
An Upper Bound on the Space Complexity of Random
Formulae in Resolution

�

M. Zito
Department of Computer Science

University of Liverpool
Chadwick Building, Peach Street Liverpool L69 7ZF

e-mail: michele@csc.liv.ac.uk

September 6, 2001

Abstract

We prove that, with high probability, the space complexity of refuting a random unsatisfiable boolean

formula in � -CNF on � variables and ������� clauses is 	�
���������������� .

1 Introduction

The importance of studying the complexity of (propositional) proof systems comes from its close relation-
ship with long-standing open problems in Complexity Theory such as NP =? Co-NP [5]. The complexity
measure related to the classical notion of time is the size of a proof, viz. the number of lines used in the
proof.

Recently Esteban and Torán [8] suggested a measure for the space complexity of refuting an unsatisfi-
able formula in a proof system called resolution (subsequent work [1] extended this notion to other proof
systems). Although several results [1, 8, 13] are, by now, known on the space complexity of various classes
of formulae, a quantitative analysis of the space needed to prove the unsatisfiability of random formulae
has remained, until recently, somewhat elusive.

As a step towards the solution of this problem, we point out that a combination of a modification of
the classical Davis-Putnam [7] algorithm and a polynomial time algorithm that produces a refutation for
any given unsatisfiable 2-CNF formula, outputs refutations of any unsatisfiable random formula within the
space bounds stated in the following Theorem.

Theorem 1.1 Let � be an unsatisfiable random � -CNF formula on � variables and � �"!�� clauses.
There is an #%$'& such that, with probability approaching one as � goes to infinity, the space complexity
of � is at most �(#)�+*,!+- ������/.�0214365 for !�78!29 .

For sufficiently large !�$:& this bound “almost” matches a lower bound proved in [2].
The remainder of this paper is organised as follows. In Section 2 we introduce all relevant notations

and technical results; in Section 3 we give full details of the proof of Theorem 1.1 for the case �;�'< and
in Section 4 we give all details needed to extend the proof to any fixed �;$:< ; Section 5 is devoted to final
remarks and open problems.
=
Partially supported by British Council grant ARC 4079. Part of this work was carried out while the author was visiting the

Abteilung Theoretische Informatik, Fakultät für Informatik, University of Ulm.

1

Electronic Colloquium on Computational Complexity, Report No. 79 (2001)

ISSN 1433-8092

2 Preliminaries

Let a finite set of variables � ���������
	�	
	������� be given. A literal is either ��� or � � for any ����� , although
we will often follow the common practice and denote ��� (resp. � �) by ��� (�). We identify clauses with sets
of literals, but we will often abuse the notation and write ����� to denote the fact that the variable � occurs
in the clause � as either ��� or � � . A formula is a sequence of clauses � � 1 � � �
	�	
	
����� 5 . A formula is in
� -conjunctive normal form (or � -CNF) if � �����! � for all "#�$� 3 ��	
	�	��4�%� . In all the subsequent treatment
! will denote the clause density ��& � of the given formula.

Let ')(+* denote the set of all clauses with exactly � literals of � distinct variables defined from � .
A random formula is obtained by selecting uniformly at random, independently and with replacement �
clauses from ' (+* . Let , (+* � denote the resulting probability space on the set of all � -CNF formulae over
� variables and � clauses. We will write �.-/, (+* � to signify that � is obtained by the process outlined
above. In all subsequent treatment we say that an event 0 , depending on a parameter � , holds with high
probability (w.h.p.) if it holds with probability approaching one as � tends to infinity.

A truth-assignment is a mapping 1 that assigns “false” or “true” (usually denoted by 0 or 1) to each
variable in its domain Dom 1 1 5 . We write � 1�� for �Dom 1 1 5 � . Given a clause � , a variable � , and a value2 �3� &4� 3 � , the restriction of � to � � 2 , �655 7+8)9 , is � if �;:�<� , is one if � 9 �=� and it is �?>@�+� � - 9 �
otherwise. If � is a formula, then � 55 7+8)9 is the sequence AB� �C55 7�8D9 �
	�	
	����#��E 55 7+8)9�F for all �G� � such that��55 7�8)9 :� 3 . If 1 is a truth-assignment with domain Dom 1 1 5 ���+�!H

�
�
	�	
	
���CHJIK� then ��55ML denotes the clause

1 *,* * 1 � 55 7�N � 8)L4OP7�N �KQ
5 55 7�N � 8)LCOR7
N � Q *,* *

5 .

The meaning of � 55ML is defined similarly. For "��$�6&4��	
	�	�� ��� , let � � 1 �D��1 5 denote the set of clauses of size" in �#55 L . We say that a formula � is true (false) under the assignment 1 if ��55ML is empty (�S���8�#55ML). A
formula is satisfiable if there exists a truth-assignment 1 (also known as satisfying assignment) such that �
is true under 1 .

A (resolution) derivation of a clause � from (resp. a refutation of) a formula � is a sequence of clausesT � 1VU � �
	�	
	�� UXW 5 such that UXW �Y� (resp. UXW �Z�[�) and for all "\�<� 3 ��	
	
	
�^]`_ 3 � either U � �/�aH for
some bc�%� 3 �
	�	
	�� �d� or U � is obtained from U H and U ((with bS���fe<") by the following resolution rule:

���D��g � ��gih���	
	�	j�k���l���D�^] � �^]mh���	
	�	j�\no�lg � ��gih[�
	�	
	P�#p��+] � �^]mh[�
	�	
	P�
The two clauses to the left of “ n ” are called premises, the clause to the right is called resolvent. The size
of derivation T , � T � is] . Clearly, � is unsatisfiable if and only if there exists a refutation of � .

Given a formula � and a derivation T � 1VU � ��	
	�	
� UXW 5 of some clause UXW from � , a sequence of clausesq � 1sr � �
	�	
	�� rut 5 is a sub-derivation of T if q is a derivation of rvt from � and for each "@�w� 3 ��	
	
	
�yx[�
there is a bc�z� 3 �
	
	�	K�^]�� such that r � � U H .
2.1 Space complexity of derivations

Generalising from [8], a clause � has a derivation from a � -CNF formula � bounded by space x if there
exists a sequence of formulae �{�|�
	
	�	
��� W with

1. ���\}8� ;
2. � �����~ �x , for all "#�d� 3 �
	�	
	���]�� ;
3. ���R� � is obtained from ��� by deleting (if wished) some clauses, adding the resolvent of two clauses

in ��� , and adding (if wished) some clauses of � .
4. ��� � W .

space 1 �D�y� 5 is the minimum x for which there is a derivation of � from � bounded by space x . We write
space 1 � 5 instead of space 1 �D���S� 5 .

Any derivation T of a clause � from a � -CNF formula � can be represented as a directed acyclic graph
(dag) ��� * � in a standard way: clauses in T correspond to nodes in �X� * � , with the clauses of � associated

2

with � � * � ’s source nodes, � associated with the (only) sink of � � * � , and each application of the resolution
rule corresponding to an internal node of � � * � associated with some clause U with two incoming edges
leaving the nodes associated with U � p ���)� and U h{pc�|���{� respectively, with U � U � p U h . A derivation
is tree-like if its underlying dag is in fact a tree. Unless ambiguity arises, from now on T will refer to either
a derivation from � or its corresponding dag.

There is a nice relationship between the space needed to derive a clause � from � and the number of
pebbles needed in a particular pebbling game

�
played on any dag �X� * � .

Pebbling Game
�

. Given a connected dag with one sink the aim of the game is to put a pebble
on the sink of the graph (the only node with no outgoing edge) according to the following
rules:

1. a pebble can be placed on any initial node;

2. a pebble can be removed from any node at any time;

3. a pebble can be placed on any internal node provided there is a pebble on all its parents.

The following Lemma is an immediate consequence of the definitions.

Lemma 1 [8] For any formula � and clause � , space 1 �D�y� 5 coincides with the minimum number of pebbles
needed to win

�
on a graph � � * � , where T is a derivation of � from � .

Using this result it is possible to analyse the space needed for refuting a formula through techniques
used for bounding the number of pebbles used/needed to play

�
. The following result is a consequence of

Lemma 1.

Theorem 2.1 [8] If � has a tree-like refutation of size � , then space 1 � 5 ������
	��� .83 .
From this it follows immediately that space 1 � 5 �� . 3 for any formula � over � variables.

Although refutations of unsatisfiable � -CNF formulae for � 7 < may require non constant space,
unsatisfiable 2-CNF formulae can always be refuted in constant space.

Theorem 2.2 [8] space 1 � 5 � 021 3 5 , for any unsatisfiable � -CNF formula � .

2.2 A technical result

A fundamental conjecture about , (l* � states that there is a � (independent of � , the unsatisfiability thresh-
old, such that a �d-�, (+* � is satisfiable (resp. unsatisfiable) w.h.p. if ��& �$e�� ((��& ��$�� (). �|h � 3 [9]
but only upper an lower bounds are known for �+7 < (see for instance [11]). The techniques used to derive
these bounds turn out to be useful to prove the following result which will be used in the proof of Theorem
1.1.

Lemma 2 Let �.- , h * � , with �2$ 3 . For any ��� 1 &!� 365 , the probability that � be satisfiable is at most1������ OR7 * � Q �
���! � 1 �)�#" 5 5 , where U%$ ��� 1 �)�&" 5�' �� (" 3 _)��� 3 . �% =�� �� _*��� , � 1 �)�&" 5 �,+.-0/21 � �� + 7-03 154 7 4 � + �� - � 4 � - � A �h 7 F 7 � + � O76 - h � Q8 O � - 7 � Q 4 � - 7 � ,
and 9 � is the solution of 9;: 3 �w� 1 : 3 _ 3 5 .
Proof. Following [11] it is possible to bound the probability that the given random � -CNF be satisfiable by
the expected number of satisfying assignments that are maximal in the sense that it is not possible to flip
the value of any single variable set to 1 and preserve satisfiability. This number can be computed resorting
to the coupon collector’s probabilities, as described in [14]. The resulting upper bound on the probability
that � be satisfiable is< t 8 � < � H 8 t A t F A � H F>= t 1@? � ���� � 5h � 1 ? � 5!A H = O h � - � Q 1@? � 5 - t 1@? � ���� � 5h � 1 ? � 5 A � - HCB �
DFEG�
H 1 b[��x 5 ,

3

where coupon 1 bS�yx 5 is the probability that a coupon collector will pick x different coupons in b trials [12].
For � ��� this simplifies to< t 8 � < � H 8 t A t F A � H F A th F H A 68 _ th F

� - H B �
DFEG�
H 1 b[��x 5 .
Without loss of generality we assume x ��� 1 � 5 and b ��� 1 � 5 . Using the obvious asymptotics for the
binomial coefficients, the double sum is asymptotic to

��� O � Q A t F
t + - t 4 - t + � H 4 H + � � - H 4 � - H A th t F H A 6 - h t8 F � - H B �
D.E �5H 1 bS�yx 5 .

To get the result set " � t and �+� H t and use the relevant (see for instance [4]) asymptotic for coupon 1 b[��x 5 .�
The function � 1 �)�#" 5 can actually be maximised in U�$ by looking at the partial derivatives of �7H � 1 �D�#" 5 .

Letting � � 1 � 5 � 1 : 3 1 _ 365 + 7-03 154 7 , and using the definition of 9 � , we have

�� 7 ��H��k� 1 � 5 ����H 73 1
Hence

� � 1 � 5 �
	��� 7 ��H � 1 �)�&" 5 � " �7H h O � - 7 � Q3 1 O76 - h � Q
For each fixed " in the given domain, this function is defined and continuous. Moreover its sign changes
for ����� 3 . � � �� _)��� Therefore there is � an ��� �;��� 1 " 5 such that � � 1 ��� 5 � & , and equivalently

�
������ =�� �
� =
 �!� � � � ��"$#� = (1)

Note that, from the definition of 9 � , � � must satisfy

� = ��� =
 " #
� �%"$#�&(' 1

& ' 1 �*),+ (2)

Let - 1 " 5 �
	�� �7H � 1 � � 1 " 5 �&" 5 . The maximum of � 1 �)�#" 5 will be among the critical points of - 1 " 5 . Notice
that

. - 1 " 5 �?� � 1 ��� 1 " 545 . � . � ��H � 1 �D�#" 5 . "
and, since � � 1 � � 5 � & , we have

. - 1 " 5 "2� & if and only if

 � ��H � 1 �)�&" 5 � ��H � - �� . ��� ��H h O � - 70/ � Q7 / O76 - h � Q _ h � - 6�70/6 - h � . ��H��k� 1 ��� 5 � & .
We can rewrite h � - 6�70/6 - h � as

h O � - 70/ � Q6 - h � _%� � and therefore, using (1), the equation above simplifies to��H � - �� . � � ��H 3 17 / _ 9 . � . �7H 121 3 1 _ 3 5 _%� � ��H 3 17 / _z�;�8& ,
which is satisfied for � = � � =
 "$#

� �43$' 1 �*)�
& ' 1 �*),+ (3)

Hence, for a given � , one needs to find the 9 � which satisfies (1) in which � and " are replaced by
expressions (2) and (3). Then the maximum of � 1 �D�#" 5 is achieved at

� � 1 9 � 5 � 3 1 -0/ 1- / 1 - � " � 1 9 � 5 �65 / 1 - �h - /21 - � .7
Indeed 8:9<;>=@? is strictly decreasing in the given domain, so there is only one such = = .

4

2.3 An algorithm

Let � � ��� H � �^� H � ��	
	�	��^� H I
�@}�� with] to be fixed later. For any integer ��7 3 the set ��� � �+� H�� ��	
	�	
�^� H I��
is called a final segment of � , with the convention that � � ��� and � � ���[� if � $=] . Consider the following
modification of the classical Davis-Logemann-Loveland [6] resolution algorithm:

Function RoughDLL (� : � -CNF; � : set of variables; 1 : truth-assignment): boolean
if �+� �[� return true
else if �S� � � return false
else if � � �[�

return 2SAT-solver 1 � h 1 �)�y1 5 5
else

Let � be the smallest index variable in � ;
���	�?>u���{� ;
return RoughDLL 1 � 55 7�8 � �
�#��1�p��+�+� &4� 5��RoughDLL 1 �#55 7�8 � �
�#��1�p��+�+� 3 � 5 ;

where 2SAT-solver 1 	
	�	 5 is a function deciding 2-SAT.
If the input formula � is unsatisfiable then a call to RoughDLL 1 �D�
�#���S� 5 will return the correct “false”

answer provided either �S�@� ��55ML or � h 1 �D��1 5 is unsatisfiable, for every 1 with Dom 1 1 5 ��� . Furthermore,
the recursive calls to RoughDLL naturally induce a rooted binary tree, � * � , whose internal nodes are
labelled by the variables that are set at a particular step, with the out-edges of a node labelled by the two
possible assignments to its associated variable. Each path from the root in �� * � corresponds to a partial
assignment 1 with Dom 1 1 5 }�� . Each leaf is labelled by either a clause of � that becomes empty or by
the set ��h 1 �D��1 5 . We will prove that if all the formulae ��h 1 �D��1 5 are unsatisfiable, {� * � can be transformed
into a refutation of � , by working from the clauses labelling the leaves and the refutations obtained for
each ��h 1 �D��1 5 towards the root of)� * � . Theorem 1.1 will then be proved by showing that w.h.p. the
refutations defined in this way can be pebbled with (relatively) few pebbles. We first need to prove a
property of the formulae ��h 1 �D��1 5 . For any � 7 � , let 1 � be a truth-assignment with Dom 1 1 � 5 ��� >�� � .
Let � L � ����� � - L � OR7 N ��QH

�
��	
	
	��^� � - L � OR7
N � � � QH � �

�
� . Clearly � L � 55 L � ���[� .

Lemma 3 Let � be an unsatisfiable � -CNF formula and 1 a truth-assignment whose domain is included
in the set of variables occuring in � . Let T be a tree-like refutation of � h 1 �D��1 5 . Any sub-derivationq � 1sr ���
	�	
	
� r t 5 of T can be transformed into a tree-like derivation of a clause � p r t from � where��}3� L .

Proof. Let T be a tree-like refutation of ��h 1 �D��1 5 . The result is proved by induction on the depth of q , the
maximum length of a path from a leaf to the root of ��� � O � * L Q * � . If q�� �/��� h 1 �D��1 5 then q���� � � where� � � � and � � � � 55 L . Clearly � � will contain a number of literals belonging to � L (all the literals in� � >��).

At the inductive step, let q�� � and q��h be the derivations associated by the induction hypothesis with the
left and right subtrees q � and q h of q . The derivation q�� associated with q is obtained from q�� � and q��h by
applying the resolution rule to the clauses labelling the roots of q�� � and q��h (these clauses will still contain
the pair of complementary literals that is “removed” in the application of the resolution rule that generates
the clause labelling the root of q).

�
The following result is an immediate consequence of Lemma 3 obtained by choosing q � T .

Corollary 1 Let � be an unsatisfiable � -CNF formula and 1 a truth-assignment whose domain is included
in the set of variables occuring in � . Any tree-like refutation of � h 1 �D�y1 5 can be trasformed into a tree-like
derivation of a clause � }w� L from � .

The final result of this section completes the description of the refutations that, under certain conditions,
can be associated with the execution of RoughDLL on any unsatisfiable formula � .

5

Theorem 2.3 Let � be an unsatisfiable � -CNF formula whose variables belong to the set � � ��� � �
	�	
	��^� � .
Let � �G���CH

�
���CH � �
	�	
	����CHJI���} � for some] �w� 3 �
	�	
	�� � � and let � � be some final segment of � , for a

given �X�3� 3 ��	
	
	K��]�� . Let ��� � � * � � be the execution tree associated with RoughDLL 1 � 55 L � �
� � �
�[� 5 , where1 � is some truth-assignment with Dom 1 1 � 5 � � > ��� . Then ��� � � * � � can be transformed into a tree-like

derivation from � of a clause �/}3� L � , provided all formulae ��h 1 � 55 L � ��1 � 5 labelling the leaves of ��� � � * � �
are unsatisfiable, where 1 � is any truth assignment with Dom 1 1 � 5 � ��� .
Proof. The result can be proved by induction on the product between the number of nodes in ��� � � * � �
minus one and]�_ � .�3 . If this product is null then ��� � � * � � contains a single node � . If � is labelled
by a clause � � � then the process will return � . Otherwise if � is labelled by an unsatisfiable � h 1 �D�y1 5 .
Corollary 1 asserts that any refutation of � h 1 �D�y1 5 can be transformed into a derivation T � of a clause��}3� L from � : the process will return T � .

At the inductive step let � be the root of ��� � � * � � and assume � is labelled by a variable �3� ��� . By
induction hypothesis the Theorem holds for the trees

 ��� � ��� ��� 1 * � ��	�
 7� and ��� � ��� ��� � * � ��	�
 7�� .
Therefore there exist two derivations T � and T h of clauses � � } � L ���
 7+8 � � and ��hz} � L ���
 7+8 � � . If����� � and ���d��� h , a further application of the resolution rule to the clauses �u� and � h , resolving on the
variable � generates a tree-like derivation T � of a clause �/}�� L � from � . Otherwise , let T � be T�� where g
is the smallest " �%� 3 � �~� such that �.:�6� � . �

3 Analysis for
�����

We analyze the space complexity of the refutations associated with RoughDLL by first considering the
case � � < . Since ! $,� 6 the set of satisfiable formulae in , 6 * � is very small. In the following we
assume � to be unsatisfiable. We will prove that it is possible to choose] so that RoughDLL ends with a
“false” answer w.h.p. If this is the case, the refutation built using the algorithm in Section 2.3 is formed by
joining the refutations for � h 1 �D��1 5 to the complete binary tree of depth] corresponding to the branching
of RoughDLL. By Theorem 2.1 this tree can be pebbled using] . 3 pebbles. The result then follows from
Theorem 2.2 applied to ��h 1 �D��1 5 for each 1 .

To complete the proof note that, conditioned on the fact that � � h 1 �D��1 5 � ��� 1 � 5 for each 1 on � , the
event

“RoughDLL does not end with a ‘false’ answer”

is implied by the event

“there is an 1 with Dom 1 1 5 ��� , such that ��h 1 �D��1 5 is satisfiable”

and the probability of the latter is at most< L�� "!�#�ORL Q 8 �
$&% � ��h 1 �D��1 5 �('*),+�� .

Let “ -;� SAT” denote the event “the formula - is satisfiable”. For each 1 we can compute
$&% � � h 1 �)�y1 5 �

'*),+!� conditioning on the size of � h 1 �D��1 5 :
$.% � � h 1 �D�y1 5 �/'*),+ �) $.% � � � h 1 �D��1 5 �!e10 ��� . $&% � � h 1 �D��1 5 �('*),+ �k� � h 1 �D��1 5 � 720 ���

where 0�$ & is some constant to be fixed later. Since clauses in � are selected independently and with
replacement from ' 6 * , given � and 1 , in each of the � � ! � trials there is a fixed probability of
selecting a clause � such that ��55 L is a 2-clause. This is exactly the probability of choosing one variable
from � with a sign fixed by the assignment 1 and the remaining two arbitrarily on the set �G> � . Hence

$&% � ��55ML is a 2-clause � �
8 W 1@? � I� 53 1 ? 4 5 � 6 Wh + 3 _ W

- � - � 4 + 3 _ W
- � - h 4 $ 6 Wh A 3 _ W F h

6

(where the last inequality holds as long as] e h). In particular if we set
W � 6 9� the lower bound on$&% � ��55ML is a 2-clause � becomes � 9h � A 3 _ 6 9� F h .

These calculations imply that given � , for each 1 with Dom 1 1 5 ��� , the random variable � �uh 1 �D��1 5 �
has a binomial distribution with parameters � and � � 	�� $.% � ��55 L is a 2-clause � . Hence, for any �+$ & ,
using standard Chernoff-type bounds [10],

$.%�� � ��h 1 �D��1 5 �4e 143 _�� 5 � 9Kh A 3 _ 6 9� F h�� (: -	� ��
�� : - � � ?�������� 1 � - 4 �� 5 ���
The second probability in the expression for

$&% � � h 1 �D�y1 5 � '*),+�� is bounded using Lemma 2, since,
conditioned on � ��h 1 �D��1 5 � to have some known value � , clauses in ��h 1 �D�y1 5 are distributed according to, h * - W� . More precisely, since the probability of satisfying a formula decreases as the number of clauses in
the formula increases, the sought probability is at most:

��� O � Q $&%�� � h 1 �D��1 5 �('*),+ �k� � h 1 �D�y1 5 �)� 1 3 _�� 5 � 9h A � - 6 9� F h 1 �6_z] 5 �
Then, by Lemma 2, using the definition of] and ignoring the polynomial factor, this is at most

1���� � OP7 * � Q �
� � 	 1 �D�#" 545�� � � 4 ��� ?� � : 4 � ?� � ! h
where 0 � 143 _"� 5 � 9h A 3 _ 6 9� F h . Finally, putting everything together, the overall error probability is at
most : � E$#�_ � � � 9�% �8 A 3 _ 6 9� F h _ 6 9 � ! h� �'& . ��� O � Q 1������ OP7 * � Q �
��! 	 1 �)�#" 5 5(� � � 4 �)� ?� * : 4 � ?�*� ! h
For #�� 3 	 3 there exists an � � 1 &4� 365 such that the result holds if !�$ � & .
4 Analysis for

�,+ �

For � $:< , let
W � �(# A � F ������ . The probability that a fixed restriction defined on � reduces a clause � to

a 2-clause is

�+� 8 1 ? � I� 5 1 I����� 5h � 1 ? � 5 ��� h - (O - W Q O - W - � Qh W.-
O (- h Q
- O W - (�{h Q - (

- O - (Q - - ��� h - (A (h F 1 � _] 5 1 � _]�_ 365 W.-
O W - (�{h Q

- O - (Q - -
which can be rewritten as

�+� � h - (A (h F W + 3 _ W
- � - � 4 + 3 _ W

- � - h 40/ (- 6� 8 �
W
- � - � - h

and this is at least � A (h F A 3 _ W F h A
W8 F (- h

for sufficiently large � . Using once more the definition of] ,
� $ h� A (h F A (98 F (- h + 3 _ �(#(! - ������ 4 h �
	��1� (

The proof can be completed exactly like in the case � � < , by estimating the probability that � � h 1 �D�y1 5 �Ce
0 � and the probability that ��h 1 �D��1 5 be satisfiable conditioned on � ��h 1 �D��1 5 �(7 0 � , for 0�� 1 3 _2� 5 � (! .

5 Final remarks and open questions

In this paper we presented a class of refutations which can be associated with high probability with any
given unsatisfiable random � -CNF formula on � variables and � � !�� clauses. A pebbling game can
be played on the directed acyclic graphs corresponding to these refutations and relatively few pebbles
are sufficient to win such game. As a consequence of this an upper bound can be obtained on the space
complexity of refuting unsatisfiable random � -CNF formulae in resolution.

The analysis presented might be tightened by using refined bounds [3] on the probability that a random
2-CNF formula on � variables and � $ � clauses be satisfiable. Moreover, “more efficient” refutations

might exist. However, Ben-Sasson and Galesi [2] recently proved an � + � *,! - �.3 ������4� � 4 lower bound (for

any � � 1 &!� 3 &
� 5) which rules out the possibility of a significant improvement on the result presented.

7

Acknowledgements. The author wishes to thank Jacobo Torán for many helpful discussions, and Nicola
Galesi for informing him of reference [2].

References

[1] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson. Space complexity in proposi-
tional calculus. In Proceedings of the Thirty-second Annual ACM Symposium on Theory of Comput-
ing, Portland, OR, May 2000.

[2] E. Ben-Sasson and N. Galesi. Space complexity of random formulae in resolution. In Proceedings
of the 16th Annual IEEE Conference on Computational Complexity. IEEE Computer Society, June
2001.

[3] B. Bollobás, C. Borgs, J. T. Chayes, J. H. Kim, and D. B. Wilson. The scaling window of the 2-SAT
transition. Technical Report MSR-TR-99-41, Microsoft, 1999. To appear in Random Structures and
Algorithms.

[4] V. Chvátal. Almost all graphs with 1.44 � edges are 3-colourable. Random Structures and Algorithms,
2:11–28, 1991.

[5] S. A. Cook and R. Reckhow. The relative efficiency of propositional proof systems. Journal of
Symbolic Logic, 44:36–50, 1979.

[6] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Communications
of the ACM, 5:394–397, 1962.

[7] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the Association
for Computing Machinery, 7:201–215, 1960.

[8] J. Esteban, J. L. Toran. Space bounds for resolution. In C. Meinel and S. Tison, editors, STACS 99:
16th Annual Symposium on Theoretical Aspects of Computer Science, Trier, Germany, March 1999.
Proceedings, volume 1563 of Lecture Notes in Computer Science, pages 551–560. Springer-Verlag,
1999.

[9] A. Goerdt. A threshold for unsatisfiability. Journal of Computer and System Sciences, 53:469–486,
1996.

[10] T. Hagerup and C. R üb. A guided tour of Chernoff bounds. Information Processing Letters,
33(6):305–308, February 1989-90.

[11] L. M. Kirousis, E. Kranakis, D. Krizanc, and Y. C. Stamatiou. Approximating the unsatisfiability
threshold of random formulas. Random Structures and Algorithms, 12(3):253–269, 1998.

[12] F. G. Maunsell. A problem in cartophily. Mathematical Gazette, 22(251):328–331, October 1938.

[13] J. Toran. Lower bounds for the space used in resolution. In J. Flum and M. Rodriguez-Artalejo,
editors, Computer Science Logic: 13th International Workshop, CSL’99, 8th Annual Conference of
the EACSL, Madrid, Spain, September 20-25, 1999, Proceedings, volume 1683 of Lecture Notes in
Computer Science. Springer-Verlag, 1999.

[14] M. Zito. Randomised Techniques in Combinatorial Algorithmics. PhD thesis, Department of Com-
puter Science, University of Warwick, 1999.

8

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

