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Abstract
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1 Introduction

Lower boundsfor resolution have been greatly smplified in the past few years, dueto afundamental
relationship between proof size and proof width. That is, it has been shown recently [BSW99] that
for any 3CNF formulaF in n underlying variables, F has aresolution proof of size Sif and only if
thereis aresolution proof of F with maximal clause size /nlogS.

Thisrelationship has greatly simplified most lower boundsfor resolution, reducing the problem
to showing awide-clause lemma.

In this paper, we prove exponential separations for both linear and negative resolution. That is,
we giveexamplesof formulasthat havelinear size resolution proofs, but requiring exponential-size
proofsin both linear and negative resolution. Previously, Goerdt [ Goe92] has obtained aquasipoly-
nomia separation for negative resolution. It appears that no separations were previously known
between linear and unrestricted resolution.

We aso provethat there is no analagous size-width tradeoff for either linear or negative reso-
[ution.

2 Definitions

2.1 Resolution

The resolution principle says that if C and D are clauses and x is a variable, then any assignment
that satisfies both of the clausesCV x and D v —x also satisfiesCV D. TheclauseCV D issaid to
be aresolvent of the clauses CVv x and D \V —x derived by resolving on the variable x. A resolution
derivation of a clause C from a CNF formula F consists of a sequence of clauses in which each
clauseis either a clause of F, or is aresolvent of two previous clauses, and C isthe last clause in
the sequence; it isarefutation of F if Cisthe empty clause A.

The size of arefutation is the number of resolventsin it. The width of a clause is the number
of literals occurring in the clause. The width of a refutation is the maximum width of all clauses
occurring in the refutation.

We can represent a resolution refutation as a directed acyclic graph (dag) where the nodes are
the clauses in the refutation, each clause of F has out-degree 0, and any other clause has two arcs
pointing to the two clauses that produced it. The arcs pointingto CV xand D vV —x arelabeled with
the literals x and —x respectively. It iswell known that resolution is a sound and complete propo-
stiona proof system, i.e., aformulaF isunsatisfiableif and only if thereis aresolution refutation
for F.

A negative resolution refutation of F is a resolution refutation with the additional restriction
that all resolutions must be negative. A resolution step CV x and DV —x impliesCV D is negétive
whenever D contains only negative literals.

A linear resolution refutation of F is aresolution refutation with the additional restriction that
the underlying dag must belinear. That is, the proof consists of asegquence of clausesC1,Cy, . ..,Cn



such that C, isthe empty clause, for every 1 <i < m, either C; isan initial clause, or C; isderived
fromCi_, and aniinitia clause, or C; isderived from Ci_; and C;, for some j <i—1.

Both negative and linear resolution are sound and compl ete.

Anassignment for aformulaF (sometimescalled arestriction) isaBool ean ass gnment to some
of thevariablesin theformula; theassignment istotal if al the variablesin theformulaare assigned
values. If Cisaclause, and o an assignment, then we write C[o for the result of applying the as-
signment to C, that is, C[o = 1if o(l) = 1 for some literal | in C, otherwise, C[o isthe result of
removing all literals set to 0 by o from C (with the convention that the empty clause is identified
with the Boolean value 0). If F isa CNF formula, then F[o isthe conjunction of al the clauses
C[o,CaclauseinF.

If R=Cy,...,Cisaresolution derivation from aformulaF, and o an assignment to the vari-
ablesin F, then we write R[ o for the sequence C, [ o, ...,C(| 0.

Lemma 1: If Risalinear (negative) resolution derivation of C fromaformulaF, and o an assign-
ment, then there is asubsequence of R[ o that isalinear (regular) resol ution derivation of C[o from
Flo.

Proof: Thisisastraightforward induction on the length of the derivationfromF. O

2.2 Tautologieson graphs

Our hard formulas are from [BSW99]. They are a generalization of the implication graph formu-
las, first introduced by Raz and McKenzie [RM97], and also used in subsequent papers [BEGJ98,
BOCIPOQO0]. Let G be adirected, acyclic graph, with fan-in 2, n vertices, and asingle sink vertex.

Theimplication graph formulasencode thefollowing contradictory statement: “All of thesource
verticesare colored red, the sink is colored blue, and if both the predecessors of avertex arered, so
isthe vertex itsalf.”

The formula associated with G, Imp(G) has one variable, x;, for every nodei in G, and the
following clauses: (1) for each source nodei in G, (X;); (2) for the sink node sin G, (—xs); (3) for
every triple of nodesi, j, and k such that the edges (i, k) and (j,k) are present in G, we have the
clause (=% V =X V X).

The natural way to refute the above formula/clausesisto begin at the source vertices, and derive
successively that each layer of vertices must be true, until finally we can conclude that each sink
vertex must be true. This gives us the desired contradiction since the sink vertex is false. For any
graph D withindegree 2, thisnatural refutation can beformalized asalinear-sizetree-likeresolution
refutation.

However, we show herethat if the graph is sufficiently complicated (it has high pebbling num-
ber), then any linear or negative resolution refutation of Imp(G) must have large width.

We also define a more general formula, Imp*(G), based on G as follows. Now there are two
variables x; and y; associated with avertex i in G. The formulais the following conjunction of



clauses: (1) for each source vertexiin G, (x; V;); (2) for thesink vertex sin G, (—xs) and (—ys);
(3)foreveryi, j,andk suchthat (i, k) and ( j, k) areedgesin G, we havethefollowing clauses stating
that if oneof the variables associated withi istrue, and one of the variables associated with j istrue,
then one of the variables associated with kisalso true: (=X V —=X; V X V Yk), (7% V 2y V X V Vi),
(=¥ V=XV %V i), and (=Y V =y VXY V).

We will show that any linear or negative resol ution refutation of Imp*(G) requires exponential
sizefor certain G.

2.3 Graphswith high pebbling

We will show that anegative or linear resolution proof of IMP(G) of small width can be converted
into an efficient pebbling strategy for the corresponding graph, G. Interesting connections between
pebbling and propositional proofswere made previoudy in [ET99, BSW99].

DEFINITION 2.1: Let D = (V,E) beadirected, acyclic graph. A configurationisasubset of V. A
legal pebbling of avertex vin D is a sequence of configurations, the first being the empty set and
thelast being {v} and in which each configuration C’' followsfrom the previous configuration C by
one of the following rules:

1. vcanbe added to C to get C' if all immediate predecessors of vareinC.,

2. Any vertex can be removed from C to obtain C'.

The complexity of alegal pebbling of visthemaximal sizeof any configurationin the sequence.
The pebbling number of a graph D with asingle sink vertex sis the minimal number n such that
there exists alegal pebbling of swith complexity n.

Cook [Coo73] showed that the pyramid graphs, Pyramidn, withn=m+(m—1)+---+ 1 un-
derlying vertices have pebbling measure Q(+/n). These are layered graphs, comsisting of m lay-
ers, with m source vertices at layer 1, labelled x},x3, - -+, x&, m— 1 vertices at layer 2, |abelled
x2,---x2_,, and so on with one sink vertex, X" at layer m. All nonsource vertices have indegree

2, and in general x;"* has parents X, and X, ;.

[PTC77] exhibitsa sequence of graphs, G, based on aconstruction by Valiant that have n nodes
and in-degree 2, but with pebbling measure Q(n/logn). This is an optimal lower bound, since
[HPV75] shows that any graph has pebbling number O(n/logn)

3 Lower Bounds

The negation-width of a clause C is the number of negative literals occurring in C. The negation
width of aresolution refutation P is the maximum negation-width of all clausesin P. The lower
bounds for both linear and negative resolution will follow the same strategy. We will begin with an
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Figure 1: A Pyramidg graph

aleged small linear (or negative) resolution refutation of IMP*(G), where G is a graph with high
pebbling number. Thefollowing lemmashowsthat we can awaysfind arestriction p such that after
applying p to P, what remainsis alinear (or negative) refutation of IMP(G), but now with small
negation-width. Then we will use particular properties of linear and negative resolution to argue
that that any linear (negative) refutation of IMP(G) requires large negation-width, thus reaching a
contradiction.

Lemma 2: For any graph Gy, if thereis alinear (negative) resolution refutation of IMP*(Gp) of
size at most S, then thereis alinear (negative) resolution refutation of IMP(Gy,) of negation-width
at most w, wherew > logS.

Proof: Let P be alinear (negative) resolution refutation of IMP*(Gp) of size at most S. Call
aclause of P negation-wideif its negation-widthisat least w. Let C4, .. .Cyy, be the set of negation-
wide clausesin P, and for each C;, let s; be a set of w negative literals occurring in C;. Clearly m
(the number of negation-wide clausesin P) isat most S

We will define arestriction p probabilisticaly as follows. For every i € {1,...,n}, choose x;
with probability 1/2. Choosey; if and only if X; is not chosen. The assignment associated with p
will set x; = 0 if and only if x; is chosen, and otherwise, setsy; = 0.

We want to upper bound the probability that p is bad, where a restriction p is bad if not all
negation-wide clauses in P are set to 1 by p.

A regtriction p isgood for aparticular negation-wideclause C; if some element insj was chosen
by p. The probability that this does not happenisat most (1/2)". Thereforethe overall probability
that pisbad isat most §(1/2)". SincelogS< w, thisoverall probability islessthan 1, and therefore
there must exist at |east one good p.

Fix agood such p and apply therestriction p to the entire proof P. What remainswill bealinear
(negative) resolution refutation of IMP(Gp), of negation width at most w. O



3.1 Lower boundsfor negativeresolution

Lemma 3: Any negativeresolution refutation of IMP(Gy) has negation-width at least Q(q), where
g is the pebbling number of G,

Proof: Let P be a negative resolution refutation of IMP(Gy,) of negation-width w. We will
show how to use P to pebble G, with at most w pebbles.

Any negative resolution refutation of IMP(G) must begin by resolving on the clause (—xs),
where sisthesink of Gy, sincethisisthe only all negative clause occurring in IMP(Gy,). Further-
more, al new clauses produced by negative resolution are all-negative clauses. Thisis because al
other initial clauses have exactly one positiveliteral, which getsresolved away. Thus, every resolu-
tion step in anegative resolution proof must involveresolving an initial clause with an all-negative
clause.

If Dq,...,Dmisthe sequenceof all-negative clauses generated by the proof P, then thissequence
inreverse, Dy, ...D1 will be the sequence of configurationsin our pebbling strategy for G,. More
precisely, if —x; occursin D, then the configuration corresponding to D will include vertex i of Gp.
It isclear that the pebbling number of our sequence of configurations corresponds to the negation-
width of P. Dn,...Dq isavalid sequence of configurationssincefor any i, D; 1 must bethe same as
D; except that one nodein D; isreplaced by its parentsin D; 1. Therfore, we can go from pebbling
configuration Dj, 1 to D; in two moves of the pebbling game and with no extra pebbles.

Because Gy, has pebbling number q, it follows that the negation-width of P must be at least q.
0

Theorem 4: For any graph G, with pebbling measureq, any negativeresol ution refutation of IMP*(Gp)
requires size 29, |n particular, there exists an infinite sequence of graphs Gy, such that any neg-
ative resol ution refutation of IMP*(Gp) requires size 2°("/1ogn),

Proof: The abovetheorem followsfrom Lemma2 and Lemma3. O

3.2 Lower boundsfor linear resolution

We begin by analyzing the structure of linear resolution refutations. Let P =Cy,...,Cybealinear
resolution refutation of IMP(G), for some G. Let P’ =C,...,C}, for r < m, be the subsequence of
P constructed by removing all initial clauses (i.e. clausesin IMP(G)). First note that every clause
in P must be a horn clause; that is, each clause in P involves at most one positive literal. Thisfol-
lows from the fact that al clausesin IMP(G) are horn and that any resolvent of two horn clausesis
horn. Let p = py, p2, - - -, pr be the ordered sequence of vertices of G such that py = j if and only
if x; isthe kth distinct variable occurring positively in the sequence P'. We claim that p must be a
simple pathin G: consider some C; in P’ such that C, ; adds anew vertex to py to p. C/, , must be
the resolvent of C/ and some other clause D, since the proof is linear. If C'i + 1 adds a new vertex
to p, however, then D must be an initia clause and the resolution must be on the variable which
appears positively in C/, since otherwise px would already appear in p. This means that the vari-
able appearing positively in C{ must be animmediate predecessor of py. The path issimple because
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the graph is acyclic. The path p will be called the path associated with P. Note finally that p may
originate at any vertex in G, but that it must reach the sink since we must at some point use the sole
initial clause mentioning the sink (IMP(G) without this clause would be satisfiable).

This structure gives usimmediate insight into any refutation on the pyramid graph:

Lemma5: Let Pyramid, bethe pyramid graphswithn=m+ (m— 1)+ ...+ 1vertices. Then any
linear resolution refutation of IMP(Pyramidy) has negation-width at least Q(/n/2).

Lemma 6: For any path pin Pyramid,, thereisapyramid graph, Pyramid,; embeddedin Pyramid,
such that no vertices of Pyramid,, intersect p, and suchthat n’ > (m/2—1) 4+ (m/2—-2)+---+ 1.

Proof: If path p does not begin at a source of Pyramid,, consider any path p’ from a source
of Pyramid, (say, X}) to the start of p. Assume without loss of generality that k > [m/2]. Consider
the pyramid with sources i, . . .,xim /2|~ Clearly thereis no path starting at x¢ that intersects this

ramid, so the path p’p cannot intersect it and, in particular, p cannot intersect it.
Py

SR M2

d

Lemma 7: Let P be alinear resolution refutation of negation-width w of IMP(Pyramidn). Let p
be the path associated with P, and let Pyramid,,; be the subgraph of Pyramid,, given by the above
clam. Then Pyramid,; can be pebbled with w pebbles.

Proof: LetP=Cy,---Cyn, P =Cj,...,C/. Wewant to obtain asequenceof configurations(sets
of vertices of Pyramid,y), where the sequence in reverse will be a pebbling strategy for Pyramid,y.
The first configuration in the sequence is the configuration consisting of just the sink vertex of
Pyramid,,. Consider the first clause in P’ where the variable corresponding to the sink vertex t
of Pyramid,, appears negatively. At some point, this clause is resolved with an initia clause of
IMP(Pyramid,) on the variablet, sot isreplaced by its parents. This is because we must use ev-
ery clause in IMP(Pyramidy) and because our copy of Pyramid,, with sink t isindependent of p.



The next configurationin the sequence are these two parent vertices. Following through P/, wewill
come to somefirst place where one of the vertices, V', in the current configurationis resolved upon,
and replaced by itstwo parents. The next configuration in the sequence will be obtained from the
current configuration by replacing v/ with its two parents.

This sequence of configurationsin reversewill be avalid pebbling strategy for Pyramid,, since
each pebbling configuration follows from the previous one by two moves of the pebbling game.
O

Proof: (of Lemma 5) We will now complete the proof of Lemma 5. Since n’ = Q(n/4),
Pyramid,, requires Q(,/n) pebbles. Assume for sake of contradiction that P has negation width
o(+/n). By the abovelemma, thisgives usapebbling strategy for G, violating the known pebbling
measurefor Gy. O

Theorem 8: Any linear resolution refutation of IMP*(Pyramidy) requires size 220V,
Proof: The above theorem followsby Lemma?2and Lemma5. O

Wewill now present abetter lower bound for linear resolution, by utilizing graphswith maximal
pebbling measure. Let G, bethegraphsof in-degree2 given by [PTC77] withn underlying vertices.
We modify these graphs dightly so that the multiple sinks are identified to one using a binary tree.

Lemma9: Any linear resolution refutation of IMP(Gp) has negation-width at least Q(n/logn).

Let P be a linear resolution refutation of IMP(Gp). As before, corresponding to P is a path
P= P1,---,Prin Gn. The path p has an origin, and must end at the sink of Gp. Let anc(p;) be the
direct ancestors of p; that lie outside of p (if there are any), and let anc(p) = U!_,anc(p;)-

Lemma 10: Consider p asainduced subgraph of Gn. Call thisgraph Gp. Gp has pebbling number
O(logn).

Proof: In the construction used by [PTC77], G = G(i), for somei < logn, where G(i) is
constructed recursively from two copies of G(i — 1) and two copies of C(i — 1) (the basic building
blockisC(8) = G(8)). Thegraphsare combinedin seriesso that thesinksof C(i — 1) areconnected
to the sources of G, (i — 1), whose sinks are connected to the sources of G,(i — 1), whose sinks are
connected to the sourcesof C,(i — 1). Sourcesfor G(i) are added beforethe sourcesof C,(i — 1) and
sinks are added after the sinks of C,(i — 1). The only other edges that are added go directly from
the sources of G(i) to its sinks.

Now consider any path pin G(i). For avertex von p, let G¥(i — 1) be the subgraph (i.e. Gy(i —
1), Go(i — 1), Cy(i — 1) or Cy(i — 1)) that containsv. Let CY(8) be the copy of C(8) that contains
v. G(i) can contribute only one edge not in GY(i — 1) that goes from an ancestor of v in P to a
descendent of vin P. Hence there are only i — 8 such edges in G(i) (except those contributed by
CY(8)).
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Figure2: A G(i+ 1) graph

We now use the following pebbling strategy to pebble Gp: |et ¢ be the length of thelongest path
in C(8) (aconstant number). Starting at the beginning of p, lay down c pebbles and subsequently
alwaysleaveatrail of c pebbles behind the current node. Thiswill take care of pebbling any ances-
tors of the next node that are contained in the same copy of C(8). Whenever we reach a node that
isthe parent of afuture node in the path, leave a pebble on it until its descendent is pebbled. This
isguaranteed to add at most i < logn pebbles. O

Corollary 11: The set anc(p) isnot empty.

Proof: Otherwise G would have pebbling number O(logn). O

We now introduce a dlight variation on the pebbling game. Consider a dag containing nodes
U, ..., U andv. The pebbling number of vfromuy, ..., ug isthe minimal number of pebbles needed
to pebble v where we add the rule that during any step a pebble may be placed on u;, for 1 <i < k.

Lemma 12: Thereexistsani, suchthat 1 <i </ and some pebbleinanc(p;) has pebbling number
Q(n/logn) from the sources of Gy and {p, ..., Pi—1}-

Proof: Wefirst show that theremust be anodein anc( p) that has pebbling number Q(n/logn)
from the sources of Gy,. If thiswere not the case, we could use the following strategy to pebble the
sink of G in o(n/logn) pebbles: use the O(logn) pebbling strategy for Gp, except that whenever
we are about to place a pebble on p;, pebble the (at most 2) pebblesin anc( p;) using o(n/ logn) +
O(logn) +1 = o(n/logn) pebbles, place the pebble on p; and removeall the pebbles used to pebble
anc(pi).

Now, consider the smallest i such that anc( p;) containsanodewith pebbling number Q(n/ logn).
Call thisnode v. Notethat any nodein {py, ..., pi_1} can be pebbled from the sources of G using
o(n/logn) pebbles using the logn pebbling strategy for G and the fact that any node in anc(p;)
for j < i can be pebbled in g(n/logn) pebbles. If v could be pebbled from the sources of Gy and
{p1,--.,Pi—1} using o(n/ logn) pebbles, then we could pebble v from the sources of Gy using that
strategy and spending o(n/ logn) pebbleswhenever apebbleneedsto beplaced onanodein { p, ..., pi—1}-
Therefore we can pebblevin o(n/logn) pebbles—a contradiction. O
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Lemma 13: Let P be alinear resolution refutation of negation-width w of IMP(Gp). Let p bethe
path associated with P. Any vertex in G, not lying on p can be pebbled from the sources of G, and
the vertices of p using w pebbles.

Proof: Anaogously to lemma7, start with the first clause of P’ that mentions a given node v
negatively. The set {v} isour initial configuration. Since v is not on p, it must be resolved upon
using an initial clause and therefore replaced by its parentsin the resolvent. Likewise, visreplaced
by its parents in our next configuration. If u appears in any configuration and u is either a source
of G, or lieson p, then u remainsin all the subsequent configurations and isnot replaced by any of
its ancestors. Again, this sequence of configurationsforms a pebbling strategy inreverse. O

Proof: (of lemma9) Immediate fromlemmas13and12. O
Theorem 14: Any linear resolution refutation of IMP*(Gn) requires size 2(n/109n),

Proof: Let P be alinear resolution refutation of IMP*(Gp) of size S= 20("/109") - Applying
Lemma 2, it followsthat thereisalso alinear resolution refutation of IMP(Gp) of width o(n/ logn).
But thisviolatesLemma 9. O

3.3 Sizeversuswidth

It isasimple corollary that there are no size-width relationships for either negative or linear reso-
[ution.

Corollary 15: Thereisno size-width tradeoff for linear (negative) resolution. More specifically,
the formulasIMP(Gp) have polynomial-sizelinear (negative) resolution refutations but any linear
(negative) resolution refutation requires width Q(n/ logn).

Proof: We will describe aresolution proof that is both negative and linear. Start from the root
of the graph, and work up towardsthe sources, finally deriving that one of the (variables associated
with the) sources has to be 0. Resolving this clauses with the initial clauses expressing that each
source is 1 produces the empty clause. By the above wide clause lemmas for linear and negative
resolution, any such refutation of IMP(Gp) requires large negation-width, and thus also requires
largewidth. O
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