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1 Introduction

Branching programs (BPs) or Binary Decision Diagrams (BDDs) are a well-established
representation type or computation model for Boolean functions.

Definition 1. A branching program (BP) or binary decision diagram (BDD) on the
variable set Xn = {x1, . . . , xn} is a directed acyclic graph with one source and two sinks
labeled by the constants 0 or 1, respectively. Each non-sink node (or inner node) is
labeled by a Boolean variable and has two outgoing edges, one labeled by 0 and the other
by 1. At each node v a Boolean function fv : {0, 1}n → {0, 1} is represented. A c-sink
represents the constant function c. If fv0

and fv1
are the functions at the 0- or 1-successor

of v, resp., and v is labeled by xi, then fv is defined by Shannon’s decomposition rule
fv(a) := aifv0

(a)∨ aifv1
(a). A BP with source q represents the Boolean function fq. An

input a ∈ {0, 1}n activates all edges consistent with a, i.e., the edges labeled by ai which
leave nodes labeled by xi. A computation path for the input a in a BP G is a path of
edges activated by a which leads from the source to a sink

The size of a branching program G is the number of its nodes and is denoted by |G|.
The depth of a branching program is the maximum length of a path from the source to
one of the sinks.

The branching program size of a Boolean function f is known to be a measure for
the space complexity of nonuniform Turing machines and known to lie between the
circuit size of f and its {∧,∨,¬}-formula size (see, e.g., [22]). Hence, one is interested
in exponential lower bounds for more and more general types of BPs (for the latest
breakthrough for semantic linear depth BPs see [1] and [4]). In order to develop and
strengthen lower bound techniques one considers restricted computation models.

Definition 2. i) A branching program is called read k times (BPk) if each variable is
tested on each path at most k times.

ii) A BP is called oblivious if the node set can be partitioned into levels such that edges
lead from lower to higher levels and all inner nodes of one level are labeled by the
same variable.

Borodin, Razborov, and Smolensky [7] have proved one of the first exponential lower
bounds for BPks. For oblivious branching programs of restricted depth exponential lower
bounds have been proven, e.g., by Alon and Maass [3]. Nondeterminism is one of the most
powerful concepts in computer science. In analogy to the definition for Turing machines,
different modes of acceptance can be studied for branching programs (for more details
we refer to [18]).

Definition 3. Let Ω be a set of binary Boolean operations. An Ω-branching program
on the variable set Xn = {x1, . . . , xn} is a directed acyclic graph with decision nodes
for Boolean variables and nondeterministic nodes. Each nondeterministic node is labeled
by some function ω ∈ Ω and has two outgoing edges labeled by 0 and 1, resp. A c-sink
represents the constant c. Shannon’s decomposition rule is applied at decision nodes. If
fv0

and fv1
are the functions at the 0- or 1-successor of v, resp., and v is labeled by ω,

the function fv = ω(fv0
, fv1

) is represented at v.
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Definitions of nondeterministic variants of restricted BPs are derived in a straight-
forward way by requiring that the decision nodes fulfill the usual restrictions as for
deterministic BPs. The results of Borodin, Razborov, and Smolensky [7] for BPks hold
(and have been stated by the authors) also for {OR}-BPks.

Besides this complexity theoretical viewpoint people have used branching programs
in applications. Representations of Boolean functions which allow efficient algorithms for
many operations, in particular synthesis (combine two functions by a binary operation)
and equality test (do two representations represent the same function?) are necessary.
Bryant [9] introduced ordered binary decision diagrams (OBDDs) which are up to now
the most popular representation for formal circuit verification.

Definition 4. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable ordering
π on Xn is a permutation of {1, . . . , n} leading to the ordered list xπ(1), . . . , xπ(n) of the
variables.

i) A π-OBDD for a variable ordering π is a BP where the sequence of tests on each
path is restricted by the variable ordering π, i.e., if an edge leads from an xi-node to
an xj-node, the condition π−1(i) < π−1(j) has to be fulfilled.

ii) An OBDD is a π-OBDD for some variable ordering π.

Unfortunately, several important and also quite simple functions have exponential
OBDD size. Therefore, more general representations with good algorithmic behavior are
necessary. Gergov and Meinel [15] and Sieling and Wegener [21] have shown indepen-
dently how read-once branching programs can be used for verification. In order to obtain
efficient algorithms for many operations they have generalized the concept of variable
orderings to graph orderings.

Definition 5. A graph ordering is a branching program with a single sink. On each path
from the source to the sink there is for each variable xi exactly one node labeled by xi.
A graph ordering G0 is called a tree ordering if G0 becomes a tree of polynomial size by
eliminating the sink and replacing multi-edges between nodes by simple edges.

A graph-driven BP1 with respect to a graph ordering G0, G0-BP1 for short, is a BP1
with the following additional property. For an arbitrary input a ∈ {0, 1}n, let L(a) be
the list of labels at the nodes on the computation path for a in the BP1 and similarly let
L0(a) be the list of labels on the computation path for a in G0. We require that L(a) is
a subsequence of L0(a).

It is easy to see that an arbitrary read-once branching program is ordered with
respect to a suitably chosen graph ordering.

Nondeterministic concepts also may be useful for applications. But one has to restrict
nondeterminism in the right way or choose an appropriate mode of nondeterminism.

Definition 6. A parity ordered decision diagram, or ⊕-OBDD for short, is a generalized
OBDD where the number of edges leaving a node is not restricted. The output value for
an input a is defined as 1 iff the number of paths between the source and the 1-sink
activated by a is odd.

Here, nondeterminism (inputs can activate many paths) is combined with the ⊕-acceptance
mode.
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Bollig [5] has introduced a new restricted nondeterministic read-once branching pro-
gram model.

Definition 7. A nondeterministic graph-driven BP1 (tree-driven BP1) is a nondeter-
ministic BP1 where the Boolean variables labeling the decision nodes are ordered accord-
ing to a graph ordering (tree ordering).

Brosenne, Homeister, and Waack [8] have investigated parity graph-driven read-once
branching programs which are defined in a very similar way (for a formal definition see
Definition 10 in Section 2). As for ⊕-OBDDs there are no nondeterministic nodes but
the number of edges leaving a node is not restricted. The output value for an input a is
defined to be 1 iff the number of paths between the source and the 1-sink activated by
a is odd. The 0-sink is useless.

For a branching program model M we denote by P (M) the class of all Boolean
functions representable in polynomial size by the respective model M . It is well known
that there exist explicitly defined Boolean functions which are in P (⊕-OBDD) but which
are not contained in P (BP1) and vice versa (see, e.g., [23]). Furthermore, it is not difficult
to prove that there are explicitly defined Boolean functions which need parity tree-driven
BP1s of exponential size but are contained in P (BP1). Therefore, parity graph-driven
BP1s are a proper generalization of ⊕-OBDDs, BP1s, and parity tree-driven BP1s. But
obviously not each parity BP1 is a graph-driven BP1. It is not possible to allow arbitrary
orderings of the variables for different inputs in graph orderings, e.g., the variables tested
first has to be the same for all inputs. It is still open if there exist Boolean functions which
need parity graph-driven BP1s of exponential size but can be represented by (general)
parity BP1s of polynomial size.

For many restricted (nondeterministic) variants of branching programs exponential
lower bounds are known. But the problem of proving superpolynomial lower bounds for
parity read-once branching programs is still open. Our results could be one step further
towards an exponential lower bound for parity BP1s. Krause [17] has proved the first
exponential lower bounds for oblivious parity branching programs with bounded depth.
Savický and Sieling [20] have recently presented exponential lower bounds for restricted
parity read-once branching programs. In their model only at the top of the read-once
branching program parity nodes are allowed. Brosenne, Homeister, and Waack [8] have

proved the first exponential lower bound of order 2Ω(n1/2) on the size of graph-driven
parity BP1s representing the characteristic function of linear codes.

Furthermore, the proof of exponential lower bounds on the size of BDD models for
natural functions is often a challenge.

Definition 8. Integer multiplication is the Boolean function MULTn:{0, 1}2n → {0, 1}2n

that maps two n-bit integers to their product. That is, MULTn(x, y)= z2n−1 . . . z0 where
x = xn−1 . . . x0 and y = yn−1 . . . y0 and x · y = z = z2n−1 . . . z0. MULTi,n denotes the
Boolean function defined as the ith bit of MULTn.

For some models integer multiplication is a quite simple function. It is contained in
NC1 and even in TC0,3 (polynomial-size threshold circuits of depth 3) but neither in
AC0 (polynomial-size {∨,∧,¬}-circuits of unbounded fan-in and constant depth) nor
in TC0,2 [16]. Until now it is open whether there exist multiplication circuits of linear
size. For OBDDs Bryant [10] has presented an exponential lower bound of size 2n/8

3



for MULTn−1,n. Incorporating Ramsey theoretic arguments of Alon and Maass [3] and
using the rank method of communication complexity Gergov [14] has extended the lower
bound to arbitrary nondeterministic linear-depth oblivious BPs. Recently Woelfel [25]
has improved Bryant’s lower bound up to Ω(2n/2). The first exponential lower bound on
the size of deterministic read-once branchig programs has been proven by Ponzio [19].

His lower bound is of order 2Ω(n1/2) and has been improved by Bollig and Woelfel [6] to
the first strongly exponential lower bound of size Ω(2n/4) for MULTn−1,n. Bollig [5] has
presented the first (not strongly) exponential lower bound on the size of MULTn−1,n for
nondeterministic tree-driven read-once branching programs. Her result also holds (and
has been stated by the author) for parity tree-driven read-once branching programs.
But this model is very restricted. Until now exponential lower bounds on the size of
MULTn−1,n for general nondeterministic read-once branching programs or read k times
branching programs with k ≥ 2 are unknown. Here, we present an exponential lower
bound on the size of restricted parity graph-driven BP1s for MULTn−1,n. This is the
first strongly exponential lower bound for this branching program model. In addition,
we yield more insight into the structure of integer multplication.

The rest of the paper is organized as follows. In Section 2 we carefully define parity
graph-driven BP1s. Similar to the deterministic case [21] two different models of parity
graph-driven BP1s are distinguished. Brosenne, Homeister, and Waack [8] have applied
methods from linear algebra to describe which functions have to be represented in a par-
ity well-structured graph-driven BP1 for a Boolean function f . (For a formal definition
of the model see Section 2.) This has led to an exact characterization of the number of
(decision) nodes in a parity well-structured graph-driven BP1 for f depending on the
chosen graph ordering. We restate some of their results and investigate the relationship
between the size of a well-structured parity graph-driven BP1 G and the size of a graph
ordering G0 of minimal size such that G is G0-driven. Afterwards we generalize the lower
bound method presented in [8]. In Section 3 we consider the function MULTn−1,n in more
detail. Using results on universal hashing interesting properties of integer multiplication
are obtained. Finally, in Section 4 we apply the lower bound method described in Section
2 to MULTn−1,n and prove the first strongly exponential lower bound for well-structured
parity graph-driven BP1s.

2 Algebraic Characterization and Lower Bounds for Parity

Graph-driven BP1s

Sieling and Wegener [21] have introduced graph-driven BP1s as data structure for
Boolean functions and have proved that the usual operations on OBDDs can be per-
formed efficiently also for graph-driven BP1s. They have distinguished two different
models, the second one, well-structured graph-driven BP1s, is a restricted variant of
graph-driven BP1s.

Definition 9. A graph-driven BP1 with respect to a graph ordering G0, or G0-BP1
for short, is called a well-structured graph-driven BP1 if there exists a representation
function α : V → V0 with the following properties. The nodes v and α(v) are labeled by
the same variable and for all inputs a such that v is contained in L(a) the node α(a) is
contained in L0(a).
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The reason for the two models is a time-space trade-off between graph-driven and
well-structured graph-driven BP1s. A special property of the last one leads to the design
of simpler and faster algorithms. The difference is the following one. If we reach the node
v of a well-structured G0-BP1 for some input a, then it follows that the node α(v) of the
graph ordering G0 is also reached for this input. In the general model it is possible that
the node v with label xi is reached for the inputs a and b while the nodes with label xi

in L0(a) and L0(b) are different.
Brosenne, Homeister, and Waack [8] have realized how this property can be used

for parity graph-driven BP1s to determine the number of nodes which is necessary to
represent a Boolean function f . We use the parity graph-driven BP1 model where all
inner nodes are labeled by Boolean variables and may have an unbounded number of
outgoing 0-edges and 1-edges. The function fv represented at an inner node v of a parity
graph-driven BP1 computes 1 on input a iff the number of paths activated by a and
leading from v to the 1-sink is odd. More precisely, if an xi-node v has 0-edges leading
to u1, . . . , uk and 1-edges leading to w1, . . . , wl, we define

fv =
[

xi ∧ (fu1
⊕ · · · ⊕ fuk

)
]

⊕
[

xi ∧ (fw1
⊕ · · · ⊕ fwl

)
]

.

Unlike for deterministic BP1s the source can also have incoming edges. It is obvious
that edges to the 0-sink can be eliminated and the constant 0 is represented by an
empty branching program. Double edges can always be eliminated without changing the
represented function. More precisely, if r edges with the same label lead from v to w,
they could be replaced by (r mod 2) edges of the same kind. Parity branching programs
may contain inner nodes without outgoing edges. These nodes represent the constant 0
and are always eliminated together with their incoming edges.

Definition 10. A parity graph-driven BP1 G with respect to a graph ordering G0,
parity G0-BP1 for short, is a parity BP1 with the following additional property. For an
arbitrary input a ∈ {0, 1}n, let L(a, p) be the list of labels at the nodes on a computation
path p for a in G and similarly let L0(a) be the list of labels on the computation path for
a in G0. We require that L(a, p) is a subsequence of L0(a) for each computation path p
for a.

Similar to the deterministic case well-structured parity G0-BP1s can be defined. Brosenne,
Homeister, and Waack [8] have shown that the maximal quotient of the minimal size
well-structured parity G0-BP1 and the minimal size parity G0-BP1 representing a func-
tion f is bounded by O(|G0|), the size of the graph ordering (similar to the deterministic
case). We will see that for each well-structured parity graph-driven BP1 G there exists
a graph ordering G0 such that G is G0-driven and |G0| ≤ 2n|G|. Therefore, the well-
structured parity graph-driven BP1 size of a function f and the parity graph-driven BP1
size are polynomially related.

The following lemma is a slight generalization of a result from [21].

Lemma 1 (Brosenne, Homeister, and Waack [8]). Let G0 be a graph ordering, v a
node in a well-structured parity G0-BP1 G, α the representation function, and c ∈ {0, 1}.
If w is one of the c-successors of v in G then all paths to the sink in G0 which leave α(v)
via the c-edge pass through α(w).

Now we are able to prove the following proposition.
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Proposition 1. Let G be a well-structured parity graph driven BP1. There exists a
graph ordering G0 such that G is G0-driven and |G0| ≤ 2n|G|.

Proof. Let G′
0 be a graph ordering such that G is G′

0-driven and let Nv(G) be the set of
nodes u in G such that α(u) = v. First, we mark all nodes v in G′

0 for which Nv(G) is not
empty. Afterwards we eliminate all nodes which have not been marked in G′

0. An edge
leading to one of theses nodes v is redirected to the first successor of v which has been
marked. Because of Lemma 1 this node is uniquely determined. The resulting graph is a
read-once branching program with one sink and at most |G| nodes. Finally, we use the
usual algorithm (see also [23]) to insert nodes such that on each path from the source
to the sink there exist for each variable xi exactly one node labeled by xi. According to
a topological ordering of the nodes, for each node v the set V (v) of variables tested on
some path from the source to v excluding the label of v is computed. Afterwards on each
edge (v, w) dummy tests of the variables in V (w) \ V (v) excluding the variable tested
at v are added. A dummy test is a node where the 0- and the 1-edge lead to the same
node.

The resulting graph ordering G0 consists of at most 2n|G| nodes. It is easy to see
that G is G0-driven. 2

Now we consider the representation of a Boolean function f by its value table as an
element of (Z2)

2n
. This set is a Z2 vector space where the addition is a componentwise

parity and scalar multiplication by 0 or 1 is defined in the obvious way.
In the following, let v be a node in the graph ordering G0, G a well-structured parity

G0-driven BP1, Nv(G) the set of nodes u in G such that α(u) = v, and f a Boolean
function. It is known that on all paths from the source to v the same set of variables is
tested. Without loss of generality let x1, . . . , xi−1 be the previously tested variables. Let
A(v) ⊆ {0, 1}i−1 be the set of vectors (a1, . . . , ai−1) such that v is reached for all inputs a
starting with (a1, . . . , ai−1). We define Fv := {f|x1=a1,...,xi−1=ai−1

|(a1, . . . , ai−1) ∈ A(v)}.
Now let Pv be the set of all nodes which lie on a path leaving v in G0. (Note, that

v lies on all paths from v to the sink.) Then we define
� G0

f,v as the Boolean vector space
spanned by all functions

⋃

w∈Pv

Fw.

Lemma 2 (Brosenne, Homeister, and Waack [8]). Let G be a well-structured parity
G0-driven BP1 representing f , v a node in G0, and J(v) the first successor of v in G0,
J(v) 6= v, which lies on all paths leaving v. Then

|Nv(G)| = dimZ2

� G0

f,v − dimZ2

� G0

f,J(v).

The following observation will be helpful. W.l.o.g. let x1, . . . , xi−1 be the set of vari-
ables tested on any path from the source of G0 to v and let v be labeled by the variable
xi. Then it follows that the vector space

� G0

f,J(v) is a subspace of the vector space spanned
by all Boolean functions not essentially depending on x1, . . . , xi.

Now our idea to prove stronger lower bounds is the following one. Let V be a vector
space and V1, V2 be sub-vector spaces of V . V1 is said to be linearly independent modulo
V2, if V1 ∩ V2 = {0}, i.e., dimV1 + dimV2 = dim(V1 + V2). This means that no vector in
V1 \ {0} can be represented by a linear combination in V2 and vice versa.
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Lemma 3. Let A′(v) be a subset of A(v) such that the subfunctions f|x1=a1,...,xi−1=ai−1
,

where (a1, . . . , ai−1) ∈ A′(v), are linearly independent, and let
� G0

f,A′ be the vector space

spanned by these subfunctions. If
� G0

f,A′ is linearly independent modulo the vector space

of all subfunctions in
� G0

f,v not essentially depending on xi, then

|Nv(G)| = dimZ2

� G0

f,v − dimZ2

� G0

f,J(v) ≥ |A′(v)|.

Proof. Since all functions in
� G0

f,J(v) ⊆
� G0

f,v are obviously not essentially depending on

xi,
� G0

f,A′ is also linearly independent modulo
� G0

f,J(v). Hence,

dimZ2

� G0

f,A′ + dimZ2

� G0

f,J(v) = dimZ2

( � G0

f,A′ +
� G0

f,J(v)

)

≤ dimZ2

� G0

f,v, (1)

where the inequality follows from the fact that
� G0

f,A′ +
� G0

f,J(v) ⊆
� G0

f,v. Since all the sub-

functions defined by A′(v) as above are linearly independent, dimZ2

� G0

f,A′ equals |A′(v)|
and the desired result follows from inequality (1). 2

In the last section we will apply Lemma 3 to prove the first strongly exponential
lower bound for well-structured parity graph-driven BP1s.

3 Integer Multiplication

We start our investigations with two technical lemmas which provide important proper-
ties of the function MULTn−1,n.

In the rest of the paper we use the following notation. Let x ∈ {0, . . . , 2n − 1}. Then
[x]i denotes the ith bit in the binary representation of the integer x, i.e., x =

∑n−1
i=0 [x]i2

i.
Furthermore, let [x]lr, l ≥ r, denote the bits xl . . . xr in the binary representation of x.
For the ease of description we use the notation [x]lr = z if (xl, . . . , xr) is the binary
representation of the integer z ∈ {0, . . . , 2l−r+1 − 1}. Sometimes, we identify [x]lr with z
if the meaning is clear from the context.

3.1 The Covering Lemma

Using universal hashing Bollig and Woelfel [6, proof of Lemma 5] have shown the fol-
lowing.

Lemma 4. Let X ⊆ Z2n and Y ⊆ Z
∗
2n := {1, 3, . . . , 2n − 1}. If |X| · |Y | ≥ 2n+2k+1,

k ≥ 0, then there exists an element y∗ ∈ Y such that

∀z ∈ {0, . . . , 2k − 1} ∃x ∈ X : [xy∗]n−1
n−k = z.

The lemma states that if X and Y are large enough sets of (odd) n-bit integers, then
by choosing an appropriate y ∈ Y , the possible outcomes in the bits n − 1, . . . , n − k of
the products xy for x ∈ X cover all possible k-bit values.

Since Bollig and Woelfel [6] have proved this statement only implicitly and to ensure
that our paper is self-contained we prove this lemma here once more using universal
hashing.
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The concept of universal hashing introduced by Carter and Wegman in 1979 has been
proven to be very successful in a large number of applications, which range from com-
plexity theoretical investigations over message authentication to standard applications
like dictionary implementations or integer sorting. Universal hash families are usually
defined by using the following notation. Let H be a family of hash functions U → R. U
and R are called universe and range, respectively. For arbitrary x, x′ ∈ U and h ∈ H, we
define

δh(x, x′) :=

{

1 if x 6= x′ and h(x) = h(x′),

0 otherwise.

If h, x, and x′ are replaced in δh(x, x′) by sets, then the sum is taken over the elements
from these sets, e.g., for H ⊆ H, V ⊆ U , and x ∈ U

δH(x, V ) =
∑

h∈H

∑

x′∈V

δh(x, x′).

Definition 11. A family H of hash functions U → R is universal if for any x, x′ ∈ U
with x 6= x′

δH(x, x′) ≤
|H|

|R|
.

In order to prove Lemma 4, we show a similar covering lemma for universal hash
families. Consider a universal hash family H and a subset V of the universe. The following
lemma states that there is a large fraction of hash functions h in H under which the
function values of the elements from V cover the whole range R, i.e.

h(V ) := {y ∈ R | ∃x ∈ V : h(x) = y} = R.

Using this result and the known fact that the mappings x 7→ [ax+ b]n−1
n−k (for a and b

being elements from appropriate sets) form a universal hash family (see Lemma 6), we
can then easily derive Lemma 2.

Note that a simpler version of the following lemma has already been known (see, e.g.,
[2]).

Lemma 5. Let H be a universal family of hash functions U → R, r := |R|, V ⊆ U and
v := |v|. Then it follows that

|{h ∈ H | h(V ) 6= R}|

|H|
≤

(r − 1)2

v
.

Proof. Since H is universal, we obtain

δH(V, V ) =
∑

x,x′∈V

δH(x, x′) ≤
∑

x,x′∈V
x6=x′

|H|

r

=
|H|

r
v(v − 1).

Now we define F := {h ∈ H |h(V ) 6= R}. We know by definition that

∀h ∈ F ∃yh ∈ R ∀x ∈ V : h(x) 6= yh.
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First, we prove lower bounds for δF (V, V ) and δH\F (V, V ).

δF (V, V ) =
∑

h∈F

δh(V, V )

=
∑

h∈F

∑

y∈R\{yh}

|h−1(y) ∩ V |
(

|h−1(y) ∩ V | − 1
)

≥
∑

h∈F

∑

y∈R\{yh}

v

r − 1

(

v

r − 1
− 1

)

= |F |v

(

v

r − 1
− 1

)

.

In a similar way we obtain δH\F (V, V ) ≥ |H \ F |v
(

v
r − 1

)

.
Using the fact that δH(V, V ) = δF (V, V ) + δH\F (V, V ) it follows that

|H|

r
v(v − 1) ≥ |F |v

(

v

r − 1
− 1

)

+ |H \ F |v
(v

r
− 1

)

.

Since |H \ F | equals |H| − |F | we get

|H|

(

v − 1

r
−

(v

r
− 1

)

)

≥ |F |

(

v

r − 1
− 1 −

(v

r
− 1

)

)

and thus

|H|

(

1 −
1

r

)

≥ |F |v
1

r(r − 1)

⇒ |H|r(r − 1)

(

1 −
1

r

)

≥ |F |v

⇒ |H|(r − 1)2 ≥ |F |v

⇒ |F |/|H| ≤ (r − 1)2/v.

2

Now we consider hash functions which map the n-bit universe U := Z2n to the k-bit
range Rk := {0, . . . , 2k − 1}, 1 ≤ k ≤ n. For a, b ∈ U let

hk
a,b : U → Rk, x 7→

(

(ax + b) mod 2n
)

div 2n−k,

where div is the integer division, i.e., xdiv y = bx/yc. Note that in our notation we can
write ha,b(x) as [ax + b]n−1

n−k.

Lemma 6 (Woelfel [24]). Let B =
{

0, . . . , 2n−k − 1
}

⊆ U . The family of hash func-
tions Hk :=

{

hk
a,b

∣

∣ a ∈ Z
∗
2n , b ∈ B

}

is universal.

Similar hash classes have been investigated by Dietzfelbinger [12], Dietzfelbinger,
Hagerup, Katajainen, and Penttonen [13], and Woelfel [24].

We can now use Lemma 5 together with the hash family Hk to prove the Covering
Lemma.
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Proof of Lemma 4. Let 1 ≤ k < n/2 and consider the hash family Hk+1 as defined in
Lemma 6. Let r := |Rk+1| and F :=

{

hk+1
y,b

∣

∣ y ∈ Y, b ∈ B
}

⊆ Hk+1. Then by definition

|F | · |X|

|B|
= |Y | · |X| ≥ 2n+2k+1.

Furthermore,

|Hk+1| · (r − 1)2

|B|
< 2n−1 · 22k+2 = 2n+2k+1.

Therefore, it follows that |F |/|Hk+1| > (r − 1)2/|X|. Using Lemma 5 we can conclude
that there exists a hash function hk+1

y,b ∈ F such that
{

hk+1
y,b (x)

∣

∣x ∈ X
}

= Rk+1. Hence,
there exist an y ∈ Y and an element b ∈ B such that

{

[xy + b]n−1
n−k−1

∣

∣x ∈ X
}

=
{

0, . . . , 2k+1 − 1
}

. (2)

Let these y and b be fixed. It suffices to show that for any z ∈
{

0, . . . , 2k − 1
}

we
can find an x ∈ X such that [xy]n−1

n−k = z.

Let the binary representation of z be zk−1 . . . z0 and x ∈ X such that

[xy + b]n−1
n−k−1 = zk−1 . . . z01.

Equation (2) ensures the existence of such an element x. Since b < 2n−k−1, it follows
that [xy]n−1

n−k−1 = zk−1 . . . y0q, where q ∈ {0, 1}, and we get [xy]n−1
n−k = z. 2

3.2 The Distance Lemma

The following lemma is needed for technical reasons.

Lemma 7. Let Y ⊆ Z
∗
2n−1, 1 ≤ k ≤ n − 3, and (zi, z

′
i) ∈ Z2n−1 × Z2n−1, where zi 6= z′i,

1 ≤ i ≤ t. Then there exists a subset Y ′ ⊆ Y with

∀y ∈ Y ′ : 4 · 2n−k−1 ≤ ((zi − z′i)y) mod 2n−1 ≤ 2n−1 − 4 · 2n−k−1

such that |Y ′| ≥ |Y | − t · 2n−k+1.

Proof. Let δi := (zi − z′i) mod 2n−1, 1 ≤ i ≤ t, and

M ′ := {0, . . . , 4 · 2n−k−1 − 1} and

M ′′ := {2n−1 − 4 · 2n−k−1 + 1, . . . , 2n−1 − 1}.

Let Y ′ be the set of all y ∈ Y where (yδi) mod 2n−1 /∈ M ′ ∪M ′′ for all i ∈ {1, . . . , t}.
Bollig and Woelfel [6, proof of Lemma 4] have shown that the number of y ∈ Y with
(yδi) mod 2n−1 ∈ M ′ ∪ M ′′ for a fixed i ∈ {1, . . . , t} is bounded above by 2n−k+1.
Therefore, for at most t · 2n−k+1 elements y ∈ Y there exists at least one element
i ∈ {1, . . . , t} such that (yδi) mod 2n−1 ∈ M ′∪M ′′. Altogether, we have proved that the
size of Y ′ is at least |Y | − t · 2n−k+1. 2
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3.3 The Matrix Game

First, we motivate our investigations. (In Section 4 we will make the following ideas more
precise.) Let G0 be a graph ordering which is not too large. Then we can prove that there
exists a node v such that w.l.o.g. at least as many x- as y-variables habe been tested
from the source to v, v is labeled by a variable xi, and there is a partial assignment
a∗ to the y-variables tested on the paths to v such that many paths which agree for
the tested y-variables with a∗ lead to v. Let A′(v) be the set of these assignments.
Now our aim is to prove that the Boolean vector space spanned by the subfunctions of
MULTn−1,n according to A′(v) is linearly independent modulo the vector space spanned
by all subfunctions not essentially depending on V ∗, where V ∗ contains xi and the
variables which have been tested on the paths to v. Then we can conclude using Lemma
3 that the size of parity G0-BP1s representing MULTn−1,n is large.

In the following, we investigate integer multiplication for two binary numbers x =
(xn−1, . . . , x0) and y = (yn−1, . . . , y0), where xn−1 = yn−1 = 0 and x0 = y0 = 1. Let Vx

be the set of variables x1, . . . , xn−2 and Vy = {y1, . . . , yn−2}. Furthermore, let V ′
x ⊆ Vx

(V ′
y ⊆ Vy) be a set of m x-variables (y-variables), where m ≤ b(n − 17)/6c. We fix an

arbitrary assignment of the V ′
y-variables. Now we consider a 2m × 22n−2m−4 matrix M .

Each row is associated with one assignment of the V ′
x-variables and each column with an

assignment of the variables from Vx \V ′
x and Vy \V ′

y . Together with the fixed assignment
of the V ′

y-variables, xn−1 = yn−1 = 0, and x0 = y0 = 1 we obtain two well-defined
n-bit numbers xr,c and yc for each pair (r, c) of a row and a column. We define Mr,c as
MULTn−1,n(xr,c, yc). Finally, we define for an arbitrary fixed variable xi ∈ Vx \V ′

x and a
column c the column c′ as that one which only differs from c by the assignment to the
variable xi.

Now our aim is to show that for an arbitrary choice of rows r1, . . . , rl there exists a
column c such that

l
⊕

j=1

Mrj ,c 6=
l

⊕

j=1

Mrj ,c′ , (3)

which means that the number of rows rj , 1 ≤ j ≤ l, where Mrj ,c 6= Mrj ,c′ , is odd. Before
we show (3) we illustrate how this property can be used to prove lower bounds using
Lemma 3. The set of all possible assignments of the V ′

x- and V ′
y-variables is a superset of

the set A(v). By fixing the V ′
y-variables by an arbitrary assignment, we obtain a set A∗(v).

For an assignment α determined by A∗(v), the matrix M as described above represents
the subfunctions MULT|α in the following way. The number of a row of M identifies
an assignment α determined by an element in A∗(v) and the row itself represents the
function vector of the subfunction MULT|α. In this setting, (3) is the following. If we take

an arbitrary linear combination of subfunctions (represented by the rows r1, . . . , rl), then
there exist two assignments to the variables in (Vx \V ′

x)∪ (Vy \V ′
y) differing only in their

setting to xi such that the function value of the linear combination is different for both
assignments. Hence, no subfunction not essentially depending on the V ′

x- and V ′
y-variables

and xi can be represented as a linear combination of the subfunctions determined by
A∗(v). By Lemma 3 this allows the conclusion that

|Nv(G)| ≥ |A′(v)|,
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where A′(v) ⊆ A∗(v).

Let xr,c be the number x ∈ Z
∗
2n−1 defined by the choice of a row r and a column c and

yc the number y ∈ Z
∗
2n−1 defined by the choice of the column c and the fixed assignment

of the V ′
y-variables. Therefore,

Mr,c = [xr,c · yc]n−1.

The number xr,c can be written as the sum of two components xrow
r + xcol

c , where
xrow

r is the number defined by the partial assignment of the V ′
x-variables given by the

row r and the 0-assignment of the variables from Vx \ V ′
x and xcol

c is the number defined
by the partial assignment of the variables from Vx \ V ′

x, x0 = 1, and the 0-assignment of
the V ′

x-variables. It follows

Mr,c = [(xrow
r + xcol

c ) · yc]n−1.

We take a look at the columns where for an arbitrary i the variable xi is set to 0.
Obviously the set of all pairs (xcol

c , yc) of theses columns c corresponds to a set X × Y
where X,Y ⊆ Z

∗
2n−1 , |X| = 2n−m−3, and |Y | = 2n−m−2. Furthermore, xrow

c′ − xrow
c = 2i.

Finally, the choice of l rows r1, . . . , rl corresponds to the numbers xrow
r1 , . . . , xrow

rl . For

the ease of description we denote these numbers by x1, . . . , xl.

Summarizing, our aim is to prove that under the assumption discussed above for
arbitrarily chosen x1, . . . , xl there exists a pair (x, y) ∈ X × Y such that the number of
indices j ∈ {1, . . . , l} for which

[(xj + x)y]n−1 6= [(xj + x + 2i)y]n−1

is odd. Formally this leads to the statement of Lemma 8.

Lemma 8. Let m ≤ b(n − 17)/6c, 1 ≤ l ≤ 2m, X,Y ⊆ Z
∗
2n−1, d 6= 0, and let x1, . . . xl

be elements from Z2n−1 with the follwing properties:

i) |X| ≥ 2n−m−3 and |Y | ≥ 2n−m−2,

ii) for all x ∈ X and all 2 ≤ j ≤ l: x1 6= xj and all 1 ≤ j ≤ l: x1 6= xj + d,

iii) for all x ∈ X and all 1 ≤ j ≤ l: x + xj + d < 2n−1.

Let (x, y) ∈ X × Y and let σ(x, y) be the number of indices j ∈ {1, . . . , l} where

[(xj + x)y]n−1 6= [(xj + x + d)y]n−1.

Then there exists a pair (x, y) ∈ X × Y , such that σ(x, y) is odd.

Obviously, the conditions of Lemma 8 are fulfilled for d = 2i and our choice of
x1, . . . , xl and X and Y as described above. (Note, that we have achieved (iii) by setting
xn−1 = yn−1 = 0.)

Proof. Let k = 2m + 5 and X ′ := {x1 + x | x ∈ X}. Clearly |X ′| = |X| ≥ 2n−m−3.
Because of condition iii) X ′ is a subset of Z2n−1 . First, we consider the 2l−1 pairs (x1, z)
where z ∈ Z := {x2, . . . , xl}∪{x1 + d, . . . , xl + d}. Because of condition iii) all z ∈ Z are

12



elements of Z2n−1 and because of condition ii) they are all different from x1. Let Y ′ be
the set of all y ∈ Y such that for all pairs (x1, z), z ∈ Z,

4 · 2n−k−1 ≤ ((z − x1)y) mod 2n−1 ≤ 2n−1 − 4 · 2n−k−1. (4)

According to Lemma 7

|Y ′| ≥ |Y | − (2l − 1)2n−k+1 > |Y | − 2m+1+n−k+1 = 2n−m−2 − 2n−m−3

≥ 2n−m−3.

Here, we have used the fact that 2l ≤ 2m+1. Using m ≤ b(n − 17)/6c we can conclude
that

|X ′| · |Y ′| ≥ 22n−2m−6 ≥ 22n−n/3+17/3−6 = 2n+(2/3)n−1/3.

Since k = 2m + 5 it follows that

2n+2k+1 = 2n+4m+11 ≤ 2n+(2/3)n−34/3+11 = 2n+(2/3)n−1/3,

such that we obtain |X ′| · |Y ′| ≥ 2n+2k+1. Now we can apply Lemma 4. According to
this there exists an element y∗ ∈ Y ′ and x∗, x∗∗ ∈ X ′ such that

[x∗y∗]n−1
n−k = 2k−1 − 1 and [x∗∗y∗]n−1

n−k = 2k−1.

Let y = y∗. According to the definition of X ′ we can write x∗ as x1 + x and x∗∗ as
x1 + x′ for two elements x, x′ ∈ X such that

[(x1 + x)y]n−1
n−k = 2k−1 − 1 and [(x1 + x′)y]n−1

n−k = 2k−1. (5)

Next we prove the following claims for x and x′:

(C1) [(x1 + x)y]n−1 6= [(x1 + x′)y]n−1.
(C2) For all 2 ≤ i ≤ l: [(xi + x)y]n−1 = [(xi + x′)y]n−1.
(C3) For all 1 ≤ i ≤ l: [(xi + x + d)y]n−1 = [(xi + x′ + d)y]n−1.

Using these claims we can prove in the following way that either σ(x, y) = σ(x′, y)−1
or σ(x, y) = σ(x′, y) + 1. From C1 and C3 for i = 1 we can conclude that

[(x1 + x)y]n−1 = [(x1 + x + d)y]n−1 ⇔ [(x1 + x′)y]n−1 6= [(x1 + x′ + d)y]n−1,

and from C2 and C3 that

[(xi + x)y]n−1 = [(xi + x + d)y]n−1 ⇔ [(xi + x′)y]n−1 = [(xi + x′ + d)y]n−1

for i = 2, . . . , l.
Therefore, exactly one of the values σ(x, y) or σ(x′, y) is odd and we can complete

our proof by proving C1-C3. C1 follows immediately from equation (5). To prove C2 and
C3 we reconsider the pairs (x1, z), z ∈ Z = {x2, . . . , xl, x1 + d, . . . , xl + d}. Obviously it
is sufficient to prove that [(z + x)y]n−1 = [(z + x′)y]n−1, for all z ∈ Z. We assume that
this is not the case, w.l.o.g. [(z + x)y]n−1 = 0 and [(z + x′)y]n−1 = 1 (the other case
follows similarly).
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According to equation (5) it follows that

2n−1 − 2n−k ≤ ((x1 + x)y) mod 2n < 2n−1 and (6)

2n−1 ≤ ((x1 + x′)y) mod 2n < 2n−1 + 2n−k. (7)

From this it follows that

1 ≤ ((x′ − x)y) mod 2n < 2 · 2n−k. (8)

From our assumption [(z + x)y]n−1 = 0 and [(z + x′)y]n−1 = 1 we know that

((z + x)y) mod 2n < 2n−1 and ((z + x′)y) mod 2n ≥ 2n−1.

Since ((z + x′)y) mod 2n − ((z + x)y) mod 2n = ((x′ − x)y) mod 2n, we can conclude
using inequality (8)

2n−1 − 2 · 2n−k ≤ ((z + x)y) mod 2n < 2n−1.

Together with the inequality (6) we obtain

−2 · 2n−k < ((z + x)y) mod 2n − ((x1 + x)y) mod 2n < 2n−k.

Considering all terms in this inequality modulo 2n−1 it follows that

((z − x1)y) mod 2n−1 < 2n−k or ((z − x1)y) mod 2n−1 > 2n−1 − 2 · 2n−k.

But this is a contradiction to inequality (4) and we are done. 2

Altogether, we have proved that the vector space spanned by all subfunctions of
MULTn−1,n according to all assignments of the m V ′

x-variables and an arbitrary assign-
ment a∗ of the m V ′

y-variables is linearly independent modulo the vector space spanned by
all subfunctions of MULTn−1,n according to all assignments of the V ′

x- and V ′
y-variables

not essentially depending on a variable xi from Vx \ V ′
x.

4 A Strongly Exponential Lower Bound for Integer Multiplication

In this section, we combine the lower bound technique for well-structured parity graph-
driven BP1s presented in Section 2 with Lemma 8 in order to prove the first strongly
exponential lower bound on the size of a nonoblivious parity branching program model.

Theorem 1. The size of well-structured parity graph-driven BP1s representing MULTn−1,n

is bounded below by 21/2b(n−17)/6c/(2n).

Proof. Let G be a well-structured parity graph-driven BP1 representing MULTn−1,n and
G0 be a graph ordering of minimal size such that G is G0-driven. We may assume that
the size of G0 is at most 21/2b(n−17)/6c, otherwise using Proposition 1 we can conclude
that the size of parity graph-driven BP1s representing MULTn−1,n is bounded below by
21/2b(n−17)/6c/(2n).

Let m := b(n − 17)/6c, Vx = {x1, . . . , xn−2}, and Vy = {y1, . . . , yn−2}. Since on all
paths in G0 all variables have to be tested, it is obvious that on all paths from the source
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to a node v the same set of variables is tested. In the following we only investigate paths
where x0 = y0 = 1 and xn−1 = yn−1 = 0. We define a cut in the graph ordering G0 in
the following way. The cut consists of all nodes v where v is labeled by a Vx-variable and
on all paths to v exactly m Vx-variables and at most m Vy-variables have been tested (or
vice versa). On each path in G0 there is exactly one node of the cut. Using the pigeonhole
principle there exists one node v which lies on at least 22n−4/|G0| paths from the source
to the sink. W.l.o.g. v is labeled by xi, m Vx-variables and m′ Vy-variables, m′ ≤ m, have
been tested. Using the pigeonhole principle again there exists one partial assignment a∗

to the Vy-variables tested on the paths from the source to v such that there are at least
2m/|G0| paths to v which agree for the Vy-variables with the partial assignment a∗. Let
A′(v) be the set of all assignments associated with these paths, V ′

x (V ′
y) be the set of

the x-variables (y-variables) which have been tested, and let v be labeled by xi. Clearly
the requirements from Lemma 8 are fulfilled and we can conclude that the vector space
spanned by all subfunctions according to A′(v) is linearly independent modulo the vector
space of all subfunctions not essentially depending on the V ′

x- and the V ′
y-variables and

xi. Therefore, we obtain the result

|Nv(G)| = dimZ2

� G0

f,v − dimZ2

� G0

f,J(v) ≥ |A′(v)| ≥ 21/2b(n−17)/6c.

Altogether, we have proved a lower bound of 21/2b(n−17)/6c/2n on the size of well-
structured parity graph-driven read-once branching programs representing MULTn−1,n.
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