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Abstract

We study interval-valued constraint satisfaction problems (CSPs), in which the aim is to
find an assignment of intervals to a given set of variables subject to constraints on the relative
positions of intervals. Many well-known problems such as INTERVAL GRAPH RECOGNITION
and INTERVAL SATISFIABILITY can be considered as examples of such CSPs. One intersting
question concerning such problems is to determine exactly how the complexity of an interval-
valued CSP depends on the set of constraints allowed in instances. For the framework known
as Allen’s interval algebra this question was completely answered earlier by the authors by
giving a complete description of the tractable cases and showing that all remaining cases are
NP-complete.

Here we extend the qualitative framework of Allen’s algebra with additional constraints on
the lengths of intervals. We allow these length constraints to be expressed as Horn disjunctive
linear relations, a well-known tractable and sufficiently expressive form of constraints. The
class of problems we consider contains, in particular, problems which are very closely related
to the previously studied UNIT INTERVAL GRAPH SANDWICH problem. We completely char-
acterize sets of qualitative relations for which the constraint satisfaction problem augmented
with arbitrary length constraints of the above form is tractable. We also show that, again, all
the remaining cases are NP-complete.

Classification: computational complexity, algorithms, constraint satisfaction problems, in-
terval satisfiability.

1 Introduction and Summary of Results

A wide range of combinatorial search problems encountered in Computer Science and Artificial
Intelligence can be naturally expressed as ‘constraint satisfaction problems’ [26], in which the aim
is to find an assignment of values to a given set of variables subject to specified constraints. For
example, the standard propositional SATISFIABILITY problem [10] may be viewed as a constraint
satisfaction problem where the variables must be assigned Boolean values, and the constraints are
specified by clauses. Further examples include GRAPH COLORABILITY, CLIQUE, and BANDWIDTH
problems, scheduling problems, and many others (see [2, 18]).
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Constraints are usually specified by means of relations. Hence the general constraint satisfac-
tion problem can be parameterised according to the relations allowed in an instance. For any set
of relations F, the class of constraint satisfaction problem instances where the constraint relations
are all members of F is denoted C'SP(F). The most well-known examples of such parameterised
problems are GENERALIZED SATISFIABILITY [31], where the parameter is the set of allowed logical
relations, and GRAPH H-COLORING [16], where the parameter is the single graph H.

In studying CSPs over infinite sets of values, arguably the most important type of problem
is when the constraints are specified by binary relations and the set of possible values for the
variables is the set of intervals on the real line. Such problems arise, for example, in many forms
of temporal reasoning [1, 15, 23, 27], where an event is identified with the interval during which it
occurs. They also arise in computational biology, where various problems connected with physical
mapping of DNA lead to interval-valued constraints [3, 11, 12, 20]. Interval-valued CSPs can be
naturally augmented with constraints on the lengths of the intervals, and the complexity of such
extended problems will be the object of our main interest in this paper.

Before we describe our new results, we first discuss four closely related families of problems
involving intervals which have previously been studied.

The prototypical problem from the first family is the INTERVAL GRAPH RECOGNITION prob-
lem [17]. An interval graph is an undirected graph such that there is assignment of intervals to
the nodes with two nodes adjacent if and only if the two corresponding intervals intersect. Given
an arbitrary graph G, the question of deciding whether GG is an interval graph is rarely viewed
as a constraint satisfaction problem, but in fact it is easily formulated as such a problem in the
following way: every pair of adjacent nodes is constrained by the relation r =“intersect” over pairs
of intervals, and every pair of non-adjacent nodes is constrained by the complementary relation
7 =“disjoint”. This fundamental INTERVAL GRAPH RECOGNITION problem is tractable, and it
also remains tractable if we impose additional constraints on the lengths of the intervals which
require all intervals to be of the same length (the UNIT INTERVAL GRAPH RECOGNITION prob-
lem [4]). In contrast, it was shown in [29] that if we allow boundaries to be specified for the lengths
of intervals, or even exact lengths (which are not necessarily all equal), then the corresponding
problems (called BOUNDED INTERVAL GRAPH RECOGNITION and MEASURED INTERVAL GRAPH
RECOGNITION, respectively) are NP-complete.

A number of other problems are closely related to the INTERVAL GRAPH RECOGNITION
problem, including the CIRCLE GRAPH RECOGNITION problem and the CONTAINMENT GRAPH
RECOGNITION problem [9, 14]. These problems can also be formulated as constraint satisfaction
problems in a similar way by simply using a different constraint relation.

A typical problem from the second family is the INTERVAL GRAPH SANDWICH problem [12].
Given two graphs G; = (V, E1) and Gy = (V, E3) such that E; C E5, the question is whether
there is an interval graph G = (V, E) with E; C E C Es. Clearly, this is a generalization of the
corresponding recognition problem (the case when F; = FE5). The INTERVAL GRAPH SANDWICH
problem can be represented as a constraint satisfaction problem as follows: to any e € Fq assign
the constraint r =“intersect”, to any e € FE5 assign the constraint 7 =“disjoint”, and leave all
pairs of variables corresponding to edges from Es \ E; unrelated. This problem was shown to be
NP-complete along with the UNIT INTERVAL GRAPH SANDWICH problem where all intervals are
required to be of the same length [12].

GRAPH SANDWICH problems for a variety of graph properties have been considered [13]. For
example, the CIRCLE GRAPH SANDWICH problem is obtained from INTERVAL GRAPH SANDWICH
problem by changing “interval graph G” to “circle graph G”. This problem was shown to be
NP-complete in [13]; it can be formulated as a constraint satisfaction problem in the same way
as above using the constraint relation r =“overlap”.



The third family of problems we mention is the so-called INTERVAL SATISFIABILITY prob-
lems [15, 30, 32]. In these problems every pair of interval variables is again constrained in some
way, but the constraints this time are chosen from a given set F of relations. In [15, 30, 32] only a
small number of possibilities for F are considered. It is shown there that for some choices of F the
resulting problem is tractable, whilst for others it is NP-complete. The complexity of INTERVAL
SATISFIABILITY with all intervals of the same length is also studied in [30].

The fourth type of problem we mention is the satisfiability problem for Allen’s interval alge-
bra [1], denoted A-SAT. Allen’s algebra contains 13 basic relations (corresponding to the 13 ways
two given intervals can be related from a “qualitative” point of view). The set .A contains not
just these basic relations, but all 2! = 8192 possible unions of them. The problems A-SAT(F) are
similar to problems of the third type above, except that unrelated pairs of variables are allowed.
They can also be represented as INTERVAL SATISFIABILITY with F being an arbitrary subset of
A containing the total relation. The complexity of problems of the form .A-SAT(F) has been
intensively studied in the Artificial Intelligence community (see, e.g., [6, 7, 27]), and a complete
classification of the complexity of such problems was obtained in [23]. In that paper it is shown
that there are exactly 18 maximal tractable fragments of A, and for any subset F not entirely
contained in one of those the problem A-SAT(F) is NP-complete.

Many problems, e.g., certain scheduling problems, can conveniently be expressed as A-SAT(F)
with additional constraints on the lengths of the intervals. Moreover, in [2], it was suggested that
many important forms of constraints on lengths can be expressed in the form of Horn disjunctive
linear relations. This class of relations is known to be tractable [19] and at the same time it
allows us to express all elementary constraints such as fixing the length, or bounding the length
of an interval by a given number, or comparing the lengths of two intervals. It was proved in [2]
that only three out of the 18 maximal tractable fragments for A-SAT(F) preserve tractability
when extended with Horn disjunctive linear constraints on lengths; the other 15 become NP-
complete. In this paper we study how we need to further restrict those 15 fragments to obtain
tractable cases. The main result is a complete classification of complexity for A-SAT(F) with
additional constraints on lengths. We show that such problems are either tractable or strongly
NP-complete. Moreover, we give a complete description of the tractable cases, which allows one
to easily determine whether a given set F falls into one of the tractable cases.

As well as giving a complete classification, our result also establishes a new dichotomy theorem
for complexity. Dichotomy theorems are results concerning a class of related problems (with some
parameter) which assert that, for some values of the parameter, the problems in the class are
tractable while for all other values they are NP-complete. Such theorems are of interest because
it is well known [24] that if P#£NP then, within NP, there are infinitely many pairwise inequivalent
problems of intermediate complexity. Dichotomy results rule out such a possibility within certain
classes of problems.

Dichotomy theorems have previously been established for the GENERALIZED SATISFIABIL-
ITY [31] and GRAPH H-COLORING [16] problems mentioned above as well as the DIRECTED
SUBGRAPH HOMEOMORPHISM problem [8].

Constraint satisfaction problems have been a fruitful source of dichotomy results (see, e.g., [5,
21]). For constraint satisfaction problems, the relevant parameter is usually the set of relations,
F, specifying the allowed constraints. This parameter usually runs over an infinite set of values.
In the case of Allen’s algebra, even though the number of different values for F is finite, it is
astronomical (28192 ~ 10?4%6) which excludes the possibility of computer-aided exhaustive case
analysis.

The usual tool for proving dichotomy theorems is reducibility via expressibility. This is done
by showing that one set of relations expresses another, so that one problem can be reduced to the



Basic relation Example ‘ Endpoints

x precedes y p XXX Tzt <y~
y preceded by x p ! yyy
T meets y m XXXX zt = Yy
y met by z m~! yyyy
x overlaps y 0 XXXX T <y <z,
y overlapped by z 0~ ! yyyy |zt <y?
z during y d XXX >y,
y includes x d™' | yyyyyyy |zt <y
x starts y s XXX T =y,
y started by z st | yyyyyyy | ot <yt
x finishes y f xxx |zt =yT,
y finished by = | yyyyyyy |2 >y
x equals y = XXXX T =y,
yyyy |zt =y"

Table 1: The thirteen basic relations. The endpoint relations z~ < z©7 and y~ < yT that are
valid for all relations have been omitted.

other. This is the method used in [5, 23, 31], and a similar method is used here. After identifying
certain tractable fragments, we find some NP-complete fragments and then show how any subset
not entirely contained in one of the tractable sets can express some already known NP-complete
fragment.

2 Preliminaries and Background

Allen’s interval algebra [1], denoted \A, is a formalism for expressing qualitative binary relations
between intervals on the real line. By “qualitative” we mean “invariant under all continuous
injective monotone transformations of the real line”. An interval x is represented as a pair
[z7,zT] of real numbers with z= < z*, denoting the left and right endpoints of the interval,
respectively. The qualitative relations between intervals are the 2'3 = 8192 possible unions of the
13 basic interval relations, which are shown in Table 1. It is easy to see that the basic relations
are jointly exhaustive and pairwise disjoint in the sense that any two given intervals are related
by exactly one basic relation. For the sake of brevity, relations between intervals will be written
as collections of basic relations, omitting the sign of union. So, for instance, we write (pmf~1)
instead of pUm UL
The problem of satisfiability (A-SAT) in Allen’s algebra is defined as follows.

Definition 1 Let F C A be a set of interval relations. An instance I of A-SAT(F) over a set,
V', of variables is a set of constraints of the form xry where x,y € V and r € F. The question is
whether I is satisfiable, i.e., whether there exists a function, f, from V to the set of all intervals
such that f(z)r f(y) holds for every constraint xry in I. Any such function f is called a model

of I.

Example 1 The instance {x(m)y,y(m)z,z(m)z} is not satisfiable because the first two constraints
imply that interval x must precede interval z which contradicts the third constraint.
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a=(pmo) B=(ods) y=(od ) o=(=ss!) O=(=f1
p=(pmods) A= (pmod~'f!) v = (=00 'dd tssTff!)
T=(=pp 'mm loo tdd lss ff 1)

Table 2: Composition table for the basic relations in Allen’s algebra

Example 2 The instance I = {z(mo)y,y(df 1)z, z(= pmod~1ss~1f~1)x} is satisfiable. The func-
tion f given by f(z) =10,2], f(y) =[1,3], and f(z) =[0,4] is a model of I.

An instance of A-SAT(F) can also be represented, in an obvious way, as a labelled digraph,
where the nodes are the variables from V', and the labelled arcs correspond to the constraints.
This way of representing instances can sometimes be more transparent.

Allen’s interval algebra A consists of the 8192 possible relations between intervals together
with three standard operations on binary relations: converse -~1, intersection N and composition
o. Tt is easy to see that the converse of 7 = (b ...b,) is equal to (b, ' ...b,"'). Using the definition
of composition, it can be shown that

(br--.bn) o (bh ... b)) = J{biob) | 1<i<n, 1<j<m}

Hence the composition of two relations 71,792 € A is determined by the compositions of the basic
relations they contain. The compositions of all possible pairs of basic relations are given in Table 2.

Subsets of A that are closed under the operations of converse, intersection, and composition
are said to be subalgebras. For a given subset F of A, the smallest subalgebra containing F is
called the subalgebra generated by F and is denoted by (F). It is easy to see that (F) is obtained



from F by adding all relations that can be obtained from the relations in F by using the three
operations of A.

It is known [27], and easy to prove, that, for every F C A, the problem A-sAT((F)) is
polynomially equivalent to A-SAT(F). Therefore, to classify the complexity of A-SAT(F) it is
only necessary to consider these problems for subalgebras of A. Throughout the paper, S denotes
a subalgebra of A.

In the following we shall use the symbol +, which should be interpreted as follows. A con-
dition involving + means the conjunction of two conditions: one corresponding to + and one
corresponding to —. For example, the condition

rN(dsf) £ 0 = (d)F Cr
means that both of the following conditions hold:

rN(dsf) #0 = (d)Cr
rN(d7 s £0 = (d7Y)Cr

The main advantage of using the + symbol is conciseness: in any subalgebra of A, the ‘+’ and
the ‘—’ conditions are satisfied (or not satisfied) simultaneously, and, therefore only one of them
needs to be verified.

A complete classification of the complexity of problems of the form A-SAT(F) was obtained
in [23].

Theorem 1 ([23]) For any subset F of A, either A-SAT(F) is NP-complete or F is included in
S, where S is one of the 18 subalgebras listed in Table 3, for which A-SAT(S) is tractable.

In this paper we present a complete complexity classification for a more general problem,
namely, for A-SAT(F) extended with constraints on the lengths of intervals. Now we define the
exact form of constraints on lengths we shall allow.

Definition 2 Let V be a set of real-valued variables, and «, 3 linear polynomials over V with
rational coefficients. A linear relation over V is an ezpression of the form aRf, where R € {<
<=, 7,2, >}

A disjunctive linear relation (DLR) over V is a disjunction of a nonempty finite set of linear
relations. A DLR is said to be Horn if and only if at most one of its disjuncts is not of the form

a# .

Example 3
T+ 2y <3z+42.3

is a linear relation,

3
(x+2y§3z+42.3)V($+z<4y—8)V(x>E)

s a disjunctive linear relation, and
3
(z4+2y<32+423)V(z+2z#4y—8)V (z # E)

is a Horn disjunctive linear relation.



Sp={r|rn(pmod= 1 1)F £ = (p)F Cr}
Sq ={r|rn(pmod~ H-DE £ (= (d~1)*F! Cr}
So = {r | rN (pmod~H~1)EL £ ) = (0)*! C 7}
Ay = {r|r N (pmod= 1 1)*l £ ) = (s71)FL C r}
Ao = {r|rn(pmod= 1)+l £ = (s)* C r}
Az = {r | r N (pmodf)*! £ = (s)*! C r}

Ay = {r|rn(pmodf )= # 0 = (s)*' C 7}

By = {r | N (pmod s 1)L £ ) = (f )1 C 1}
By={r|rn(pmod ! )ﬂ;é@i( 1)#L

8p:{r|rﬁ(pmods)i17é®:>() Lcr}
Ed:{r|rﬂ(pmods)i17€®:>() Lcr}
Eo = {r | r N (pmods)*! # ) = (0)* lgr}
By = {r|rnN(pmods)*t £ 0 = (fF)*L Cr}
Bgz{r|rﬂ(pmods)i17é(2):>() 1cr}

(

(

o 1) 7 N (pmods)*! # 0 = (s)*! C r, and
VUl £0= (=) cr

2)rN(ssH#0=(=)Cr

St — {r 1) rN(pmod M HF £ = (f1)* Cr, and }

2) 7N (ds)FL £ P & rnN(d=HHEH £0 = (o) Cr, and
3) r 0 (pm)E £ 0 & r @ (pm)2L = (o) C r

D rn(os)* £0 & rn (o )T #£0 = (d)*! Cr, and }

Az ={r|r#0= (=) cr}

Table 3: The 18 maximal tractable subalgebras of Allen’s algebra.



Definition 3 The problem of satisfiability for finite sets D of DLRs, denoted DLRSAT, is that
of checking whether there exists an assignment f of variables in V to real numbers such that all
DLRs in D are satisfied. Such an f is said to be a model of D. The satisfiability problem for
finite sets of Horn DLRs is denoted HORNDLRSAT.

Theorem 2 ([19, 22]) The problem DLRSAT is NP-complete, but HORNDLRSAT is solvable in
polynomial time.

We are interested in how the complexity of a problem depends on the value of parameter F
which, in our case, is a set of qualitative relations. Therefore we shall allow only those constraints
on lengths which can be expressed by Horn DLRs and so are tractable. This class of constraints
subsumes all forms of constraints on lengths which have been considered in [29, 30].

We can now define the general interval satisfiability problem with constraints on lengths.

Definition 4 An instance of the problem of interval satisfiability with constraints on lengths for
a set F C A, denoted A'-SAT(F), is a pair Q@ = (I, D), where

e I is an instance of A-SAT(F) over a set V of variables, and
e D is an instance of HORNDLRSAT owver the set of variables {l(v) | v € V'}

The question is whether () is satisfiable, i.e., whether there exists a model f of I such that the
DLRs in D are satisfied with l[(v) equal to the length of f(v) for allv e V.

Example 4 Consider the instance Q = (I, D) where I = {z(mo)y,y(df 1)z, z(= pmod~lss~ 1)z},
as in Ezample 2, and D = {l(z) > l(y)+1(2)}. This instance is not satisfiable: any set of intervals
satisfying the constraints in I must have 2~ <z~ < 7 < y* and yNz non-empty, and so cannot
satisfy the length constraint in D.

Proposition 1 A'-SAT(F) € NP for every F C A.

Proof. Every instance of A'-SAT(F) over a set V of variables can be translated in a straightforward
way into an instance of DLRSAT over the set {v—,v" | v € V'} of variables. Now the proposition
follows from Theorem 2. O

Example 5 The instance Q = (I, D) defined in Ezample j corresponds to the instance D' of



DLRSAT containing the following constraints:

(z~ <a™),

(y~ <y"),

(z <2h),

@z =y ) V(= <y),

(zt =y )V (y~ <zT), p corresponding to z(mo)y
(zF =y7) Vv (zT <y™),

(= > =)V g+ = =),

Ez; Z ;;’v W™ <27, corresponding to y(df~1)z
(y" <zh)V(y~ <z7),

2z <z, } corresponding to z(= pmod~lss~ 1)z

(zF —z ) > @ —y )+ (zF —2)

The complexity of A'-SAT(S) has already been determined for each subalgebra S listed in
Theorem 1.

Proposition 2 ([2]) The problem A'-sAT(S) is tractable for S € {Sp,Ep, "} and is NP-complete
for the other 15 subalgebras listed in Theorem 1.

In the next section, we determine the complexity of A!-SAT (F ) for every possible subset F C A.

3 Main Result

Theorem 3 For any subset F of A, either A'-SAT(F) is strongly NP-complete or F is included
in S, where S is one of the 10 subalgebras listed in Table 4, for which A'-SAT(S) is tractable.

In Subsection 3.1, we discuss polynomial-time algorithms for the 10 subalgebras listed in
Table 4, and in Subsection 3.2 we give the NP-completeness results that we need. Strong NP-
completeness of the NP-complete cases follows from the fact the the biggest number used in these
NP-completeness proofs is 5. Finally, in Subsection 3.3, we give the classification proof.

The following notation is used throughout the proofs: if f is a model of an instance over a set
V of variables and v € V then we denote the left and right endpoints of f(v) by f(v™) and f(v™),
respectively.

We shall say that a relation is non-trivial if it is not equal to the empty relation or the relation
(=). Given a relation r € A, we write r* to denote the relation rNr~!. Evidently, every subalgebra,
of A is closed under the operation -* (of taking the symmetric part of a relation).

Now we introduce the notion of derivation with lengths which will be used frequently in the
proofs below. This notion is an extension of the notion of derivation in Allen’s algebra used in [23].

Suppose F C A and Q = (I, D) is an instance of A-SAT(F). Let variables z,y be involved
in I. Suppose a relation r € A satisfies the following condition: @) is satisfiable if and only if
zry. Then we say that r is derived (with lengths) from F. It can easily be checked that the
problems A'-SAT(F) and A!-SAT(F U {r}) are polynomially equivalent because, in any instance
of the second problem, any constraint involving r can be replaced by the set of constraints in )



Sp = {r |7 N (pmod 11! £ 0 = (p)*! C 1}

Ep = {r 7N (pmods)*! # 0 = (p)*' C 1}

Co={r|r#0= (c07!)Cr}

2) rN(ds)Tr # 0 & rn (d~H HE £ = (0)*! Cr, and
3) rN(pm)* #£0 & r Z (pm)* = (0)*' Cr

D rn(os)® #0 & rn (o7 H)* #£ 0 = (d)*! Cr, and }

o — 1) r# 0= (mmlss~f~1) Cr, and
™| 2 rnpeioo ) £0= (=) Cr

Ds 2) rN(pptmm~loo ) £ P = (=ss7!) Cr

{T 1) 7N (dsf)! #£ 0 = (s)*! C 7, and }

>
-
I
—
=

1) rN(dsf)* £ 0 = (*L Cr, and
2) rN(pp~tmm~loo ) £ P = (=ff1) Cr

>
o
Il

1) rN(dsf)* # P = (d)* C r, and
2) rN(pp~'mm~loo ) £ D= (=dd~ ) Cr

1) rN(dsf)*L # 0 = (d)*! Cr, and
2) 7N (pmo)*!t # ) = (odd~H)FL C r

R
I

2) r N (pp~too™!) # B = (oo~'dd~!) C r, and
) rn(pp tmm ) #£0=(=dd ) Cr

3
a=
Il
—— ,_;H —

1) rn(dsf)*! #0 = (d)*! Cr, and }

Table 4: The 10 tractable cases of A!-SAT.
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(introducing fresh variables when needed), and this can be done in polynomial time. It follows
that it is sufficient to classify the complexity of problems A'-SAT(S) where S is a subalgebra of
A closed under derivations with lengths.

Note that if we prove that the 10 sets shown in Table 4 are the only maximal sets F for which
Al-sAT(F) is tractable then it will follow that they are all subalgebras closed under derivation
with lengths, that is, we don’t have to give a separate proof of this fact.

We will also use the following principle of duality to reduce the number of cases to be considered
in the forthcoming proofs. We make use of a function reverse which is defined on the basic relations
of A by the following table:

b =p p'm ml!o ol ddl s st f fl

reverse) [= p 't p mI! m ol o ddl! f fl s st

and is defined for all other elements of A by setting reverse(r) = [ J,, reverse(b).

Let Q = (I, D) be any instance of A!-SAT with set V of variables, and let Q' = (I, D) be
obtained from @ by replacing every r in I with reverse(r). It is easy to check that @ has a model
f if and only if Q' has a model f’ given by

f'(v) =[-fw"),—f(v7)] forallv € V.

In other words, f’ is obtained from f by redirecting the real line and leaving all intervals (as
geometric objects) in their places. This observation leads to the following lemma.

Lemma 1 Let F = {r1,...,m} C A and F' ={r},...,r.} C A be such that, for all1 < k <mn,
rt = reverse(ry). Then A'-SAT(F) is tractable (NP-complete) if and only if Al-SAT(F") is tractable
(NP-complete).

3.1 Tractability results

In this subsection we give algorithms for the tractable cases (Figure 1). Checking that they are
polynomial-time is straightforward and is left to the reader.

Algorithms A;, 1 < i < 4, and Procedure P take an instance Q) = (I, D) over a set of variables
V as input. We shall assume that D always contains all constraints of the form I(v) > 0, v € V.
We will also assume that I does not contain a constraint vrw where r = ). This trivial necessary
condition for satisfiability can obviously be checked in polynomial time.

Proposition 3 The problem A'-SAT(S) is tractable whenever S is one of Sp, €p, H, Co, Cm, Ds,

Dy, Dy, ’Dél, or Dé’l.

Polynomial-time algorithms solving A'-SAT(S) for S € {Sp, Ep, M} are given in [2].

Lemma 2 Let Q = (I, D) be an instance of A'-SAT(Co). Then Q is satisfiable if and only if D
is satisfiable.

Proof. Let V = {z1,...,z,}. If D is not satisfiable then, obviously, the whole instance @

is not satisfiable. Suppose D is satisfiable, and I(z1) = a1,...,l(x,) = a, is a solution of D.
Then reorder variables in V' so that a1 < --- < a,. Let € = a1/n and let, for 1 < i < n,
f(z;) =[e-i,e-1+ a;]. It is easy to check that this f satisfies all constraints in Q. O

11



Input: instance Q = (I, D) of A'-SAT(S) with set of variables V

Algorithm A; for § =Cm
1) if D is not satisfiable then reject
2) construct a graph G = (V, E) where (v,w) € E if and only if

e DU {l(v) #l(w)} is not satisfiable, and
e vrw € I for some r such that (=) Z r

3) if G is 2-colorable then accept else reject

Procedure P

1) let D'=D
2) for each vrw € I such that r» C (dsf) or r C (d~!s~!f1), add the constraint I(v) < I(w) or
[(v) > I(w), respectively, to D’

3) for each vrw € I such that (=) Cr C (=dsf) or (=) Cr C (=d s~ !f 1), add the constraint
I(v) < l(w) or l(v) > I(w), respectively, to D’
4) if D' is not satisfiable then reject

Algorithm A, for S € {Ds, Dy, Dy}
1) call procedure P
2) accept

Algorithm Ajs for § = Déj
1) call procedure P

2) construct a graph G = (V, E) where (v,w) € E if and only if D'U{l(v) # [(w)} is not satisfiable

3) identify the connected components Si,..., Sk of G

4) for each Sy, let I; = I|s; = {vrw € I |v,w € S;} and I; = {vrN (= oo Y) w | vrw € I}

5) solve I}, 1 < j <k, as instances of A-SAT(So)

6) if every I ]’ is satisfiable then accept else reject

Algorithm A, for § = Dg
1) call procedure P
2) construct a graph G = (V, E) where (v, w) € E if and only if

e D'U{l(v) # l(w)} is not satisfiable, and

e vrw € I for some 7 such that (=) CrN(=pp~too 'mm™1) C (= mm™!)

3) identify the connected components S, ..., Sk of G
4) for each Sy, let I; = I|s; = {vrw € I |v,w € S;} and I; = {vr w|vrw € I; and (=) Z r}
5) if every I ]’ is empty then accept else reject

Figure 1: Polynomial-time algorithms for the tractable cases of A!-SAT.
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It follows that the problem A'-SAT(Co) has exactly the same complexity as HORNDLRSAT,
and hence is tractable (see Theorem 2).

Algorithms for the remaining 6 subalgebras are given in Figure 1, and in the remainder of this
subsection we prove that these algorithms are correct. The following lemma is crucial in these
correctness proofs.

Lemma 3 ([6]) Let D be a satisfiable set of Horn DLRs and let x1,...,%y be the variables used
in D. If D = {z; # zj | DU {z; # x;} is satisfiable} then D U D is satisfiable.

Using this lemma we can always divide V into classes such that, in every model of an instance,
variables from the same class must be assigned intervals of the same length while any variables
from different classes can be assigned intervals of different lengths all at the same time.

Lemma 4 Algorithm Ay correctly solves A'-SAT(Cm).

Proof. Obviously, if A; rejects in line 1 then @ is not satisfiable.

Suppose A; rejects in line 3. Then G contains a simple cycle z1, ..., zo 41,21 of odd length.
Then, in any model f of Q, intervals f(z1),..., f(z2:+1) must have the same length by definition
of Cm, and we have f(x;) (mm~1) f(z;41) for all 1 <4 < 2t. It easy to see that these conditions
imply f(z1) (= pp™') f(x2:41). Therefore, it is impossible that f(z1) (mm™!) f(zosy1), and Q is
not satisfiable.

Suppose now that the algorithm accepts. We will show how to construct a model of (). Note
that in this case D is satisfiable. Let V = {z1,...,z,} and D = {i(z;) # I(z;) | D U {l(z;) #
I(z;)} is satisfiable}. Then, by Lemma 3, D U D is satisfiable. Let I(z1) = ay,...,l(z,) = a, be
a solution of D U D. We know that G can be coloured with two colours: say, black and white.
Now if z; is black let f(z;) = [0, a;], otherwise let f(z;) = [—a;,0]. Obviously, this satisfies all
constraints containing (=) because all constraints in I already allow (mm !ss~!ff ). Suppose
that z;rz; € I for some r such that (=) € r. If (z;,z;) € E then z; and z; are of different colours,
and we have f(z;) (mm~!) f(z;). Otherwise we know, by Lemma 3, that the lengths of f(z;) and
f(z;) are different, which means that f(z;) (mm~!ss~1ff~1) f(z;), as required. O

The next three algorithms will use preprocessing procedure P (see Figure 1). This procedure
can obviously be performed in polynomial time. It is also easy to see that P does not change the
set of solutions to an input.

Lemma 5 Algorithm Ao correctly solves problems A'-SAT(S), where S € {Ds,Ds, Dy}-

Proof. Obviously, if the algorithm rejects (in P) then the instance is not satisfiable.

Suppose now the algorithm accepts. Let I(z1) = a1,...,l(z,) = a, be a solution of D' and
order the variables in V so that a; < ... < ay,.

If F = Ds then let f(z;) = [0, q;] for all . The constraints added to D during preprocessing P
ensure that this f is a model of Q. Similarly, if 7 = Dy then the mapping given by f(z;) = [—a;, 0]
for all 4 satisfies all constraints in Q. Finally, if 7 = Dy then the mapping f(z;) = [—a;/2,a;/2]
for all ¢ satisfies all constraints in Q). O

Lemma 6 Algorithm As correctly solves .Al—SAT(’Da).
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Proof. Suppose first that A3 accepts on an input Q). ‘We construct a model of ) as follows. Let
vj1, 1 <1 <18j], be the members of §j, 1 < j < k. Let D = {I(v) # l(w) | D' U {l(v) # l(w)} is satisfiable}.
By Lemma 3, D' U D is satisfiable. 5
Let I(v;;) = aj;, where 1 < j < k and 1 <[ < |S;|, be a solution of D' U D. Note that, for
every 1 < j <|Sj|, we have aj;1 = ... = aj,|s;|- Reorder the S;’s so that a11 < ag1 <... <ag:
holds. Let
. min{ “HLL | ] <G <k} if k> 1,
1 ifk=1
For all 1 < j <k, let f; be a model of I} (and, then, of I; as well) and assume without loss of
generality that the variables in I; are ordered so that f;(v;;) < fi(v;,) < ... < fj(v]._w,'). By
) ” Hlag¥)
applying an appropriate translation and scaling, all models f; can be chosen so that 0 < fj(vj_’l) <
Now we combine the models f; of I; into one model f of @ = (I, D): let f(v;}) = —j-e+f;(v;;)
and f(v;-:l) = f(vj;) + aj, (see Figure 2).

—4e -3¢ —2e —€ 0 € 2€ 3e 4e
<! | | 1 | | | | L,
f(vy,) i
f(vy,) H—
f(vyg) i
e S
f(vyq) i
f(vz) I |
f(v31) I |
f(v3o) I |
f(v32) I |
7 I I l I I I I >
—4e -3¢ —2e —€ 0 € 2€ 3e 4e

Figure 2: A combined model for an instance of .Al—SAT(Da) (Lemma 6)

We immediately see that f satisfies all length constraints and all constraints within each I;.
It is also easy to check that we have f(v;;) (d) f(vi#y) whenever i < ¢'. Due to the check in
procedure P, this satisfies all constraints between variables from different I;’s.

Assume now that algorithm Aj rejects. We will show that @ is not satisfiable. The result holds
trivially if A3 rejects on line 1 (that is, in P). Assume to the contrary that some I ]’ is not satisfiable
but () is satisfiable. Clearly, if () is satisfiable then the instance I; has a model f with all intervals
of the same length a. Then f is also a model of I} = {v r N (= pp~'mm~loo™!) w |vrw € I;}.

Reorder the variables in I; so that f(v;;) < f(v;,) < ... < f (’Uj_’| Sj|), and suppose that

{f(v;) | 1< U<} = {bu,..., b} where 1 <t < [S;] and by < ... < by.
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By definition of D', every constraint allowing (pm) allows (o) as well. Therefore the function
g defined by
9(vj1) = [a - s/|Sj],a - s/|Sj] + a] when f(v;;) = bs

is a model of I;. Moreover, it is also a model of I J’ A contradiction. O

Lemma 7 Algorithm A4 correctly solves Al—SAT(Dg).

Proof. If A4 rejects in line 1 (that is, in P) then @ is obviously not satisfiable.
Suppose A4 rejects in line 6. It follows that there are variables z1,...,z, € V such that, in
any model f of Q,

e intervals f(z1),..., f(z4) have the same length, and
o f(z;) (=mm™1) f(z;y1) forall1 <i<qg—1,and

e (by definition I} and Dg) the intervals f(z1) and f(z,) are related by (oo 'dd 'ss~1ff 1).

It is clear that these three conditions cannot be satisfied simultaneously. Therefore @ is not
satisfiable.

Suppose that the algorithm accepts. We will show how to construct a model of Q. Let v;;, 1 <
I <|8;| be the members of S;, 1 < j < k. Let D = {I(v) # I(w) | D' U{l(v) # I(w)} is satisfiable}.
By Lemma 3, D' U D is satisfiable.

Let I(v;;) = aj;, where 1 < j <k and 1 <[ < |S], be a solution of D. Note that, for every

1<j <18, we have a1 = ... = ajs;|- Reorder the Sj’s so that a1,1 < a1 < ... < ag,; holds
(note that some of a;1’s may coincide). Let {a1,1,...,ax,1} = {b1,...,b:} where by < ... < b; and
let

_ min{by, 2% |1 <q <t} ift>1,
1 ift =1

Further, let f(v;)) = —s-e+ |]7| - € where s is such that b, = a;; and let f(v;-tl) = flvj) +ajy
(see Figure 3). We will show that f is a model of Q). By the choice of a;;, f satisfies all length
constraints.

Suppose vj; r vy € I and check that f(v;;) r f(vj ).

Case 1. j = j'.

If the variables are from the same connected component of G then (=) C r. Indeed, we have
f(vj1) (=) f(vj ) by the definition of f.

Case 2. j # j', but a;; = aj p.

By definition of G, we have either rN(pp 100 ) # () or (=) Z r. In the former case we immediately
get (00~ !) C r by the definition of ’Dé’l. Suppose that (=) € r. Then 7 N (pp~'mm™!) = (). Due
to the check in P, the equality a;; = a; y is necessary. It follows from this fact and from the
definition of ’Dg that we have (00™!) C r again. Indeed, it is easy to check that f(vj;) (0) f(vjr )
if § < 4', by the definition of f.

Case 3. aj; # aj -

Assume without loss of generality that a;; < a; y. It follows from the definition of Dg that either
we have (dd=') C r or (due to the check in P) (d) C r C (dsf). It is not hard to verify that,
indeed, f(v;;) (d) f(vj 1), by the definition of f. O
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—4e -3¢ —2e —€ 0 € 2¢€ 3e 4e

b2
f(vs0) b 1
f(v32) L |
f(vz3) |
I | | l | | | | >
—4e -3¢ —2€ —€ 0 € 2€ 3e 4e

Figure 3: A combined model for an instance of Al—SAT(Dﬁ) (Lemma 7)

3.2 NP-completeness results

First let us mention the obvious fact that, for any F C A, NP-completeness of A-SAT(F) implies
NP-completeness of A!-SAT(F).

Lemma 8 Suppose thatry,...,r, € A are relations such that A-SAT({r1,...,7mn}) is NP-complete.
1. If, for every 1 <i<m, ri € {ry,r; U (=)} then Al-sat({r},...,r}}) is NP-complete.

2. If ) # r1 C (pmo) and r} satisfies 11 C 7 C 71 U (= dsf) then Al-saT({r|,ro,...,™}) is
NP-complete.

Proof. (1) Polynomial-time reduction from A-SAT({r1,...,r,}) to Al-sar({r},... 7 }).
Let I be an instance of A-SAT({r1,...,r,}) over a set V of variables. Construct an instance
(I',D') of Al-sar({r,...,rL}) as follows:

1. for every constraint urv in I such that (=) C r add urv to I';
2. for every constraint urv in I such that (=) € r add urv to I' and [(u) # I(v) to D'.

Obviously, every solution to (I',D') is also a solution to I. Let f be a model of I and let
{z1,...,Zm} be the set of all endpoints of intervals f(z), z € V. We may without loss of generality
assume that 0 < 21 < -+ < Ty, Set & = 1, ©, = z9, and, for every i > 2, set z} = 2z,_, + 1.
It is easy to check that the function f’ such that f'(v) = [z}, 2] if f(v) = [zi,7;] is a model of
(I',D".

(2) Modify the previous construction as follows:
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1. for every constraint uriv in I add constraints uriv to I’ and I(u) > [(v) to D;
2. for every constraint ur;v, 4 > 1, in I add ur;v to I'.

Every solution to (I’, D') is also a solution to I because urjv and [(u) > [(v) imply urjv. Let
f be a model of I and let {z1,...,%,} be the set of all endpoints of intervals f(z), z € V. We
may without loss of generality assume that 1 < --- < z,,, < 0. Set z},, = Ty, ), _; = ZTpy—_1, and,
for every 1 <1i < m — 1, set zj = 2z; , — 1. Tt is easy to check that the function f’ such that
f'(v) = [x3,25] if f(v) = [zi,7;] is a model of (I, D'). O

Example 6 It follows from Theorem 1 that A-SAT({(mm~1)}) is NP-complete. Using Lemma 8(1)
we conclude that A'-SAT({(= mm~1)}) is NP-complete.

Lemma 9 A!-SAT(F) is NP-complete if F is {(00™ 1), (s)}, {(oss Hff 1)}, or {(sf), (oo tss1ff 1)}.
Proof. First let F = {(0o™ 1), (s)}. The constraints

{z(00™ )y, (007 )2, y(s)2;1(2) > I(z) +U(y)}

are satisfiable if and only if z(0)y. Further, the constraints {z(0)z, z(0)y;l(z) > I(z)+I(y)} are sat-
isfiable if and only if z(p)y. It follows from Theorem 1 that A-SAT({(0co™!), (p)}) is NP-complete.
The above constructions show how to reduce A-saT({(00~!),(p)}) to A'-saT({(00~!),(s)}) in
polynomial time.

Let F = {(oss~ff~1)}. Note that we can also use (ss~'ff~1) = (oss~1ff~1)*.

Reduction from UNNEGATED ONE-IN-THREE 3SAT (Problem [LO4] in [10]) to A'-sAT({(oss™1ff~1)});
let (X, C) be an arbitrary instance of UNNEGATED ONE-IN-THREE 3SAT. Consider the following
set of constraints over the variables a, b, c, ¢':

a(oss Hf )b I(a) =1(b) =
c(ss7HfYa  c(ssTHf )b I(c) =1
d(ss7HffY)a d(ssTHF)b I(d) =3

We impose the constraints z(ss™'ff~1)a, z(ss~!ff~1)b to every z € X and note that this implies
I(z) € {1,3}. To complete the reduction, we add the constraint {(z) + I(y) + [(z) = 5 for each
{z,y,2z} € C. It is easy to show that the resulting set of constraints is satisfiable if and only if
(X, C) has a solution.

Now let F = {(sf), (oo 'ss 1ff 1)}. The constraints {z(sf)z, y(sf)z;1(z) > I(z) +1(y)} are sat-
isfiable if and only if z(= pp~!ss™1ff!)y. Thus, (ss71f~!) = (oo~ lss™ff 1) N (= pp~lss1ff 1).
To show NP-completeness, use the same construction as above but replace (oss™'ff~!) with
(oo~ lss™1ff71). O

Lemma 10 Al'-sat({r}) is NP-complete whenever (mm 1) Cr C (mm~1dd !ss1) or (mm~1) C
r C (mm~ldd—1ff~1).

Proof. We consider only r with (mm~!) C r C (mm_ldd_lss_l); the other case is dual. We
may without loss of generality assume that r = r*
Case 1: 7 = (mm~1).
It follows from Theorem 1 that A-SAT({(mm!)}) is NP-complete.
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Case 2: 7 = (mm~1dd~1).
The constraints

are satisfiable if and only if z(d)y. Furthermore, the constraints {u(mm~tdd=!)v, z(d)u, y(d)v;I(u) =
I(v)} are satisfiable if and only if z(pp~!)y. By Theorem 1, A-sAT({(d), (pp~!)}) is NP-complete.
We have derived (d) and (pp~') from (mm~'dd~!), therefore A'-saT({(mm~'dd~')}) is NP-
complete.

Case 3: 7 = (mm~1ss™1).

The constraints

a(mm™lss™)z a(mm~lssl)y I(z) > i(a)
y) > 1(b)
z(mm lss 1)y l(z) =1(y)

>
—~
3
3
—_
wn
0
—_
~—
8
=
—~
3
3
—_
wn
wn
—_
~—
<
o~
—~

are satisfiable if and only if a(= ss™!)b, so we can derive the relation (= ss~!). Furthermore, the
constraints

a(=ss7 )z b(=ss Yz I(z) > I(a)
a(=ss")y b(=ss"")y Iy) > 1(b)
z(mm lss 1)y l(z) =1(y)

are satisfiable if and only if a(pp~!)b. NP-completeness follows from Theorem 1.
Case 4: r = (mm~'dd 'ss!)

Replace (mm~!ss™!) with (mm~'dd~!ss~!) in the previous case. O

Lemma 11 A'-sAT({ry,ro}) is NP-complete whenever r1 N (= pp_ oo 'mm™1) = (mm~!) C
lon—1

ro N (= pp~ltoo~tmm™1), and (=) Z rs.

Proof. Let us assume that all intervals have length one and prove that the problem A
SAT({r1,72}) is NP-complete even under this assumption. This assumption reduces the number
of cases to be considered because, in this case, we have r; = (mm~!) and (mm~!) C r, C
(pp~'mm~loo™1). Moreover, we may without loss of generality assume that either r5 = (mm~1)
or 5 = To.

Case 1: {(mm~1), (pmm 1)}
Let G = (V,E) and H = (V', E') denote two directed graphs. A homomorphism from G to H is
a function h: V' — V' such that (v,w) € E implies (f(v), f(w)) € E'.

Let H be the graph (V',E') = ({0,1,2},{(0,1)(0,2),(1,0),(1,2),(2,1)}). Deciding whether
there exists a homomorphism from an arbitrary graph to H is NP-complete, as follows from
Theorem 4.4 in [25]. We denote this problem GRAPH HOMOMORPHISM(H).

We prove that {(mm~!),(pmm~1)} is NP-complete by a polynomial-time reduction from
GRAPH HOMOMORPHISM(H ). Arbitrarily choose a directed graph G = (V, E).

The relations (pm) and (m) can be derived as follows. The constraints

{z(mm~Y)z’, y(pmm ™)z, y(pmm )z}
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are satisfiable if and only if y(pm)z, and we have (m) = (pm) N (mm~1!).

Introduce five fresh variables and the constraints a(m)b(m)c(m)d(m)e. For each node v € V,
add the constraints a(pm)v(pm)e. For each edge (v, w) € E, add the constraint v(pmm~1)w.

We show that the resulting set I of constraints are satisfiable if and only if there exists a
homomorphism from G to H.
only-if: Assume without loss of generality that f is a model of I such that f(a) = [-1,0].
Construct a function h : V. — V' as follows: h(v) = |f(v™)]. To see that h is a homomorphism
from G to H, arbitrarily choose an edge (v, w) € E. We consider three cases:

e h(v) = 0. This implies that 0 < f(v~) < 1. Since v(pmm 1)w € T and f(wt) < 3, we know
that 1 < f(w™) <2 and h(w) € {1,2}. Hence, (h(v), h(w)) € E'.

e h(v) = 1. Either 0 < f(w™) < 1 (corresponding to v(m~1)w) or f(w~) = 2 (corresponding
to v(m)w) so h(w) € {0,2} and (h(v), h(w)) € E'.

e h(v) = 2. Then, f(w™) = 1 (corresponding to v(m~!)w), h(w) = 1 and (h(v), h(w)) € E'.

if: Assume h : V — V' is a homomorphism from G to H. Then, f (as defined below) is a model
of I:

fla) =[=1,0], f(b) = [0, 1], f(c) = [1,2], f(d) = [2,3], f(e) = [3,4]

and for every v € V, let f(v) = [h(v),h(v) + 1].
Case 2: {(mm™!), (pp*mm~1)}. Reduction from GRAPH 3-COLORABILITY (Problem [GT4] in [10]).
Let G = (V, E) be an arbitrary instance. Fix a fresh interval variable z. Introduce two interval
variables v, v’ for each v € V together with the constraints v(mm~1)v'(mm~1)z Finally, add the
constraint v(pp~*mm~1)w for every (v,w) € E. It is easy to check that the resulting set of con-
straints is satisfiable if and only if G is 3-colorable. Say, if f(z) = [3,4] then constraints of the
first type imply that f(v) € {[1,2],[3,4],[5,6]} for any v € V', while the constraints of the second
type ensure that the values for “adjacent” variables are distinct.
Case 3: {(mm~1), (pp~!mm~too~!)}. Use (pp~'mm~loo~!) instead of (pp~
Case 4: {(mm~1), (mm~loo™1)}.

Polynomial-time reduction from the NP-complete problem BETWEENNESS! (Problem [MS1]
in [10]), which is defined as follows:

!mm~1) in Case 2.

INSTANCE: A finite set A, a collection T of ordered triples (a, b, ¢) of distinct elements from A.
QUESTION: Is there a total ordering < on A such that for each (a,b,c) € T, we have either
a<b<corc<b<a?

Let (A, T) be an arbitrary instance of BETWEENNESS and note that the constraints {z(mm~1)z’,
y(mm~loo 1)z, y(mm~loo™1)z'} are satisfiable if and only if z(0o~!)y. We construct an instance
I over {(mm~1), (00 1)} as follows:

(1) for each pair of distinct elements a,b € A, add the constraint a(oo™1)b to I; and

(2) for each triple (a,b,c) € T, introduce two fresh variables z,y and add the constraints

{z(mm~)a, z(co™1)b, z(0o™1)c, y(oo~!)a, y(oo™1)b, y(mm~1)c}.

'This problem is also known as the TOTAL ORDERING PROBLEM [28].
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We will henceforth refer to the variables in I that correspond to the set A as ‘basic’ variables and
the other variables as ‘auxiliary’ variables.

Assume that I has a model f. Then, due to the constraints added in step (1), the intervals
f(a),a € A, are pairwise distinct. Moreover, the relation (o) induces a total order on the set
{f(a) | @ € A}. Suppose that there is a triple (a,b,c¢) € T such that the model f satisfies
f(b) (o) f(a) (o) f(c) and consider the constraints over the auxiliary variables = and y introduced
in step (2) for the triple (a,b,c). The variable z has to satisfy z(mm~!)a which implies that either
z(p)c or z(p )b, a contradiction. We can analogously rule out all orderings of f(a), f(b), f(c)
except f(a) (o) f(b) (o) f(c) and f(c) (o) f(b) (o) f(a). Hence there is a solution to the instance
(A,T): for all a,b € A, set a < b if and only if f(a) (o) f(b).

Conversely, assume that there exists a total order < on A that is a solution to the instance
(A,T). We will show how to construct a model f of I. For all a,b € A, set f(a) (o) f(b) if and
only if a < b. Clearly, this satisfies all constraints added in step (1). To show that there exists
consistent values for all auxiliary variables, arbitrarily pick one triple (a,b,c) € T' (corresponding
to the auxiliary variables z and y) and assume without loss of generality that a < b < ¢. Let
a(m)z,ie. f(z)=[f(a"), f(a”)+1] and y(m)c, ie. f(y) =[f(c7)—1, f(c7)]. It is straightforward
to verify that this construction satisfies all constraints.

Case 5: {(mm~1), (mm~10)}.

The constraints z(mm 1)z’ y(omm 1)z, y(o 'mm 1)z’ are satisfiable if and only if z(o !)y.

The constraints z(0)z’, y(o)z' are satisfiable if and only if z(= oo~ !)y. The constraints

z(= o0 )y, z'(= 00 Y)z, ' (mm~L)y

are satisfiable if and only if z(0oo~!)y. Consequently, we can derive (mm~!) and (0o™!); continue
as in Case 4.
Case 6: {(mm~1), (pmm~10)}. The constraints
s(mm 1)z, y(pmm o)z, y(p~immlo~1)a’

are satisfiable if and only if z(0~!)y. Continue as in Case 5.
Case 7: {(mm~1), (pmm to 1)}. The constraints z(mm 1)z’ y(pmm 1o 1)z, y(pmm lo 1)z’ are
satisfiable if and only if y(pm)z. The relation (m) = (pm) N (p~'mm~lo).

The constraints

{a(m)b(m)c(m)d, a(pm)z,y(pm)d}

are satisfiable if and only if (= mm~loo~!)y. Hence we can derive (pmm~lo~1)N(= mm~loo™!)

(mm~!o~!) and NP-completeness follows from Case 5.

o

3.3 Classification of complexity

The classification proof splits into 8 lemmas. In each lemma, it is proved that if a subalgebra
S which is closed under derivations with lengths satisfies a certain condition then either S is
contained in one of the 10 tractable subalgebras, or some lemma from subsection 3.2 can be
applied to some subset of S, or S satisfies the conditions of one of the previous lemmas. It is
easy to verify that the assumptions of these 8 lemmas are exhaustive (note that, due to closedness
under derivations with lengths, a subalgebra containing r U (=) where r C (dsf) also contains r
itself).
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We can assume without loss of generality that each subalgebra S contains the total relation
(the union of all basic relations), since we always allow pairs of variables to be unrelated. For
each basic relation b of A, we will write r, to denote the least relation r € S such that (b) C r,
i.e., the intersection of all » € § with this property. (Obviously, the relations r, depend on S;
however S will always be clear from the context.)

We use the relations of the form 7y in the algebraic proofs below to show that S is contained
in one or another subalgebra. For example, suppose we know that the relation (p) is contained
in ro. Then any relation 7 € § such that (o) C r satisfies also (p) C r. To see this, note that
if there is 11 € S such that (o) C r, but (p) € r, then (o) C r; Nro and r; N 1o is strictly
contained in rg which contradicts the definition of ro. By a similar argument, if we know that
(p) is contained in all of rm, 7o, 74, and rs, then we can conclude that, for every r € S, (p) C r
whenever r N (pmods) # (), which means that S C &p.

Lemma 12 Suppose S contains a non-trivial relation r with r C (= pp_'mm~too™!). Then
either S is contained in one of Co, Sp, &p, and H, or else Al-sAT(S) is NP-complete.

Proof. Case 1. 7 C (= pp ‘mm™1).

If § is contained in one of Sp, &p, and H then Al-sAT(S) is tractable by Proposition 3. Otherwise
let S ={r,...,rp—1} and 7, =7\ (=) and apply Theorem 1 and Lemma 8(1) with r,...,r, to
obtain NP-completeness of A'-sAT(S).

Case 2. 7N (00~!) = (o).

If r* ¢ (=) then the previous case applies. Assume that r* C (=). If r € (= pmo) then
using Lemma 8(1) one can show that A’-saT({r}) is NP-complete. If (o) C r C (= pmo) then
the constraints {zrz, zry;l(z) + l(y) < l(z)} are satisfiable if and and only if z(p)y. Therefore
(p) € S, and we go back to the first case.

Case 3. (00™!) C 7.

We may now assume that r is symmetric. We shall prove that either S is contained in one of Cq,
Sp, and &p or else Al-sAT(S) is NP-complete. Assume that S Z Co, that is, there is ' € S such
that (oo™!) Z 7. If rN ¢’ € (=) then we obtain the required result by Cases 1 and 2. Therefore
we may assume that r N7/ is either () or (=) for every r' € S such that (oo ') Z 7.

It now follows from Theorem 1 and Lemma 8(1) that if S is not contained in one of So, £o, Sp,
and &p, then A'-sAT(S) is NP-complete. If S is contained in Sp or in p then, by Proposition 3,
Al-sAT(S) is tractable. Suppose S is contained in S or in £, but neither in Sp nor in &p. Then §
contains a non-trivial symmetric relation r” such that (oo !) C 7 C (= mm loo!). Also, 7’ must
be a non-trivial subrelation of (= ss™!) or of (= ff~!). We consider only the first case, the second
is dual. Assume without loss of generality that (s) C 7. Then the constraints {zr'y;l(z) < I(y)}
are satisfiable if and only if z(s)y. Therefore (s) € S. Since (r" o (s))* = (co™!) € S, the problem
Al-saT(S) is NP-complete by Lemma, 9. O

Lemma 13 Suppose S contains a non-trivial relation r such that r* C (=) and neither r nor r—!

is contained in (= dsf). Then either S is contained in one of Co, Sp, Ep, and H or else A'-SAT(S)
is NP-complete.

Proof. If neither r \ (=) nor r~!\ (=) is contained in one of (pmod~!sf~!), (pmod~1s~1f~1),
(pmodsf) or (pmodsf~!) then A-saT({r \ (=)}) is NP-complete by Theorem 1, and we get the
required result by Lemma 8(1).

Suppose now that r \ (=) is contained in one of the four relations above. Then (taking roror
instead of r if needed) r can be chosen so that it satisfies one of the following conditions:
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1. r C (= pmos);

2. r C (= pmof1);

3. (pmosf~!) C r C (= pmosf!);
4. (pmods) C r;

5. (pmod 1) Cr.

Note that conditions 1 and 2, and 4 and 5 are dual. Therefore it is sufficient to consider only
conditions 1, 3, and 4.

Suppose condition 1 holds. Then, by assumption, r € (= s). Now it can be checked that the
constraints {zrz, zry;l(z) > l(z)} are satisfiable if and only if zr'y for some non-trivial v’ € A
such that 7/ C (pmo). Then we apply Lemma 12.

Suppose condition 3 holds. Then the constraints {zrz, zry;l(z) < l(z),l(z) > l(y)} are satis-
fiable if and only if z(pmo)y. Therefore we again apply Lemma 12.

Suppose condition 4 holds. If (=) C r then the constraints {zrz, zry;[(z) > (z)} are satisfiable
if and only if (= pmods)y. Similarly, if (=) € r then the constraints {zrz, zry;l(x) > l(z)} are
satisfiable if and only if z(pmods)y. Therefore a relation 7 € A with (pmods) C r; C (= pmods)
belongs to S.

If S contains a non-trivial relation 9 C 71 such that (d) € ro then either ry satisfies condition
1 (and then we get the required result) or r5 is one of (s), (= s). In the latter case the constraints
{zroy;l(z) < l(y)} are satisfaible if and only if z(s)y. So we have (s) € S. Then the constraints
{z(s)z, zr1y;l(z) + I(y) = I(2)} are satisfiable if and only if z(p)y. So we have (p) € S, and apply
Lemma 12.

From now on in this proof we assume that every non-trivial ro € S such that ro C r; satisfies
(d) C ro. Tt now follows that, for every r € S, r N (pmods)*! # @ implies (d)*' C r. In other
words, we have § C &y.

If (p) C ry then, for every r € S, 7N (pmods) ™! # ( also implies (pd)*! C r which means that
S C &p, and we get the required result. If (o) C ry then, for every r € S, rN (pmods)*! # () also
implies (od)*! C r, and then it is easy to check that S C H.

Assume that ry C (= mds) If (m) C ry4 then it can be checked that the constraints {zryz, zrqy; 1(z) >
l(y) > l(z)} are satisfiable if and only if z(s)y. It is proved above that, in the presence of 7 and
(s), the required result holds.

Now we may assume that (d) C rqy C (= ds). Then ry is either (d) or (ds) because (=) can be
removed by adding the constraint I(z) < I(y).

Assume now that S Z H. It is easy to see that every relation in S satisfies condition 1) of H.
If there is 3 € S failing to satisfy condition 3) of H then r4 = r3 N ry satisfies r4 C (pmds) and
74 N (pm) # 0. Then the constraints {zrqz, zrsy;1(z) > I(y)} are satisfiable if and only if z(p)y.
Hence we have (p) € S, and apply Lemma 12.

Finally, assume that every r € S satisfies conditions 1) and 3) of % but some r5 € S fails to
satisfy condition 2) of . We can assume that r5 N (ds) # ) and r5 N (d~'f~1) # 0 but (o) Z rs.
Let v = (= oo 'dd !ss™!ff !). Since v = ral o rq belongs to S, we may assume that r5 C v;
otherwise replace r5 by 75 N v. Note that (d) C 5.

If (07!) C 75 then (d7!) C 75 because (d) C ro. Then the constraints {zriy;l(z) # I(y)}
are satisfiable if and onmly if zrgy where 74 € A is a symmetric relation such that (dd=!') C
r¢ C (dd 'ss 'ff 1). We have (pmods) = riory € S. It follows from Theorem 1 that A-
SAT({re, (pmo)}) is NP-complete. Then A!-sAT(S) is NP-complete by Lemma 8(2).
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Let (071) € r5. If (d~!) C r5 then the argument is as above. Otherwise we have (df~1) C r5 C
(= dsff 1) (note that (s') Z r5 because S C &y). Then the constraints {zrsy;l(z) > I(y)} are
satisfiable if and only if z(f~!)y. We may then assume that (f) € S. It follows that the relations
(ods) = (f 1)ory and (= dff ) = (f)or; both belong to S, and therefore (d) = rgn(=dff 1) € S.
It follows from Theorem 1 that A-sAT({(0), (d), (f), (= dff!)}) is NP-complete. Since (ods) € S,
we conclude that A'-SAT(S) is NP-complete by Lemma 8(2). O

Lemma 14 If S contains two non-trivial relations r1 and ro such that r1 Nry C (=) and r1,79 C
(= dsf) then either S C H or else A'-SAT(S) is NP-complete.

Proof. We may assume that (=) Z r1, 79 because it can be removed by adding the constraint
l(z) <l(y). If r; = (d) and 9 = (sf) then A-SAT({r1,72}) is NP-complete by Theorem 1.

In all other cases riory ! (or its converse) satisfies the assumptions of Lemma 13 or Lemma 14.
It remains to notice that {ry,2} is not contained in one of Co, Sp, &p. O

Lemma 15 If S contains two non-trivial symmetric relations r1 and ry such that 1 Nry C (=)
then either S is contained in one of Sp, Ep, H, or else Al-SAT(S) is NP-complete.

Proof. We may assume that 1 and 79 are minimal (with respect to inclusion) among non-
trivial symmetric relations.

It follows from Theorem 1 that if none of r1, ro is contained in one of (= ss™!), (= ff~!) then
A-SAT(S) (and, consequently, A'-SAT(S)) is NP-complete.

We shall consider only the case r; C (= ss™!); the case 7 C (= ff!) is dual. Then we may
assume that (ss™!) € S and (s) € S because these constraints are equivalent to {zr1y;1(z) # I(y)}
and {zriy;l(z) < I(y)}, respectively. If ro C (= dd~'ff!) then, by imposing the constraint
I(z) < I(y), we can obtain a non-empty subrelation of (df), and apply Lemma 14. We therefore
may assume that ro N (pp~'mm~loo™!) # (. Now it follows from minimality of ro and from
Theorem 1 that if A-SAT(S) is not NP-complete then either S C H or every relation r € S such
that r* ¢ (= ss™!) satisfies ro C 7.

It can be easily checked that if (dd=') & 75 then either 7o C (= mm™!) or 73 = ((s) o 72)* is
non-empty and satisfies r3 C (pp~'mm~loo™!). In the former case A'-SaT({ry}) is NP-complete
by Lemma 8(1). In the latter one we apply Lemma 12.

Further, let (dd ') C 7. Suppose some non-trivial relation r3 € S is strictly contained in 7o.
Then, by the choice of r2, we have 75 C (=), and, since S Z Co, we apply Lemma 13 or Lemma, 14.
Now we may assume that, for every r € S such that r Nre # §, we have (dd=!) C ry C r.

It can now be checked using Theorem 1 that if A-SAT(S) is not NP-complete then S is contained
in one of Sp, Sy, and H. Suppose that § € Sp and § € H, since otherwise there is nothing to
prove. Then & C 8y, and for every relation r € S such that  Z (= ss™'), we have (dd™') C
rg C r. If ry contains (pp ') or (0o !) then S is contained in Sp or X which contradicts the
assumptions just made. Otherwise we have (mm~'dd™!) C 79 C (= mm~!dd~'ff~!). Hence
((s) or2)* = (mm~—1dd~!) € S. By minimality, it follows that 7 = (mm~1dd~!). Then Al-saT(S)
is NP-complete by Lemma 10. O

Lemma 16 If (s) € S or (f) € S then either S is contained in one of the 10 subalgebras listed in
Theorem 8 or A'-SAT(S) is NP-complete.
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Proof. We consider only the case (s) € S; the other case is dual.

By Lemmas 13 and 14, we may assume that, for every non-trivial » € S such that r* C (=),
we have either (s) C r C (dsf) or (s) C 7~ C (dsf). We may also assume that (ss~') € S because
the constraints {x(s)z, 2(s)y;I(z) # I(y)} are satisfiable if and only if z(ss!)y.

Suppose that S € Ds. Then there exists r; € S such that 71 N (pp~'mm~loo™!) # 0, but
(= ss7!) € ri. If (=) C r1 then we can apply either Lemma 13 with 71 or Lemma 15 with
{r¥,(ss1)}. So we may now assume that (=) Z r;. It can be checked that there is a non-trivial
re € A such that {uriv,u(s)z,v(s)y;l(u) = I(v)} is satisfiable if and only if zroy. Then o € S.
Moreover, we have (= ss ') Nry = (). If ry satisfies r5 C (=) then we apply Lemma 13 or
Lemma 14. Otherwise {r3, (ss7!)} C S, and we get the required result by Lemma 15. O

Lemma 17 If (sf) € S then either S C Ds or S C D or else Al-SAT(S) is NP-complete.

Proof. We have (dsf) = (sf) o (sf) € S. We may assume that neither (s) nor (f) belong to S;
otherwise we obtain the result by Lemma 16, since, out of the 10 subalgebras, (sf) is contained
only in Ds and in Dy. It now follows that (dsf)*! Nr # () implies (sf)*! C r for any r € S.

Suppose that S is not contained in Ds. Then there is r; € S such that (= ss™') € r; and

71N (pp~tmm~loo™!) # §. Assume that (=) C 7. If (ss7!) N7y = () then, by previous paragraph,

we have 71 C (= pp~'mm~loo™!), and we apply Lemma 12. Assume now that (ss™!) Nr; = (s).
Then r; C (= pp~'mm~loo~'dsf). Now we apply Lemma 12 if 7} ¢ (=) and Lemma, 13 otherwise.

Now assume that (=) € ry and r1N(pp *mm loo 1) # (). If there is such r; with the additional
property that r; N (00™!) = @ then the set of constraints {z(sf)u,uriv,y(sf)v;i(u) = I(v)} is
satisfiable if and only if zr'y where 7' € A is some non-trivial relation such that ' C (pp~*mm™1).
Then we apply Lemma, 12.

Suppose r1N(0071) # . We have (= oo~ lss™1f~1) = (s71f1)o(sf) € S. Consider ro = r1N(=
oo lss7Iff~1). If ro C (00~!) then A-SAT({(sf),r2}) is NP-complete by Theorem 1. Otherwise
(ss~Hf~1) C ry, and we have either 7o = (oss'ff 1) or ro = (00 !ss~!ff~1). In both cases Al-
SAT({(sf),r2}) is NP-complete by Lemma 9. O

Lemma 18 If there is r € S such that (d) C r C (dsf) then either S is contained in one of the
10 subalgebras listed in Theorem 3 or else A'-SAT(S) is NP-complete.

Proof. Note that v = (= 00 'dd !ss ff 1) =rlores.

We may assume that every 7 € S such that r* C (=) satisfies (d) C r C (= dsf) or (d) Cr~! C
(= dsf); otherwise we apply Lemma 13 or 16 or 17. It follows, in particular, that no non-trivial
subrelation of (= ss~!ff~!) belongs to S.

Suppose that there exists r1 € S such that 1 N (pp~'mm~loo~!) # @, but (dd=1) € ry. If
7} C (=) then we can apply Lemma 13 with ;. Otherwise ] is a symmetric non-trivial relation
satisfying (dd ') Nri = 0. If r; C (= pp !mm 1) then we go back to step 1. Otherwise the
relation 7o = v N7} € S is non-trivial and satisfies 7, C (= oo~ !ss~!ff~1). We have (0o™!) C 7o
and roNr = (), since no subrelation of (sf) belongs to S. Now it is easy to verify that A-SAT({r2,7})
is NP-complete, by Theorem 1.

From now on (in this proof) we may assume that, for every r € S, 7 N (pp~'mm~loo™!) # ()
implies (dd™!) C r. It now follows that condition 1) of Dy and Déj is satisfied in S.

Suppose there is ro € S such that 7o N (pp~*mm~1) # @, but ro N (= 00~ !) = @. It is easy to

check that there exists a non-trivial rs € A withrs C (pp~*mm 1) such that {urov, zru, yrv; l(u) =
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[(v)} is satisfiable if and only if zrsy (the relation r3 depends on r and r3). Then r3 € S and we
apply Lemma 12.

From now on (in this proof) we may also assume that, for every r € S, r N (pp~!mm~1) #£ )
implies 7 N (= 0o 1) # 0.

We know that 7o C v. If (=) C 7o then it is easy to check that S C Dy.

Suppose 7o N (= 007 !) = (0) and § & Déi' Then there is r4 € § such that r4 N (pm) # 0
but (o) € r4. Then there exists a non-trivial 75 € A with 75 C (pm) such that the constraints
{uroz, zrov, ursv, zru, yrv;l(u) = l(z) = I(v)} are satisfiable if and only if zrsy. Then r5 € S and
we apply Lemma 12.

It remains to consider the case ro N (= 00™!') = (00™!). Then every 74 € S such that
76 N (00~ 1) =0 but 76 N (pp 'mm 1) # @ satisfies (=) C rg.

If there is such rg with 76 N (pp~!') # () then there exists a non-trivial r; € A with r; C
(pp~'mm~1) such that the constraints {urez, zrev, urev, zru,yrv;l(u) = I(z) = I(v)} are satisfi-
able if and only if zr7;y. Then r7; € § and we apply Lemma, 12.

Now we may assume that every r € S with 7 N (pp~!) # 0 also satisfies (oo~ ') C r. Suppose
S<Z D:i' Then there is rg € S such that (m) C rg and rg N (= pploo~!) = (=). Moreover,
every r € S such that r N (mm 1) # () satisfies (=) C r, since otherwise we can obtain a relation
ro(= 7 N rg) such that rg N (= pp~'mm~loo™!) is non-empty and is contained in (mm~1), a
contradiction.

Now either § C Déj’ or else there is 719 € S such that (poo ') C rip and (=) € 719. In the

latter case, again, there exists a relation r1; € A with r1; C (pp_lmm_l) such that the constraints

{urioz, zrg 'v, urgv, xru, yro; 1(u) = I(z) = I(v)} are satisfiable if and only if zr;;y. Then r; € S
and we apply Lemma 12. O

Lemma 19 If there is a symmetric non-trivial relation r' € S such that every non-trivial r € S
satisfies v’ C r then either S is contained in one of the 10 tractable subalgebras or A'-SAT(S) is
NP-complete.

Proof. If 7' contains (pp~!), or (00o™!), or (= dd~ 1), or (= ss7!), or (= ff~!), then S is
contained in Sp, or Co, or Dy, or Ds, or D, respectively. If r' C (dd~'ss~!ff~!) then we can obtain
an asymmetric relation in S which contradicts the assumption of this step. If r' = (= mm™1)
then A'-saT({r'}) is NP-complete by Example 6.

From now on we assume that all non-trivial € S satisfy (mm~lss™!ff~!) C r; otherwise
one of the earlier cases applies. If every non-trivial r € S satisfies (= mm~!ss~!ff~!) C r then
S C Ds. Suppose that there is 71 € S such that (=) € r1. Then r; N (= pp ‘mm oo !) C
(pp~'mm~loo™!). If, for all r € S, (pp~') C ror, forallr € S, (00™') C r then S C Sp or
S C Co, respectively. Else, we can choose 71 so that 71 N (= pp~'mm~loo™!) = (mm~1). Now
it is not hard to check that either S C Cm or else there is 7o € S such that the system {ri,72}
satisfies the conditions of Lemma, 11.

Classification is complete. Theorem 3 is proved. O

4 Conclusion

In this paper we have given a complete classification of the complexity of interval satisfiability
problems with very general length restrictions. Our main result, Theorem 3 determines the
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complexity of A'-SAT(F) for every possible subset F C A.
To conclude, we note that our NP-completeness proofs only use a very restricted subset of the
allowable length constraints. In fact, we use constraints on lengths only of the following forms:

e comparing I(z) + (y) with I(z),
e comparing [(z) and I(y),
e comparing [(z) with a given number.

It follows that the NP-complete fragments of A'-SAT remain NP-complete even if we allow only
these very limited forms of Horn DLRs to specify length constraints. This prompts us to make
the following conjecture.

Conjecture 1 All NP-complete cases of A'-SAT remain NP-complete if we allow fizing individual
interval lengths as the only form of constraints on lengths.

In fact, we suggest that an even stronger result may be true: it may be that in all cases where
imposing restrictions on interval lengths causes intractability, simply requiring all intervals to
have the same length will already be intractable.

Problem 1 Do all NP-complete cases of A'-SAT remain NP-complete if we search only for models
with all intervals of the same length?
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