of A(L) in H,
the precise coset depending on s.

PROOF. Let g1,...,94 be the set of generators defining . Let & : H — S be the map that
sends ¢ € H to (#(g1),--.,9(gq)) € S. Tt is evident that p is uniformly distributed over & !(s).
Moreover, & is clearly a group homomorphism with kernel A({g1,...,94}) = A(L). It follows that
@~ 1(s) is a coset of A(L) in H. A

In Lemma 8, there are many choices for the “coset leader” 1, € H; however, let us fix one such
choice arbitrarily, so that for the for the rest of this section s denotes this coset leader.

Theorem 2 Let s € a(K) and x € X be fizred. Consider the probability space defined by choosing
k € o 1(s) at random, and let 1 = Hy(x). Then © is uniformly distributed over a coset of I(z) in
IT (the precise coset depending on s and x). In particular, if G is diverse, then H is 1/p-universal.

PROOF. Let p = Hi. By Lemma 8, p is uniformly distributed over 95 + A(L). Since m = p(x),
it follows that 7 is uniformly distributed over £,(¢s + A(L)) = vs(x) + Z(z). That proves the first
statement of the theorem. The second statement follows immediately from Lemma 7, and the fact
that |¢s(z) + Z(z)| = |Z(z)|- A

7.3 A universal, projective hash family

We continue with the notation established in §7.2; in particular, G = (H, X, L, II) denotes a group
system, H = (H, K, X, L,II, S,) denotes a projective hash family derived from G, and p denotes
the smallest prime dividing | X/L|.

Starting with H, and applying the construction of Lemma 2 or Lemma 3, we can obtain a
universals projective hash family. However, by exploiting the group structure underlying H, we
can construct a more efficient universals projective hash family H.

Let E be an arbitrary finite set. H is to be a projective hash family for (X x E,L x E). Fix
an injective encoding function

I:XxE—={0,...,p—1}"

where 7 is sufficiently large.
Let H = (H,K""',X x E,L x E,II, S"*"! &), where H and & are defined as follows. For
k= (k,ki,...,k,) € K" 2z € X, and e € E, we define

A~

n
Hy(z,e) = Hy(z) + Y _ viHy, (),
=1

18

where (v1,...,7) = [(z,e), and we define
a(k) = (a(k), alk1), ... a(kn))-

It is clear that H is a projective hash family. We shall prove:

Theorem 3 Let H be as above. Let § € a(K)"Y z,2* € X, and e,e* € E be fized, where
(z,e) # (z*,e*). Consider the probability space defined by choosing ke &~ 1(3) at random, and let
= ﬁE(x, e) and T = ﬁg(w*,e*). Then 7 is uniformly distributed over a coset of Z(x) in II (the
precise coset depending on s, z, and e), and ™ is uniformly and independently distributed over a
coset of Z(xz*) in II (the precise coset depending on s, *, and e*). In particular, if the underlying
group system G is diverse, then H is 1/p-universaly.

Before proving this theorem, we state another elementary lemma.
Let M € Z%*® be an integer matrix with a rows and b columns. Let G be a finite abelian group.
Let T(M,G) : G° — G* be the map that sends @ € G® to ¥ € G%, where

= Mi';
here, (---) T denotes transposition. Clearly, T(M,G) is a group homomorphism.

Lemma 9 Let M and G be as above. If for all primes p dividing |G|, the rows of M are linearly
independent modulo p, then T(M,G) is surjective.

PROOF. The proof is by basic linear algebra, and we include it for completeness. Let [[;_; p;’
be the prime factorization of |G|. From the conditions of the lemma, it follows that for each
1 <7 < r, there is a square sub-matrix M;, consisting of a columns of M, that is invertible over
Z,p,; and, therefore, also over Z P Hence, for each 1 < i < r there is a matrix N; € Z"*® such that

M N; =1 (mod pj*), where I is the a X a identity matrix over Z. Combining Ny, ..., N, using the
Chinese Remainder Theorem, there is a matrix N € Z°*% such that M - N = I (mod |G|). Hence,
for all 7 € G*, we have ¥7 = M4", where 4" = N¢'"

Proof of Theorem 3. Let § = (s,s1,...,81), (V1,---,7m) = L(z,e), and (7,...,7) =

['(z*,e*). Let (p’,pl, ceesPp) = (Hk’aHkla ... ;Hkn)-
Now define the matrix M € Z2X(n+1) 4q

I m v - ’Yn>
M = :
(1 MY o

so that if
(5, p") T =M(p',p1,...)"

then we have (m,7*) = (p(z), p*(z*)).

By the definition of I', and by Lemma 6, we see that (yi,...,7,) and (7],...,7,) are distinct
modulo any prime p that divides A(L). Therefore, Lemma 9 implies that the map T(M, A(L)) is
surjective. By Lemma 8, (o', p1,...,pn) is uniformly distributed over

W’s' + A(L),’lﬁ51 + 'A(L)a s 7¢Sn + A(L))
Thus, (, 5*) is uniformly distributed over (¢ + A(I),4* + A(I)), where

(1251;*)1— = M('(ps’a/wsu' .. 7'(/an)—|—-

19

Tt follows that (m,7*) is uniformly distributed over (4(z) + Z(z),¥* (z*) + Z(z*)).
That proves the first statement of the theorem. The second statement now follows from
Lemma, 7. A

If 5 is small, then Lemma 1 can be used to reduce the error to at most 1/ for a suitable value
of t. However, this comes at the cost of a multiplicative factor ¢ in efficiency. We now describe
another construction that achieves an error rate of 1/p" that comes at the cost of just an additive
factor of O(t) in efficiency.

Let ¢ > 1 be fixed, and let F be an arbitrary finite set. Our construction yields a projective
hash family H for (X x E,L x E). We use the same name H for this projective hash family as
in the construction of Theorem 3, because when ¢t = 1, the constructions are identical. Fix an
injective encoding function

' XxE—{0,...,p—1}",
where n is sufficiently large.
Let H = (H,K"2~1 X x E, L x E,II, S"t2~1 &), where H and é& are defined as follows. For

k= (Ky,...,k}, k1,.oo kpagr) € K201

z € X, and e € FE, we define R

HE(.T,G) = (7T]_,...,7Tt),

where

n
Ty :Hk;(x) +Z;7ini+j—1(w) (.7 = 1a---at)a
1=

and (y1,...,7) = ['(z,e). We also define
a(k) = (a(k)), ..., k), e(ky), ..., a(kni1-1)).

Again, it is clear that Hisa projective hash family.

Theorem 4 Let H be as above. Let § € a(K)"t2=1 . x* € X, and e,e* € E be fived, where
(z,e) # (z*,e*). Consider the probability space defined by choosing k € &~'(5) at random, and let

~ ~

7 = Hg(z,e) and @ = Hy(z*,e*). Then 7 is uniformly distributed over a coset of T(x)" in TI* (the
precise coset depending on s, z, and e€), and T is uniformly and independently distributed over a
coset of Z(z*)! in II' (the precise coset depending on s, =¥, and e*). In particular, if the underlying

group system G is diverse, then H is 1/pt-universaly.

PRrOOF. Let (y1,...,7n) ='(z,€), and (7F,...,7;) = [(z*,e*). Let

p=(Hy,...,Hy, H,, ..., Hy,,,) € H*70
Now define the matrix M € Z2*(+2t-1) a9
1 M2 Yn
1 ")/1 ")12 e Fyn
1 "2 e Tn
M =
1 Ri) Y
1 A e Yn
1 REIT e Y
t colImns n—|—t71‘(':olumns

20

so that if

ST

(s st B 1) = MG,
then
T = (p1(z),...,p(z)) and @ = (pi(x), ..., p; (2))-
Claim. The rows of M are linearly independent modulo p for any prime p dividing |A(L)|.

The theorem is implied by the claim, as we now argue. By Lemma 9, the map T(M,.A(L))
is surjective. By Lemma 8, § is uniformly distributed over a coset of A(L)"*2~1 in Hn+2i-1
It follows that (p1,...,pt, AF,---,p;) is uniformly distributed over a coset of A(L)* in H?!, and
therefore, @ and 7* are uniformly and independently distributed over cosets of Z(x)* and Z(z*)?,
respectively, in TT'.

That proves the first statement of the theorem. The second statement of the theorem now
follows from Lemma 7.

So now it remains to prove the above claim. Fix a prime p dividing |.A(L)|, and for 1 < i < n,
let 4; and #; denote the images of y; and v, respectively, in Z,, and let M denote the image of M
n Z;tx(nwt_l), By the definition of I" and Lemma 6, we know that 7; # v for some 1 <4 < n; let
i’ be the least such 1.

Now, suppose that

(cla"'acta dla"'adn-f-t*l) = (ala"'aa‘ta bla"'abt)Ma

for
Cly-..,Ct, dla---;dn+t—1a A1y 04, b1,..., b € Zp.
Further suppose that c1,...,¢t, di,...,dptt—1 are all zero. To prove the claim, we need to show
that a1,...,a¢, b1,...,b; are all zero as well. It is clear from the structure of the matrix M, and
since ci, ..., c; are all zero, that we must have a; = —b; for all 1 < j <. By way of contradiction,

suppose that some a; # 0 for some 1 < j <, and let j' be the least such j. By direct calculation,
one sees that
dpyjr1 = aj (Yo — i) # 0,

which is a contradiction. That proves the claim. A

7.4 Examples of diverse group systems

In this section, we discuss two examples of diverse group systems that have cryptographic impor-
tance.

7.4.1 Example 1

Let G be a group of prime of prime order ¢, and let X = G", i.e., X is the direct product of r
copies of G. Let L be any proper subgroup of X, and let X = Hom(X,G). Consider the group
system G = (H, X, L, G).

The group X is isomorphic as a Zg-vector space to Zj. For the purposes of this discussion, let
us simply identify X with Z7 and G with Z,. Under this identification, L is a proper Zg-subspace
of X. Moreover, H can be identified with the vector space Zg, as follows: for every v € Zj, we
define ¢, € H to be the map that sends z € Zj to (z,v) € Zy, where (-,-) denotes the standard
inner product of vectors.

21

For any set U C Zg, A(U) is the orthogonal complement in Zj of the subspace of Zj generated
by U. Therefore, if U generates a subspace of dimension a, A(U) is a subspace dimension r — a.

Now suppose L has dimension d, and that z € X \ L. It follows .A(L) has dimension r — d, and
A(LU{z}) has dimension r — d — 1. This shows that G is diverse. Moreover, for any z € X \ L, we
have Z(z) = £,(A(L)) = Z4. Therefore, a projective hash family derived from G is 1/g-universal,
or equivalently, 0-smooth.

7.4.2 Example 2

Let X be a cyclic group of order a = bb', where b’ > 1 and ged(b,b’) = 1, and let L be the unique
subgroup of X of order b. Let # = Hom(X, X), and consider the group system G = (#, X, L, X).

The group X is isomorphic to Z,. If we identify X with Z,, then H can be identified with Z,
as follows: for every v € Z,, define ¢, € H to be the map that sends x € Z, to x - v € Z,.

The group X is of course also isomorphic to Zy X Zy. If we identify X with Zy x Zy, then L
corresponds to Zp x (0). Moreover, we can identify H with Zj x Zy as follows: for (v,v') € Zy X Zy,
let 9,,» € H be the map that sends (z,2') € Zy x Zy to (z-v,2' - V') € Zy X Zy.

Under the identification in the previous paragraph, it is evident that A(L) is the subgroup of
H generated by g 1. If we take any (z,z') € X \ L, so that 2’ # 0, we see that 9o 1(z,z') = (0,2').
Thus, 991 ¢ A(L U {(z,z')}), which shows that G is diverse. Therefore, a projective hash family
derived from G is 1/p-universal, where p is the smallest prime dividing b'.

It is also useful to characterize the group Z(z, z') = &£, »/(A(L)). Evidently, since A(L) = (40,1),
we must have Z(z,z') = (0) x (z').

8 Concrete encryption schemes

We present two new public-key encryption schemes secure against adaptive chosen ciphertext attack.
These are derived from the general construction in §6, although we also present several variations
that do not quite fit into this framework.

The first scheme is based on Paillier’s Decision Composite Residuosity assumption. Qurs is the
first practical public-key encryption scheme secure against adaptive chosen ciphertext attack under
this assumption.

The second is based on the classical Quadratic Residuosity assumption. Ours is the first public-
key encryption scheme secure against adaptive chosen ciphertext attack under this assumption that
is at all practical, as opposed to theoretical constructions such as [DDN].

Before presenting the new schemes, we show how the public-key encryption scheme from [CS]
can be viewed as a special case of our general construction.

8.1 Schemes based on the Decision Diffie-Hellman assumption

8.1.1 Derivation

We show how to derive a secure encryption scheme based on the Decision Diffie-Hellman assumption
from our generic encryption scheme construction in §6, together with our general techniques for
building universal projective hash families in §7.

The DDH assumption. Let G be a group of given large prime order q. We shall use additive
notation for G, and view G as a Zgmodule in the natural way. The Decision Diffie-Hellman

22

(DDH) assumption is the assumption that it is hard to distinguish tuples of the form

(90,91,790,7 1)

from tuples of the form
(907 g1,74go, Tgl)a

where g; and g; are randomly chosen from G, and r and r’ are randomly chosen from Z,.

To be completely formal, one should actually specify a sequence of distributions of groups, such
that for each value of a security parameter £ > 0, a description of a group G, together with ¢, can
be efficiently sampled from some distribution parameterized by ¢. Also, for such a group G, each
element of the group should have a unique, compact binary encoding, and it should be the case
that valid binary encodings of group elements are easily recognizable, that the group operation can
be efficiently implemented, and that random elements of G can be efficiently generated. We assume
that 1/¢ is bounded by € = €(¢) for all groups associated with security parameter ¢, where €(£) is a
negligible function in k.

There are many possible realizations of suitable groups G. For instance, let p be a large prime,
and let g be a large prime factor of p — 1. Then G is the unique sub-group of order g in Zj.
Alternatively, we can choose G as a prime-order subgroup of the group defined by an elliptic curve.

A subset membership problem. With G and ¢ given, we now define an instance of a subset mem-
bership problem as follows. Let gy and g; be randomly chosen elements of G. Define X = G x G,
and let L be the subgroup of X generated by (go,91) € X. A witness for (zg,z1) € L is w € Z,
such that (zg,z1) = (wgo,wg1). The instance description A consists of descriptions of G, ¢, go, and
gi1.

Obviously, one can efficiently sample a random element of L, together with a corresponding
witness, by generating w € Z, at random, and computing (zo, z1) = (wgo, wg1)-

It is clear that this defines a subset membership problem, and that the hardness of this subset
membership problem is implied by the DDH assumption for G.

Hash proof systems. Now it remains to construct appropriate strongly smooth and strongly
universals HPS’s for the construction in §6. To do this, we first construct a diverse group sys-
tem (see Definition 10), from which we can then derive the required HPS’s.

Fix an instance description A, where A specifies a group G of order ¢, along with gg,g91 € G,
and let X and L be groups as defined above. Let H = Hom(X, G), and consider the group system
G = (H,X,L,G). As shown in §7.4.1, G is a diverse group system.

Let K = Zg % Zg, and for (ko,k1) € K, let Hy r, € Hom(X,G) be the map that sends
(®0,71) € X to koxo + k121 € G. As discussed in §7.4.1, the correspondence (ko, k1) — Hy, i, is a
bijection between K and Hom(X, G).

Consider the projective projective hash family H = (H, K, X, L,G, G, a), where H and K are
as in the previous paragraph, and o maps (ko, k1) € K to Hy, k,(90,91) = kogo + k1g1 € G. It is
clear that H is a projective hash family derived from G, and so by Theorem 2 is 1/g-universal, or
equivalently, 0-smooth.

This immediately yields a strongly smooth HPS P corresponding to H — one simply needs
to verify that all the algorithms that must be provided by an HPS are available. This is rather
straightforward, and we leave the details to the reader (see the remark in the paragraph following
Definition 9).

So now we have a strongly smooth HPS P as needed for the construction in §6.

23

Applying the construction in Theorem 3 to H, we obtain a 1/g-universaly projective hash
family H for (X x G, L x G), and from this, a corresponding strongly universaly HPS P. Again, it
is straightforward to verify that all the necessary algorithms required by an HPS are available.

8.1.2 The encryption scheme

We now present in detail the encryption algorithm obtained from the HPS’s H and H above.
We describe the scheme in terms of a fixed group of G of order ¢. The message space for the

scheme is the group G.
Let I': G X G X G — Zyg be an efficiently computable injective map for an appropriate n > 1.

Key Generation
Generate gg,g1 € G at random and choose

k()akla kOakla kl,lakl,la"'7kn,07kn,1 € Zq

at random.

Compute
s=kogo+kigi €G, 5=kogo+kigi €G, 3 =kiggo+kiigi €G (i=1,...,n).

~

The public key is (go,g1; $; 8; 81,-.-,8n).
The private key is (k(), k‘l; ZI(), 211; /;}171, 1211,1, .en ,l?)n,o, kn,l)-

Encryption
To encrypt a message m € G under a public key as above, one does the following.

Choose w € Z4 at random, and compute

ro=wgo €G, r1=wg1 €G, Tt=wseCG, e=m+7eQG.

Compute

n
fF=wi+ Y wysi €G,
=1

where (y1,-..,%) = T'(zo,71,€) € Z7.

The ciphertext is (zg, 1, €, 7).

Decryption
To decrypt a ciphertext (zg,z1,e,7) € G* under a secret key as above, one does the following.

Compute
n n
' = (ko + Y _ vikio)zo + (ky + Y viki1)z € G,

i=1 i=1
where (y1,-..,7) = T'(zo,71,¢€) € Z7.
Check whether #’ = #; if not, then output reject and halt.

Compute
m=koxo+kir1 €G, m=e—7we€CG,

and output m.

24

Note that in the decryption algorithm, we are assuming that zg, z1,e, T are elements of G. This
implicitly means that the decryption algorithm should test that this is the case, and otherwise reject
the ciphertext. These tests may have a non-trivial computational cost, and so it is worth noting
that the test that # € G can be omitted, without changing the functionality of the decryption
algorithm.

This is precisely the scheme that our general construction in §6 yields, although we have simpli-
fied a few expressions using trivial algebraic identities. Thus, the scheme is secure against adaptive
chosen ciphertext attack, provided the DDH assumption holds. This scheme is essentially the
encryption scheme presented in §5.3 of [CS], with just a few very minor differences.

Minor variations. To obtain a more efficient scheme, one could drop the requirement that T' is
injective. This would allow us to use a smaller value of n, possibly n = 1, thereby obtaining a much
more compact and efficient scheme. It is straightforward to adapt our general framework to show
that if I" is a collision resistant hash function (CRHF), then we still get a scheme that is secure
against adaptive chosen ciphertext attack.

With a somewhat more refined analysis, one can show that a universal one-way hash function
(UOWHF) [NY1] suffices. This analysis requires some additional, special properties of the subset
membership problem; namely, that elements of X \ L can be efficiently sampled at random, and that
given appropriate “trapdoor” information (in this case, the discrete logarithm of g; with respect
to go), elements of X \ L can be efficiently distinguished from elements of L. When n = 1, the
resulting encryption scheme is the main encryption scheme presented in [CS], with just a few very
minor differences.

8.2 Schemes based on the Decision Composite Residuosity assumption
8.2.1 Derivation

The DCR assumption. Let p,q,p’,q be distinct odd primes with p = 2p’ +1 and ¢ = 2¢' + 1, and
where p’ and ¢ are both X bits in length. Let N = pq and N’ = p'q’. Consider the group Z%, and
the subgroup P of Z7,, consisting of all Nth powers of elements in Z7,.

Paillier’s Decision Composite Residuosity (DCR) assumption is that given only N, it is hard to
distinguish random elements of Z?, from random elements of P.

To be completely formal, one should specify specify a sequence of bit lengths A(£), parameterized
by a security parameter £ > 0, and to generate an instance of the problem for security parameter
£, the primes p’ and ¢’ should be distinct, random primes of length A = A(£), such that p = 2p' + 1
and g = 2¢’ + 1 are also primes.

The primes p’ and ¢’ are called Sophie Germain primes by mathematicians, while p and ¢ are
called strong (or safe) primes by cryptographers. It has never been proven that there are infinitely
many Sophie Germain primes. Nevertheless, it is widely conjectured, and amply supported by
empirical evidence, that the probability that a random A-bit number is Sophie Germain prime is
Q(1/)?). We shall assume that this conjecture holds, so that we can assume that problem instances
can be efficiently generated.

Note that Paillier did not make the restriction to strong primes in originally formulating the
DCR assumption. As will become evident, we need to restrict ourselves to strong primes for
technical reasons. However, it is easy to see that the DCR assumption without this restriction
implies the DCR assumption with this restriction, assuming that strong primes are sufficiently
dense, as we are here.

25

A subset membership problem. We can decompose Z};, as an internal direct product
Zy2 =GN -Gy -Gy T,

where each group G is a cyclic group of order 7, and T is the subgroup of Z%,, generated by
(—1 mod N2). This decomposition is unique, except for the choice of Gy (there are two possible
choices). For any x € Z},, we can express z uniquely as z = (G n)z(Gn')z(G2)z(T), where for
each G, z(G.) € G, and z(T) € T. Note that the element £ = (1+ N mod N?) € Z%;, has order
N, i.e., it generates Gy, and that £* = (1 + aN mod N?) for 0 < a < N.

Define the map

0:ZyN — {£1},
(amod N?) +— (a|N),

where (- | -) is the Jacobi symbol. It is clear that 8 is a group homomorphism.

Let X be the kernel of 0. It is easy to see that X = GnG T, since |Z},/X| =2 and T C X.
In particular, X is a cyclic group of order 2N N'. Let L be the subgroup of Nth powers of X. Then
evidently, L = Gn/T, and so is a cyclic group of order 2N’. These groups X and L will define our
subset membership problem.

Our instance description A will contain N, along with a random generator g for L. It is easy to
generate such a g: choose a random p € Z%,, and set g = —u?N. With overwhelming probability,
such a g will generate L; indeed, the output distribution of this sampling algorithm is O(27*)-close
the uniform distribution over all generators.

Let us define the set of witnesses as W = {0,..., | N/2]}. We say w € W is a witness for z € X
if z = g". To generate = € L at random together with a corresponding witness, we simply generate
w € W at random, and compute x = g¥. The output distribution of this algorithm is not the
uniform distribution over L, but one that is O(27*)-close to it.

This completes the description of our subset membership problem. It is easy to see that it
satisfies all the basic requirements specified in §4. The reason for using (X, L) instead of (Z},, P)
is that Z%,, and P are not cyclic, which is inconvenient for a number of technical reasons.

Next, we argue that the DCR assumption implies that this subset membership problem is hard.
Suppose we are given z sampled at random from Z},, (respectively, P). If we choose b € {0,1}
at random, then z%(—1)° is uniformly distributed over X (respectively, L). This implies that
distinguishing X from L is at least as hard as distinguishing Z%,, from P, and so under the DCR
assumption, it is hard to distinguish X from L. It is easy to see that this implies that it is hard to
distinguish X \ L from L as well.

Hash proof systems. Now it remains to construct appropriate strongly smooth and strongly
universaly HPS’s for the construction in §6. To do this, we first construct a diverse group sys-
tem (see Definition 10), from which we can then derive the required HPS’s.

Fix an instance description A, where A specifies an integer N — defining groups X and L as
above — along with a generator g for L. Let H = Hom(X, X) and consider the group system
G = (H,X,L,X). As discussed in §7.4.2, G is a diverse group system; moreover, for x € X, we
have Z(z) = (z(Gn)); thus, for x € X \ L, Z(x) has order p, g, or N, according to whether z(Gy)
has order p, ¢, or N.

For k € Z, let H;, € Hom(X, X) be the kth power map; that is, H;, sends z € X to z* € X.
Let K, ={0,...,2NN’—1}. As discussed in §7.4.2, the correspondence k — Hj, yields a bijection
between K, and Hom(X, X).

26

Consider the projective hash family H, = (H, K,,X,L, X, L,«a), where H and K, are as in
the previous paragraph, and a maps k € Z to Hi(g) € L. Clearly, H, is a projective hash family
derived from G, and so by Theorem 2, it is 2~*-universal. From this, we can obtain a corresponding
HPS P; however, as we cannot readily sample elements from K, the projective hash family H that
P associates with the instance description A is slightly different than H,; namely, we use the set
K ={0,...,[N?/2]} in place of the set K., but otherwise, H and H, are the same. It is readily
seen that the uniform distribution on K, is O(2~*)-close to the uniform distribution on K, and so
H and H, are also O(27*)-close (see Definition 5). It is also easy to verify that all of the algorithms
that P should provide are available.

So we now have a 2~*®-universal HPS P. We could easily convert P into a strongly smooth
HPS by applying the Leftover Hash Lemma construction in Lemma 4 to the underlying universal
projective hash family H,. However, there is a much more direct and practical way to proceed, as
we now describe.

According to Theorem 2, for any s,z € X, if k is chosen at random from K, subject to a(k) = s,
then Hy(x) is uniformly distributed over a coset of Z(z) in X. As discussed above, Z(z) = (z(Gy)),
and so is a subgroup of Gy. Moreover, for random z € X \ L, we have Z(z) # Gy with probability
at most 271

Now define the map

X:ZNz — ZN,
(@ +bN mod N?) — (bmodN) (0<a,b< N).

This map does not preserve any algebraic structure; however, the restriction of x to any coset of
Gy in X is a one-to-one map from that coset onto Zy. To see this, let z = (a +bN mod N?) € X,
where 0 < a,b < N, and note that we must have gcd(a,N) = 1; for 0 < ¢ < N, we have
z€¢ = (a+ (ac+b)N mod N), and so x(z£¢) = (ac+ b mod N). For a, b fixed as above, as c ranges
over {0,...,N — 1}, we see that (ac + b mod N) ranges over Zy.

Let us define HY = (H*, K,, X, L,Zn, L,), where for k € Z, H = x o Hy. That is, H} is the
same as H,, except that in H}, we pass the output of the hash function for H, through x. From
the observations in the previous two paragraphs, it is clear that HX is a 2=**1-smooth projective
hash family. From H} we get a corresponding approximation H* (using K in place of K,), and
from this we get corresponding 2-*9+1-smooth HPS P*.

We can apply the construction in Theorem 3 to H,, obtaining a 2~ *-universal, projective hash
family H, for (X x Zy, L x Zy). From H, we get a corresponding approximation H (using K in
place of K,), and from this we get a corresponding 2-M®)_yniversaly, extended HPS P.

We could build our encryption scheme directly using f’; however, we get more compact ci-
phertexts if we modify H, by passing its hash outputs through y, just as we did in building H},
obtaining the analogous projective hash family I:I;< for (X X Zy,L x Zy). From Theorem 4, and
the above discussion, it is clear that HX is also 2~ *-universaly. From HX we get a corresponding
approximation HX (using K in place of K,), and from this we get a corresponding 2-20_universaly
extended HPS P*.

8.2.2 The encryption scheme

We now present in detail the encryption scheme obtained from the HPS’s P* and P> above.
We describe the scheme for a fixed value of N that is the product of two (A + 1)-bit strong
primes. The message space for this scheme is Zy.

27

Let X, L, 6, and x be as defined above. Also, let W = {0,...,|N/2]} and K = {0,...,|N?/2]},
as above. Let R = {0, ... 2 — 1}, and let I' : Z y2 X Zy — R™ be an efficiently computable injective
map for an appropriate n > 1. For sufficiently large A\, n = 7 suffices.

Key Generation
Choose p € Z7» at random and set g = —u*N e L.

Choose

at random, and compute

The public key is (g; s; §; §1,.-.,8n)-
The private key is (k; k; ki,..., ky).
Encryption
To encrypt a message m € Zy under a public key as above, one does the following.

Choose w € W at random, and compute

z=g" €L, y=s"€e€L, nw=x(y) €EZNn, e=m+mEZLN.

Compute
n
g=35"T[sF" €L, #=x(@) €Zn,
i=1

where (v1,...,7) =(z,e) € R™.
The ciphertext is (z,e, 7).
Decryption

To decrypt a ciphertext (z,e,#) € X X Zy x Zy under a secret key as above, one does the
following.

Compute) A
§=a"tXiiki ¢ X &' = x(9) € Zn,
where (v1,...,v,) =(z,e) € R™.
Check whether & = #'; if not, then output reject and halt.
Compute
y=zFeX, m=x(y) €EZy, m=e—7 € Ly,

and output m.

Note that in the decryption algorithm, we are assuming that x € X, which implicitly means that
the decryption algorithm should check that = € Z},, and that 6(z) = 1, and reject the ciphertext
if this does not hold.

This is precisely the scheme that our general construction in §6 yields. Thus, the scheme is
secure against adaptive chosen ciphertext attack, provided the DCR assumption holds.

28

Minor variations. As in §8.1, if we replace I' by a CRHF we get an even more efficient scheme
with a smaller value of n, possibly even n = 1. Moreover, as in §8.1, a UOWHF suffices, although
this requires a more involved analysis.

Note that in this scheme, the factorization of N is not a part of the private key. This would
allow, for example, many parties to work with the same modulus N, which may be convenient
in some situations. Alternatively, if we include the factorization of N in the private key, some
optimizations in the decryption algorithm are possible, such as Chinese Remaindering techniques.

8.2.3 Variation 1

We now describe a variation on the above scheme. This variation is a bit simpler (but only
marginally more efficient) than the scheme in §8.2.2. This scheme does not quite fit into our
general framework, but can nevertheless be proven secure using the same basic ideas. This variation
demonstrates that some aspects of the design of the scheme in §8.2.2 were carefully crafted so as
to make that scheme fit into the general framework, but are not really necessary. We use this
variation, along with the one in §8.2.3, as motivation for exploring some natural extensions to our
general encryption framework.

We describe the scheme for a fixed value of N that is the product of two (A + 1)-bit strong
primes. The message space for this scheme is Zy.

Let L' = Gy, and let x be as defined as in §8.2.1. Also, let W' = {0,...,|N/4]} and
K ={0,...,|N%/2]}. Let R ={0,...,2* — 1}, and let T : Zy2 x Zy — R" be an efficiently
computable injective map for an appropriate n > 1.

Key Generation
Choose p € Z};» at random and set g = N el

Choose
at random, and compute

s=gtel, s=¢cl, ;=g cl’ (i=1,...,n).
The public key is (g; s; §; 81,-.-,8n).

The private key is (k; k; Eq,. .. ,I%n)

Encryption
To encrypt a message m € Zy under a public key as above, one does the following.

Choose w € W' at random, and compute

z=g¥el, y=s"e€lL', n=x(y) €Zn, e=m+7 € L.

Compute

where (v1,...,v) =(z,e) € R™.
The ciphertext is (z, e, 7).

29

Decryption
To decrypt a ciphertext (z,e,7) € Z}» X Zy x Zy under a secret key as above, one does the
following.

Compute i)
§ = R viki c Z}‘vz, A = X(?)) € Zn,

where (v1,...,v) =(z,e) € R™.
Check whether # = #'; if not, then output reject and halt.

Compute
yzxkEZ}‘vz, m=x(y) €EZy, m=e—m € L,

and output m.

Note that in the decryption algorithm, we are assuming that z € ZY,, which implicitly means

that the decryption algorithm should check that this is the case, and reject the ciphertext if this
does not hold.

The only differences between this variation and the scheme in §8.2.2 are that in this variation,
(1) g is computed as p?V, rather than as —u?", (2) w is chosen at random from W', rather than
from W, and (3) the decryption algorithm checks that x € Z3,, but does not additionally check
that 0(z) = 1.

Security analysis. Since this scheme does not fit into our general framework, we have to analyze
its security. This scheme is secure against adaptive chosen ciphertext attack, under the DCR
assumption. To prove this, we briefly sketch how our general framework can be extended so that
this scheme fits into the framework.

Let us first consider a generalization of the notion of a smooth projective hash family. Let
H = (H,K,X,L,1IIS, «a) be a projective hash family, and let X’ C X. We define two random
variables, Ux/(H) and Vx/(H), as follows. Consider the probability space defined by choosing
k € K at random, z € X'\ L at random, and 7' € II at random. We set Ux:(H) = (z, s, ') and
Vx:(H) = (z,s,m), where s = a(k) and m = Hi(z). For € > 0, we say that H is e-smooth over X'
if Ux:(H) and Vx'(H) are e-close.

Let us next consider the following generalization of a subset membership problem. In this
generalization, an instance description specifies sets X, L, and W, and the relation R just as for
an ordinary subset membership problem, but in addition specifies a set X’ C X. The instance
sampling algorithm should behave just as for an ordinary subset membership problem; also, just
as for an ordinary subset membership problem, it should be easy to recognize valid encodings of
elements of X (but not necessarily X'). However, the subset sampling algorithm is a bit different
from that of an ordinary subset membership problem: the distribution of the output z should
be statistically close to the uniform distribution on X’ N L (rather than L). Also, the notion of
hardness for a generalized subset membership problem is slightly different from that for an ordinary
subset membership problem: hardness means that it it computationally hard to distinguish random
elements of X'\ L from random elements of X’ N L (rather than to distinguish random elements of
X \ L from random elements of L).

We also generalize the notion of a hash proof system, as follows. A hash proof system P for a
generalized subset membership problem M associates with each instance A[X,L, W, R, X'] of M a
projective hash family H = (H, K, X, L, 11, S,), as well as a finite set S’ and an auziliary function
o : K — §'. As for a hash proof system for an ordinary subset membership problem, there

30

should be efficient algorithms to sample random elements of K, and to recognize valid encodings
of elements of II; also, the private evaluation algorithm should efficiently compute Hy(z) given
the instance description A along with & € K and z € X. However, we do not require an efficient
algorithm to compute a(k) given the instance description A along with £ € K; rather, we only
require an efficient algorithm to compute o/ (k) given the instance description A along with k € K;
moreover, we require that for all k¥ € K, the value of (k) determines the value of o/(k). Also, the
public evaluation algorithm should efficiently compute Hy(z) given the instance description A along
with o/(k) € S', z € X' N L, and a witness w € W for z. Note that although the private evaluation
algorithm should work for all z € X, including z € X \ X', the public evaluation algorithm need
only work for z € X' N L, and need not work for z € L'\ X'.

The definitions of €(£)-universal and e(£)-universal, hash proof systems for ordinary subset
membership problems extend verbatim to hash proof systems for generalized subset membership
problems. However, in defining an €(£)-smooth hash proof system for a generalized subset mem-
bership problem, the requirement is that the underlying projective hash family is €(£)-smooth over
X'

It is easy to adapt the generic encryption scheme presented in §6 to work with generalized hash
proof systems. We sketch how this is done. Let M be a generalized subset membership problem
specifying a sequence (Iy)¢>¢ of instance distributions. Let P be a strongly smooth HPS for M,
and for fixed £ > 0 and A[X,L,W,R,X'] € [Ij], let H = (H,K, X, L,1I, S, @) be the associated
projective hash family, and let o/ : K — S’ be the associated auxiliary function. As in §6, we assume
that II is an abelian group. Let P bea strongly universaly extended HPS for M, and for fixed £ > 0
and A[X,L,W, R, X'] € [I], let H-= (ﬂ, K, X xII,LxIL,11, S, &) be the associated projective hash
family, and let & : K — §' be the associated auxiliary function. For the key generation algorithm,
we choose k € K and k € K at random, and compute s' = o/(k) and § = &' (k); the public key
is (', §), and the private key is (k, k). The encryption algorithm is almost the same as in §6; the
only difference is that z is chosen at random from X' N L, and the computations of Hy(z) and
H ;(z,e) using the public evaluation algorithms of P and P make use of the values s’ and §'. The
decryption algorithm is identical to that in §6.

It is easy to adapt the proof of Theorem 1 to show that this scheme is secure against adaptive
chosen ciphertext attack assuming the underlying generalized subset membership problem is hard.
One uses the same simulator as in the proof of Theorem 1, except that now it is used to distinguish
random elements of X'\ L from random elements of X’ N L. Except for this change, the proof of
Theorem 1 carries through verbatim.

We now show how our variation of the DCR-based scheme fits into the above extended frame-
work and is secure under the DCR assumption.

We first describe the generalized subset membership problem. For N as above, let X = Z7,,
L =GnGoT, and let X' = GyGnr. Note that X' N L = Gy = L'. An instance description A will
contain N, along with a generator g for L'. To generate such a g, one can simply choose p € Z%
at random, and compute g = u?". The set of witnesses is W' as defined as above, and we say that
w € W' is a witness for z € X if x = g%. Tt is clear that if we choose w € W' at random, and set
z = g¥, then we get a nearly random z € L' together with a corresponding witness w € W'. That
completes the description of our generalized subset membership problem.

The DCR assumption implies the hardness of this generalized subset membership problem.
Indeed, recall that P is the subgroup of Nth powers of Z%,. Evidently, P = GnGoT = L.
Suppose we are given z sampled at random from Z3,, (respectively, P); then 2?2 is uniformly
distributed over X' (respectively, L'). This implies that distinguishing X' from L' is at least as
hard as distinguishing 77, from P, and so under the DCR assumption, it is hard to distinguish X'

31

from L'. Tt is easy to see that this implies that it is hard to distinguish X'\ L’ from L’ as well.

For k € Z, let Hy, be the kth power map on X; that is, H; maps z € X to z*¥ € X. Consider the
group system G = (H, X, L, X), where H = {Hy : k € Z}. Let K, = {0,...,2NN’' — 1}. Since X
has exponent 2NN, we see that the correspondence k — Hj, yields a bijection between K, and H.
We leave it to the reader to verify that G is diverse, and moreover, for any z € X, Z(z) = (z(Gn)).

Consider the derived projective hash family H, = (H, K,, X, L, X, S,), where H and K, are
as in the previous paragraph, S = L' x Gy x T, and for k € Z, we define a(k) = (g*, g¥, g%), where
g1 generates G5 and g2 = (—1 mod N?) generates 7. In building a hash proof system from H,, we
also define the auxiliary function o/ that sends k € Z to g* € L', and as usual, we use the set K in
place of K,. Using H, as the starting point, one sees that the variation presented in this section
follows from precisely the same line of reasoning as in §8.2.1. It follows that the scheme is secure
under the DCR assumption.

Minor variations As usual, instead of using an injective function I', we can use a CRHF, or even
a UOWHF. In this case, we could typically take n = 1.

8.2.4 Variation 2

We describe another variation on the scheme in §8.2.2 that does not quite fit into our general
framework, but can still be easily proven secure against adaptive chosen ciphertext attack using
the techniques we have developed. In this variation, the ciphertexts are not as compact as those in
the schemes in §8.2.2 and §8.2.3; however, the ciphertexts have more algebraic structure. A scheme
such as this may be useful in certain applications.

We describe the scheme for a fixed value of N that is the product of two (A + 1)-bit strong
primes. The message space for this scheme is Zy.

Let X' = GyGnr and let L' = Gyr. Also, let W' = {0,...,|N/4]|} and K = {0,...,[N?/2]}.
Let R={0,...,2* =1}, and let T : Zy2 X Zy> — R"™ be an efficiently computable injective map
for an appropriate n > 1.

The key generation algorithm of this variation is identical to that of the scheme in §8.2.3. Only
the encryption and decryption algorithms are different. Recall that ¢ = (1 + N mod N?) € Z%,
has order N, and that for 0 < a < N, £ = (1 + aN mod N2).

Encryption
To encrypt a message m € Zy under a public key as above, one does the following.

Choose w € W' at random, and compute

r=gvel, r=s"el, e=¢".-meX.

Compute
n
a=3"][s)" eL,
=1
where (71,...,7) = IT'(z,e) € R".
The ciphertext is (z, e, 7).

Decryption
To decrypt a ciphertext (z,e,7) € Z},» X Z%};» X Z}, under a secret key as above, one does
the following.

32

Compute i A

7 = xk+2?:1 Yik; € Zj\]%
where (v1,...,v) =(z,e) € R™.
Check whether # = #'; if not, then output reject and halt.

Compute
r=zFeX', m=e-n! € L.

If i = €™ for some m € Zy, output m; otherwise, output reject.

Again, we implicitly assume that the decryption algorithm checks that z, e, and 7 lie in Z7,.
Clearly, however, the test that z € Z%, (and e € Zy2 and 7 € Zy») is sufficient, since if z € Z7,,
and either e ¢ Z%, or T ¢ Z7,, the ciphertext will anyway be rejected for other reasons.

Security analysis. This scheme is secure against adaptive chosen ciphertext attack, under the DCR
assumption. To prove this, we briefly sketch how our general framework, as already extended in
§8.2.3, can be further extended so that this scheme fits into the framework.

All we need to do is define an appropriate generalization of a smooth projective hash family.
Let H = (H,K, X, L, 11, S,a) be a projective hash family, and let X' C X. Further, suppose
that II is an abelian group (for which we use additive notation), and that II' is a subgroup of II.
We define two random variables, U}}: (H) and V)?,' (H), as follows. Consider the probability space
defined by choosing k € K at random, z € X'\ L at random, and 7’ € II' at random. We set
UW(H) = (z,s,7" +7) and VIV (H) = (z, s,7), where s = a(k) and 7 = Hy(z). For e > 0, we say
that H is e-smooth over X’ on II" if UL, (H) and VY (H) are e-close.

In building an encryption scheme using such a smooth projective hash family, IT' will be the
message space, rather than II, and we require that it is easy to recognize valid binary encodings of
elements of IT'.

We leave it to the reader to fill in all of the details of this extension, as well as to adapt the
proof of Theorem 1 to this extension.

In the encryption scheme described above, we take II = Z*N2 and II' = G . We leave it to the
reader to fill in the remaining details of the analysis of this scheme.

Minor variations. As usual, instead of using an injective function I', we can use a CRHF, or even
a UOWHF. In this case, we could typically take n = 1.

8.3 Schemes based on the Quadratic Residuosity assumption
8.3.1 Derivation

The QR assumption. Let p,q,p’,q be distinct odd primes with p = 2p' +1 and ¢ = 2¢' + 1, and
where p’ and ¢’ are both A bits in length. Let N = pg and let N' = p'q’. Consider the group Z%,
and let X be the subgroup of elements (a mod N) € Z} with Jacobi symbol (a | N) = 1, and let
L be the subgroup of squares (a.k.a., quadratic residues) of Z%.. Note that L is a subgroup of X of
index 2.

The Quadratic Residuosity (QR) assumption is that given only N, it is hard to distinguish
random elements of X from random elements of L. This implies that it is hard to distinguish
random elements of X \ L from random elements of L.

33

To be completely formal, one should specify specify a sequence of bit lengths A(£), parameterized
by a security parameter £ > 0, and to generate an instance of the problem for security parameter
£, the primes p' and ¢’ should be distinct, random primes of length A = A(¢), such that p = 2p’ + 1
and ¢ = 2¢’ + 1 are also primes.

As in §8.2, we shall assume that strong primes (such as p and g) are sufficiently dense. Note that
the traditional QR assumption was not restricted to strong primes. However, the QR assumption
without this restriction implies the QR assumption with this restriction, assuming that strong
primes are sufficiently dense, as we are here.

A subset membership problem. The groups X and L above will define our subset membership
problem.
We can decompose Z% as an internal direct product

5 =Gy Gy T,

where each group G, is a cyclic group of order 7, and T is the subgroup of Z%, generated by
(=1 mod N). This decomposition is unique, except for the choice of G5 (there are two possible
choices).

It is easy to see that X = Gn/T), so it is a cyclic group, and that L = G .

Our instance description A will contain NV, along with a random generator g for L. It is easy to
generate such a g: choose a random p € Z%;, and set g = w?. With overwhelming probability, such
a g will generate L; indeed, the output distribution of this sampling algorithm is O(27*)-close the
uniform distribution over all generators.

Let us define the set of witnesses as W = {0,...,|N/4]}. We say w € W is a witness for z € X
if z = g”. To generate ¢ € L at random together with a corresponding witness, we simply generate
w € W at random, and compute z = ¢g¥. The output distribution of this algorithm is not the
uniform distribution over L, but is O(27*)-close to it.

This completes the description of our subset membership problem. It is easy to see that it
satisfies all the basic requirements specified in §4. As already mentioned, the QR assumption
implies that this is a hard subset membership problem.

Hash proof systems. Now it remains to construct appropriate strongly smooth and strongly
universals HPS’s for the construction in §6. To do this, we first construct a diverse group sys-
tem (see Definition 10), from which we can then derive the required HPS’s.

Fix an instance description A, where A specifies an integer N — defining groups X and L as
above — along with a generator ¢ for L. Let H = Hom(X, X) and consider the group system
G=H,X,LX).

As discussed in §7.4.2, G is a diverse group system; moreover, for z € X, if we decompose = as
z = z(L) - z(T), where z(L) € L and z(T') € T, then we have Z(z) = (z(T)); thus, for z € X \ L,
I(z)=T.

For k € Z, let Hy € Hom(X, X) be the kth power map; that is, Hy sends z € X to z* € X.
Let K, = {0,...,2N" — 1}. As discussed in §7.4.2, the correspondence k — Hj, yields a bijection
between K, and Hom(X, X).

Consider the projective hash family H, = (H, K,, X, L, X, L,«), where H and K, are as in
the previous paragraph, and « maps k € Z to Hy(g) € L. Clearly, H, is a projective hash family
derived from G, and so by Theorem 2, it is 1/2-universal. From this, we can obtain a corresponding
HPS P; however, as we cannot readily sample elements from K, the projective hash family H that

34

P associates with the instance description A is slightly different than H,; namely, we use the set
K ={0,...,|N/2]} in place of the set K,, but otherwise, H and H, are the same. It is readily
seen that the uniform distribution on K, is O(27*)-close to the uniform distribution on K, and so
H and H, are also O(27*)-close. It is also easy to verify that all of the algorithms that P should
provide are available.

So we now have a 1/2-universal HPS P. We can apply the construction in Lemma 1 to H,,
using a parameter ¢ = t(£), to get a 2 ‘-universal projective hash family H,. From H, we get
a corresponding approximation H (using K in place of K,), and from this we get corresponding
2~ t_universal HPS P.

Now, we could easily convert P into a strongly smooth HPS by applying the Leftover Hash
Lemma construction in Lemma 4 to the underlying projective hash family H,. However, there is a
much more direct and practical way to proceed, as we now describe.

According to Theorem 2, for any s,z € X, if k is chosen at random from K, subject to a(k) = s,
then Hy(z) is uniformly distributed over a coset of Z(z) in X. As discussed above, for z € X \ L,
I(z)=T.

Now define the map x : Zy — Zg as follows: for = (a mod N) € Z};, with 0 < a < N, let
x(z) =1if a > N/2, and x(z) = 0 otherwise. It is easy to verify that the restriction of x to any
coset of T in X (which is a set of the form {£z} for some z € X) is a one-to-one map from that
coset onto Zs.

Let us define HY = (H*,K,,X,L,Zy, L,a), where for k € Z, H;' = x o Hy. That is, H} is
the same as H,, except that in H}, we pass the output of the hash function for H, through y.
From the observations in the previous two paragraphs, it is clear that H} is a 1/2-universal, and
so 0-smooth, projective hash family.

Now, we can apply the construction in Lemma 1 to H with the parameter ¢t = ¢(£) to get a 0-
smooth projective hash family H)* whose hash output space is Z5. From H} we get a corresponding
approximation H* (using K in place of K,), and from this we get corresponding 0-smooth HPS
P*.

We can apply the construction in Theorem 4 to H,, using a parameter = £(£), obtaining a
2~ -universaly projective hash family H, for (X x Z}, L x Z%). From H, we get a corresponding
approximation H (using K in place of K,), and from this we get a corresponding 2~ _universals
extended HPS P.

We could build our encryption scheme directly using f’; however, we get more compact ci-
phertexts if we modify H, by passing its hash outputs through yx, just as we did in building H,
obtaining the analogous projective hash family HX for (X x Z5 L x Z%). From Theorem 4, and
the above discussion, it is clear that HX is also 2-tuniversal,. From HX we get a corresponding
approximation H* (using K in place of K,), and from this we get a corresponding 2~ _yniversal,
extended HPS PX.

8.3.2 The encryption scheme

We now present in detail the encryption obtained using the HPS’s P* and P* above.

We describe the scheme for a fixed value of N that is product of two (A + 1)-bit strong primes.
The message space for this scheme is Z!, where t = t(£) is an auxiliary parameter. Note that ¢ may
be any size — it need not be particularly large. We also need an auxiliary parameter £ = #(£). The
value of ¢ should be large; more precisely, 2= should be a negligible function in £.

Let X, L, and x be as defined above. Also as above, let K = {0,...,|N/2]}, and W =
{0,...,[N/4|}. Let T : Zy x Z§ — {0,1}" be an efficiently computable injective map for an

35

appropriate n > 1.

Key Generation
Choose p € Z% at random and set g = p? € L.

Randomly choose

~ ~

kl,...,k‘t, ;:1,...,]25, kl?""kn—f—f—l € K.

Compute

s = gMiel (i=1,...,1),

S = glEL (Z:]-aaf)a

5 = gfel (i=1,....,n+1-1).
The public key is (g; s1,...,5¢ 81,---5 85 81,-++,8,,5 1)

The private key is (l{}l, [P ,k‘t;]:}1, - .,sz; 1211, R ’]%n—kf—l)'

Encryption
To encrypt a message m € Z5 under a public key as above, one does the following.

Choose w € W at random, and compute

z=g", yi=s €L (i=1,...,1).

Compute
™= (x(¥1);--->x(t)) € Zga e=m+mEe Z%-
Compute
Zi = 8§/ €L (1=1,...,1),
Z = 8YeL (G=1,...,n+t-1),
gji = éi H?:1(2i+j—1)7j €L (’L = 1, ... ,t),
where (v1,...,7v) = [(z,e) € {0,1}".
Compute

= (X(gl)a s ,X(gf)) € Z2'
The ciphertext is (z, e, 7).
Decryption

To decrypt a ciphertext (z,e,7) € X x Z% x Z’; under a private key as above, one does the
following.

Compute i)
gi = gbtXimvikivioi e X (1=1,...
where (v1,-...,7) = I'(z,e) € {0,1}".

Compute

Sk
SN—r

' = (X(@l)’ s 7X('gf)) € Z%
Check whether # = #'; if not, then output reject and halt.

Compute
yi:mkieX (1=1,...,1t), w:(x(yl),...,x(yt))EZ%, m:e—weZg,

and output m.

36

Note that in the decryption algorithm, we are assuming that z € X, which implicitly means
that the decryption algorithm should check that z = (e mod N) with Jacobi symbol (a | N) = 1.

This is precisely the scheme that our general construction in §6 yields. Thus, the scheme is
secure against adaptive chosen ciphertext attack, provided the QR assumption holds.

Minor variations. As in §8.1, if we replace I' by a CRHF we get an even more efficient scheme
with a smaller value of n. In fact, just a UOWHF suffices.

Note that in this scheme, the factorization of N is not a part of the private key. This would
allow, for example, many parties to work with the same modulus NN, which may be convenient
in some situations. Alternatively, if we include the factorization of N in the private key, some
optimizations in the decryption algorithm are possible, such as Chinese Remaindering techniques.

Efficiency. While this scheme is not nearly as efficient as our schemes based on the DDH and
DCR assumptions, it is based on an assumption that is better established and qualitatively weaker
than either of these assumptions. Moreover, the scheme may just be practical enough for some
applications. Let us consider some concrete security parameters. We might choose N to be a
1024-bit number. If we use this scheme just to encrypt a symmetric encryption key, then ¢ = 128
is a reasonable value. Setting £ = 128 is also reasonable. If we implement I' using a hash function
like SHA-1, then we can take n = 160.

With these choices of parameters, the size of a public or private key will be less than 70KB.
Ciphertexts are quite compact, requiring 160 bytes. An encryption takes less than 600 1024-bit
exponentiations modulo N; this will take about 10 seconds or so on typical a 1GHz PC. A decryption
will require about half as many exponentiations modulo N, and so without any optimizations, this
would take roughly half as much time as encryption; however, if we use the Chinese Remaindering
optimizations mentioned above, this should cut the running time further by a factor of between 3
and 4; also, if we exploit the fact that all exponentiations in the decryption algorithm are to the
same basis, further significant optimizations are possible, bringing the time for a decryption down
to around one second or less.

So clearly, this scheme is not suitable for, say, implementation on a smart card. However, it is
not astronomically impractical, either.

8.3.3 A variation

We now describe a variation on the above scheme. This variation is analogous to the variation of
our basic DCR-based scheme, described in §8.2.4. The ciphertexts in this scheme are much less
compact than those in the scheme above in §8.3.2, but have more algebraic structure, which may
be useful in some applications.

We describe the scheme for a fixed value of N that is product of two (A 4 1)-bit strong primes.
The message space for this scheme is Z%, where ¢t = #(¢) is an auxiliary parameter. We also need
an auxiliary parameter £ = £(¢), where 274 is a negligible function in £.

Let X and L be as defined in §8.3.1. Also as in §8.3.1, let K = {0,...,|N/2|}, and W =
{0,...,[N/4|}. Let T : Zy x Z% — {0,1}" be an efficiently computable injective map for an
appropriate n > 1.

The key generation algorithm is the same as that in §8.3.2. We describe only the encryption
and decryption algorithms.

37

Encryption
To encrypt a message m = (m1,...,m;) € Z% under a public key as above, one does the
following.

Choose w € W at random, and compute

z=g", yi=s €L (1=1,...,1).

Compute
e=((-1)™yp,...,(—1)™y) € X
Compute
Zi = 57 €l (’i=1,...,t),
Z = §¥elL (Gi=1,...,n+t—-1),
U = Z H?:1(2i+j_1)7j e L (’L =1,... ,t),
where (v1,...,v) = [(z,e) € {0,1}".
Compute

7= (91,---,9;) € Lt
The ciphertext is (z,e, 7).

Decryption i
To decrypt a ciphertext (z,e,7) € X x X! x X* under a private key as above, one does the
following,.

Compute . .
i = Rt =1 Vikivi 1 eX (i=1,...,1),

where (71,...,7,) = (z,e) € {0,1}".

Compute
!

= (glaagf) EXt'

Check whether & = #'; if not, then output reject and halt.

Compute
Y; ::vki e X, m; :yi/ei e X (Z = 1,...,t),

where e = (e1,...,e). If for 1 <4 <, m; is of the form ((—1)™ mod N) for some m; € Zo,
then output m = (mq,...,m;); otherwise, output reject.

Note that in the decryption algorithm, we are assuming that z € X, which implicitly means
that the decryption algorithm should check that z = (@ mod N) with Jacobi symbol (a | N) = 1.
It is sufficient to check that the components of e and 7 are elements of Z y; if they are not elements
of X as well, the ciphertext will anyway be rejected.

It is easy to show that this scheme is secure under the QR assumption, using the extended frame-
work sketched in §8.2.4 (one takes II = X and II' = T in the generalized smoothness definition),
along with the analysis in §8.3.1. We leave the details to the reader.

As usual, instead of using an injective function I', we can use a CRHF, or even a UOWHF,
allowing one to use a smaller value of n.

38

Acknowledgments

Thanks to Ivan Damgaard for noting an improvement in the 1/p-bound stated in Theorem 2, and
thanks to Amit Sahai and Yehuda Lindell for useful discussions.

References

[BR] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing effi-
cient protocols. In Proc. ACM Computer and Communication Security '93, ACM Press,
1993.

[CGH] R. Canetti, O. Goldreich, and S. Halevi. The random oracle model, revisited. In Proc.
STOC ’98, ACM Press, 1998.

[CW] J. Carter and M. Wegman. Universal classes of hash functions. Journal of Computer and
System Sciences, 18:143-154, 1979.

[CS] R. Cramer and V. Shoup. A practical public key cryptosystem secure against adaptive
chosen cipher text attacks. In Proc. CRYPTO 98, Springer Verlag LNCS, 1998.

[DDN] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM Journal on Com-
puting, 30:391-437, 2000. Extended abstract in Proc. STOC ’91, ACM Press, 1991.

[L] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University Press,
1996.

[NY1] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic appli-
cations. In Proc. STOC ’89, ACM Press, 1989.

[NY2] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In Proc. STOC ’90, ACM Press, 1990.

[P] P. Paillier. Public-key cryptosystems based on composite degree residue classes. In Proc.
EUROCRYPT 99, Springer Verlag LNCS, 1999.

[RS] C. Rackoff and D. Simon. Non-interactive zero knowledge proof of knowledge and chosen
ciphertext attacks. In Proc. CRYPTO ’91, Springer Verlag LNCS, 1991.

[WC] M. Wegman and J. Carter. New hash functions and their use in authentication and set
equality. Journal of Computer and System Sciences, 22:265-279, 1981.

ECCC ISSN 1433-8092
39 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/publ/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

