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Abstract

We prove that if a linear error-correcting code C : {0,1}" —
{0,1}™ is such that a bit of the message can be probabilistically re-
constructed by looking at two entries of a corrupted codeword, then
m = 2" We also present several extensions of this result.

We show a reduction from the complexity of one-round,
information-theoretic Private Information Retrieval Systems (with two
servers) to Locally Decodable Codes, and conclude that if all the
servers’ answers are linear combinations of the database content, then
t = Q(n/2%), where t is the length of the user’s query and a is the
length of the servers’ answers. Actually, 2% can be replaced by O(a*),
where k is the number of bit locations in the answer that are actually
inspected in the reconstruction.
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1 Introduction

This paper is concerned with two related notions. The first notion is that of
locally decodable codes (LDC), which are error-correcting codes that allow
recovery of individual information bits based on a few (randomly selected)
codeword bits. The second notion is that of private information retrieval
(PIR) schemes, which are protocols allowing users to retrieve desired data
items from several (non-colluding) servers without yielding any information
to any individual server. The relation between these notions has been ob-
served by some researchers before, and is further established in this paper.

The study of LDCs was initiated by Katz and Trevisan [5], who estab-
lished super-linear (but at most quadratic) lower bounds on the length of
codes that allow recovery based on a constant number of bits. In contrast,
the best known constructions of LDCs (supporting such efficient recovery)
have sub-exponential length. This leaves a huge gap between the known
lower and upper bounds, and an important research goal is to try to close
this gap. We take a first step in this direction by closing the gap (via im-
proved lower bounds) for the special case of linear LDCs in which recovery
is based on two bits.

The study of PIR schemes was initiated by Chor, Goldreich, Kushilevitz
and Sudan [4], who presented (among other schemes) a one-round, 2-server
PIR scheme of communication complexity O(n'/?). The question of whether
their (2-server) PIR scheme has the lowest communication complexity pos-
sible has been open since. We present several results that are related to
this question, where all our results relate to the special case of one-round,
2-server PIR schemes in which the servers’ answers are always linear com-
binations of the data bits.

1.1 Locally Decodable Codes

In this paper we consider error-correcting codes with the following local
decodability property: given a corrupted codeword it is possible to recover
each bit of the original message by applying a probabilistic procedure that
looks at only two entries of the corrupted codeword. The procedure should
predict each bit with a constant advantage even when there is a constant
fraction of errors in corrupted codeword. The Hadamard code satisfies this
requirement, but unfortunately its codewords are exponentially longer than
the message they encode. In this paper, we prove that this is essentially the
best possible with respect to linear codes.

Let us first define formally the notion of a locally decodable code. For



a natural number n, we let [n] oo {1,...,n}. For z € ¥™ and i € [m], we
let z; be the ith element of z; that is, x = z1---x,,. For y,z € ¥™, we
denote by d(y, z) the number of locations on which y and z differ, that is,

d(y, z) = [{i : yi # z}l-

Definition 1.1 For reals 6,¢ and an integer q, we say that C : X" — T'™ is
a (g, 6, €)-locally decodable code if there exists a probabilistic oracle machine
A such that:

e In every invocation, A makes at most q queries (possibly adaptively).
Query i € [m] to the oracle y € T'™ is answered by y;.

e For every x € X", for every y € I'™ with d(y,C(x)) < ém, and for
every i € [n], we have

1
Pr[AY(i) = z;] > 5 te

where the probability is taken over the internal coin tosses of A.

An algorithm A satisfying the above requirements is called an (adaptive)
(g, 0, €)-local decoding algorithm for C.

While it appears natural to allow adaptive reconstruction algorithms in our
definition, we only know how to directly prove lower bounds in the non-
adaptive case. Lower bounds for the non-adaptive case can be generalized
to the adaptive case by using the following reduction.

Lemma 1.2 ([5]) Let C: X" — '™ be an error-correcting code that has an
adaptive (2,6, €)-local decoding algorithm. Then C also has a non-adaptive
(2,0, €¢/|T'|)-local decoding algorithm.

All the results that we will state (from now on) refer to non-adaptive recon-
struction procedures, and “local decoding algorithm” and “locally decodable
code” will always refer to the non-adaptive case. We omit the statement of
the results for the adaptive case (which can be obtained by the application
of the above lemma).

As stated above, our work focuses on linear codes. In particular, we will
consider the following settings:

e ¥ =T = F is a finite field, and the function C : F™ — F™ is a linear
mapping between the vector spaces F™ and F™. In Theorem 1.3 (and
in Section 3) we deal with the special case ¥ = I' = GF(2), while in
Theorem 1.4 (and in Section 4) we deal with general fields.
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e ¥ =1{0,1}, T ={0,1}}, and C : {0,1}" — {0,1}'™ is linear. We deal
with this case in Theorem 1.5 (and in Section 5).

e ¥ =T = {0,1}}, and C : {0,1}!" — {0,1}'™ is linear. That is, we
consider codes mapping a sequence of n blocks, each being a string of
length I, to a sequence of m such blocks, and algorithms that recover
a desired (entire) block by making two block-queries. We refer to such
codes as block-block codes, and deal with them in Theorem 1.6 (and
in Section 6).

Our main result is

Theorem 1.3 Let ¥ =T ={0,1}, and let C: X" — '™ be a (2, 6, €)-locally
decodable linear code. Then m > 2€m/8,

The result has the following extensions to larger alphabets (corresponding
to the three cases discussed above). First, we consider an extension to linear
codes over arbitrary finite fields.

Theorem 1.4 Let C: F™ — F™ be a (2,6,¢€)-locally decodable linear code.
Then m > 96 n—1-logy | F|

Theorem 1.5 Let C : {0,1}" — ({0,1}')™ be a (2,6, €)-locally decodable
linear code, and suppose that the decoder uses only k predetermined bits out
of the | bits that it receives as answer to each query. Then m > (1/f(k,1)) -
200/ (81 (kD) where f(k,1) = YKo () < min{2!, 21%}.

Theorem 1.6 Let C: ({0,1}%)" — ({0,1}5)™ be a (2, 6, €)-locally decodable
code that is a linear block-block code. Then m > 2%'"*(“1)2.

Theorem 1.4 is proved in Section 4, by an extension of the argument
used in the proof of Theorem 1.3. Theorem 1.5 is proved in Section 5 by
means of a reduction to the case I = k = 1 and an application of Theorem
1.3. Theorem 1.6 is proved in Section 6 by an extension of the argument
used in the proof of Theorem 1.3.

1.2 Private Informational Retrieval

Loosely speaking, a Private Information Retrieval (PIR) scheme for k servers
is a protocol by which a user can obtain the value of a desired bit out of
n bits held by the servers without yielding the identity of this bit to any
individual server (assuming that the servers do not cooperate in order to



learn the identity of the desired bit). The aim is to obtain PIR schemes
of low communication complexity (i.e., substantially lower than the obvious
solution of having a server send all n bits to the user). We focus on one-round
PIR schemes that are protocols in which the user sends a single message to
each server, which responds also with a single message. In the definition
below, @ represents the algorithm employed by the user to generate its
queries, S; represents the algorithm employed by the jth server, and R
represents the recovery algorithm used by the user (once it gets the servers’
answers).

Definition 1.7 A one-round, (1—6)-secure, 2-server PIR scheme for database

size n, with recovery probability p, query size ¢ and answer size a s a quadruple

of deterministic algorithms A = (Q, S1, S, R) with the following properties.

Algorithmic operation: On input i € [n] and (random-tape) r € {0,1}%,
algorithm @Q outputs a pair of t-bit long queries; that is, (q1,q2) def
Q(i, 7).

On input a database z € {0,1}", and query q € {0,1}", algorithm
S1 (resp., S2) returns an answer Si(z,q) € {0,1}* (resp., Sa(zx,q) €
{0,1}%).
On input i € [n], 7 € {0,1}X, and answers a1, as € {0,1}2, algorithm
R outputs a bit R(i,r, a1, 9), which is supposed to be a guess of the
entry x;.

The recovery condition: We denote by A(i,z) the random wvariable that
represents the output of R(i,r,S1(z,q1),S2(z,q2)), where (q1,q2) =
Q(i,7) and the probability space is induced by the uniform distribution
of r € {0,1}£. Then, for every i € [n] and x € {0,1}", it must hold
that Pr[A(i,z) = z;] > p.

The secrecy condition: For i € [n], denote by Q1(i) (resp., Q2(i)) the dis-
tribution induced on the first (resp., second) element of Q(i,r) when r
is uniformly distributed in {0,1}F. Then, for everyi,j € [n], the dis-
tributions Q1(i) and Q1(j) (resp., Q2(i) and Q2(j)) are 6-close (i.e.,
the statistical difference between them is at most §).

Notice that we relax (and quantify) the security and recovery requirements;
the traditional perfect requirements are obtained by setting 6 = 0 and p = 1.
On the other hand, in the following, we restrict our attention to PIR schemes
which have linear answers; that is, for every fixed query ¢ € {0,1}¢, the
servers’ answers S1(z,q) and Sa(z,q) are linear functions of z (each bit of



S1(z, q) and each bit of Sy(z, ¢) is a linear combination of the bits of ). The
above-mentioned PIR scheme of Chor et. al. [4] satisfies this requirement.

Theorem 1.8 Suppose there is a one-round, (1 — §)-secure PIR scheme
with 2 servers, linear answers, database size m, query size t, answer size
a, and recovery probability 1/2 + €. Suppose also that the user only uses k
predetermined bits out of the a bits it receives as answer to each query. Then

(e=6)-n

> 12f(k7a)

10g2 f(k’ a) - 37

where f(k,a) = YF (%) < min{2¢,2a*}.

As immediate corollaries we conclude that

e Any (secure, one-round) 2-server PIR scheme with linear answers of
constant length must have queries of linear (i.e., (n)) length. (This
extends a simple lower bound (of n — 1 bits) on the length of queries
in a 2-server PIR scheme with single-bit linear answers [4, Sec. 5.2].)

e Any (secure, one-round) 2-server PIR scheme with linear answers in
which the user only uses one bit from each answer must have commu-
nication complexity Q(y/n).

e Any (secure, one-round) 2-server PIR scheme with linear answers in
which the user only uses k£ bits from each answer, k£ a constant, must
have communication complexity Q(n!/(+1)),

In the abovementioned PIR scheme of Chor et. al. [4], both a and t are
O(n'/?), and k = 4. By a minor modification to that scheme, we can reduce
k to 3. Thus the third lower bound asserts that for this case (i.e., k = 3),
communication complexity of Q(n'/%) is essential. We comment that the
first two lower bounds are tight:

e There exists a (perfectly secure, one-round) 2-server PIR scheme that
uses n-bit queries and linear answers that are single bits (cf., [4,
Sec. 3.1)).

e There exists a (perfectly secure, one-round) 2-server, linear-answer
PIR scheme in which the user uses only one bit from each /n bit-long
answer, and the queries are also \/n-bit long strings (e.g., by a minor
modification of the scheme in [4, Sec. 3.2-3.3] as applied to d = 2).



Perspective: Computational security. We stress that the above re-
sults (as well as Section 7) refer to an information-theoretic notion of se-
curity. A relaxed notion of security, requiring only security with respect
to polynomial-time servers, was put forward and first investigated by Chor
and Gilboa [3]. Assuming the existence of one-way functions, for any ¢ > 0,
they presented 2-server computational-secure PIR schemes of communica-
tion complexity O(n¢). Furthermore, their PIR schemes are one-round and
use linear 1-bit answers. Combined with our results (or actually even with [4,
Sec. 5.2]), this provides another PIR setting in which the relaxed notion
of computational security offers an advantage over information-theoretic
security. (The other PIR setting we refer to is the single-server setting
in which n bits is a lower bound in the case of information-theoretic se-
curity [4, Sec. 5.1], whereas communication complexity of O(n€) can be
achieved for computationally-secure PIR’s [6], assuming the intractability
of the quadratic residuo.ity problem.)

1.3 Organization

Most of the paper is devoted to analysis of several types of locally decodable
codes, and the application to private information retrieval is postponed to
the last section (Section 7).

We start the analysis of locally decodable codes by using a known re-
duction (due to Katz and Trevisan [5]) to a combinatorial problem. In case
of linear codes the reduction yields a special case for which we obtain (in
Section 3) stronger bounds than the ones obtained in [5]. Indeed, this im-
provement (applicable for the case of linear codes) is the source of all our
lower bounds. We extend our analysis in three directions:

1. In Section 4, we consider linear codes over arbitrary fields (rather than

over the field GF(2)).

Our lower bound in this case is exponential in n, but inversely propor-
tional to the size of the field.

2. In Section 5, we consider linear codes in which the decoder may read
two [-bit long blocks in order to recover one input bit.

Our lower bound in this case is exponential in n/2!, with an improve-
ment to n/ min{2!, 1%} in case the decoder only uses k out of the [ bits
in each retrieved block.

3. In Section 6, we consider linear codes in which the decoder may read
two [-bit long blocks in order to recover one I-bit long input block.

Our lower bound in this case is exponential in n — 2.



2 Preliminaries

The notions and results in this section are mostly due to Katz and Tre-
visan [5]. In particular, their notion of smooth codes and its relation to
locally decodable codes are central to our analysis. Here we generalize their
definition to the case in which the message is over a non-Boolean alphabet.

2.1 Smooth Codes

Informally, a code is smooth if a corresponding local decoding algorithm
“spreads its queries almost uniformly” (or, actually, does not query any
code location too frequently).

Definition 2.1 For fized c,e, and integer ¢ we say that C : X" — I'™ 4s
a (g, c,€)-smooth code if there exists a probabilistic oracle machine A such
that:

e In every invocation, A makes at most q queries nonadaptively.

e For every xz € {0,1}" and for every i € [n|, we have

Pr[AC@) () = ;] > % + €.

e For every i € [n] and j € [m], the probability that on input i machine
A queries index j is at most c/m.

(The probabilities are taken over the internal coin tosses of A.) An algo-
rithm A satisfying the above requirements is called a (g, c, €)-smooth decoding
algorithm for C.

We stress that the decoding condition in Definition 2.1 refers only to valid
codewords, whereas the corresponding condition in Definition 1.1 refers to
all oracles that are sufficiently close to valid codewords. To get a feeling
for the smoothness condition note that if the decoding machine spreads its
queries uniformly, then we would get ¢ = ¢ (and this is the lowest possible
value, assuming that the machine always makes ¢ queries). It turns out
that any locally decodable code is smooth, for suitable parameters and by
possible modification of the decoding machine.

Theorem 2.2 (See Theorem 1 in [5]) Let C : ¥ — I'™ be a (g, 6,¢€)-
locally decodable code. Then C is also a (q,q/b,€)-smooth code.

This is stated only for the case ¥ = {0,1} in [5], but the proof applies to
the general case as well.



2.2 The Recovery Graphs

Let C: X" — I'™ be a (2, ¢, €)-smooth code and let algorithm A be a (non-
adaptive) (2, ¢, €)-smooth decoding algorithm for C. Let {q1,¢2} be a pair
of elements of [m]. We say that a given invocation of A reads {qi1,¢2} if the
set of indices which A reads in that invocation is exactly {qi,q2}. We say
that {q1, g2} is good for 7 if:

Pr[AC®)(3) = ;| A queries {q1,¢2}] > 1/2,

where the probability is taken over z uniformly chosen from {0,1}", and
over the internal coin tosses of A. For every i € [n], we consider the graph
with edge set consisting of the set of good pairs. Howard’s note: Are we
assuming here that q1 # q27

Definition 2.3 Fizing a code C : {0,1}" — I'™ and a 2-query recovery
algorithm A, the recovery graph for i € [n], denoted G;, consists of the vertex
set [m] and the edge set E; that equals the set of pairs {q1,q2} that are good
for 7.

We have the following result about such graphs.

Lemma 2.4 ([5]) Let C be a (2,c,¢€)-smooth code and {G;}7_, be the as-
sociated set of recovery graphs. Then, for every i, the graph G; = ([m], E;)
has a matching M; C E; of size at least em/c.

This is essentially Lemma 4 in [5], but, since we slightly changed the defi-
nition of the recovery graph (from [5]), and get slightly better bounds, we
present a proof below.

Proof: We may assume without loss of generality that, for every i € [n]
and jl;j? € [m]7

Pr[ACE)(0) = ;| A queries {j1,32}] > 5 1)
where the probability is taken uniformly over z € {0,1}" and A’s internal
coin tosses. (For example, we can modify A so that it outputs a random
bit whenever ¢ € [n] and ji,j2 € [m] do not satisfy Eq. (1).) Using a
Markov argument, it follows that with probability at least 2¢, on input
i € [n], algorithm A generates a pair that is good for ¢. In other words, with
probability at least 2¢, the pair generated by A(4) is an edge in G;. Thus,
if C C [m] is a vertex cover of G;, then the probability that A(:) queries at



least one element of C is at least 2e. On the other hand, no element of [m]
is queried by A with probability greater than ¢/m, and so it follows that
|C| > (2¢)/(c/m) = 2em/c. Since the size of the maximum matching in a
graph is at least half the size of the minimum vertex cover, we conclude that
G; has a matching of size at least em/c. |

3 The Boolean Case — Proof of Theorem 1.3

3.1 Getting Rid Of Projected Bits

To simplify the rest of our analysis, we would like to get rid of bits in the
range of the code that are identical to some input (data) bit. That is, we
wish the code to be such that no single bit of the output is (always) equal to
a particular bit of the input. We can accommodate this condition by fixing
bits of the input that are identical to too many bits in the output. This
gives the following lemma.

Lemma 3.1 For n > 4c/e, let C : {0,1}" — {0,1}™ be a (g, c,€)-smooth
code. Then there is another code C' : {0,1}* — {0,1}™ that has a
(g, c,€/2)-smooth reconstruction procedure A', such that n' > n/2, m' < m,
and for every ¢ and j there exrists an T € {0,1}”' such that the jth bit of
C'(z) is different from z;. Furthermore, if C is a linear code, then so is C'.

Thus lower bounds on the length of smooth codes satisfying the conclusion
of the lemma yield lower bounds on general smooth codes.

Proof: Consider the set I of bits in the input that occur in more than
a fraction 2/n of the bits of the output. Clearly, |I| < n/2. For each
i € [n] \ I, consider the behavior of the smooth reconstruction procedure
AC@)(3) for some z. Since i ¢ I, at most a fraction 2/n of the bits of
C(x) contain copies of x;. By the smoothness condition, such code bits are
examined with probability at most 2c¢/n, which is less than €¢/2 (provided
that n > 4c/e). Thus, if we modify A such that it does not read such bits,
we may decrease the probability that it recovers z; by at most €/2, so the
recovery condition is met.

We construct the code C’ from C by omitting the output bits that are
copies of any input bit i € [n], fixing arbitrary! values for the bits in I,
“hardwiring” these values into C’, and modifying A so that it queries only

! Actually, in order to preserve linearity, these bits should all be set to zero. However,
in fact, all our results apply also to affine codes.
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bits in C’ (rather than bits in C). Note that the fact that the length of C’
may be shorter than the length of C only makes the smoothness condition
easier to meet. [ |

3.2 The Combinatorial Lemma

We will deal with the linear error-correcting code C' of Lemma 3.1. In the
following we will use e; to denote a vector in {0,1}" that has 1 in the i-th
coordinate and 0 elsewhere. We can identify our error-correcting code C’
with a sequence of m’ vectors ay,...,a,, € {0, 1}”’, such that the jth bit of
C(z) is a; - z. Recall that, by Lemma 3.1, none of these a;’s equals any unit
vector e;. Let {Gz}:i1 be the sequence of recovery graphs associated with
C’ as in Lemma 2.4.

Lemma 3.2 For every i, and for every {q1,q2} € E;, e; is in the span of

{aqlaaqz}-

Proof:  Suppose e; is linearly independent of a4, and ag,. Then, for a
random z, the value z - e; is independent (in the statistical sense) of the
values z - ag, and x - ag,, and so it is not possible to gain any advantage in
predicting z; by looking at the g;-th and the ¢o-th bit of the encoding of .

|

Since we are dealing with the field {0,1}, when e; is in the span of {ag,, aqg, }
there are only three possibilities: either aq, or aq, equals e; itself, or e; =
ag; @ ag,. But for C' (as in Lemma 3.1) the only possible case is that
e; = ag, @ ag,- Thus proving Theorem 1.3 reduces to proving the following
result.

Lemma 3.3 (Combinatorial Lemma) Let ai,...,a,, be elements of
{0,1}"™ such that for every i € [n] there is a set M; of at least ym dis-
joint pairs of indices {j1,j2} such that e; = aj, ® aj,. Then m > 27",
Furthermore, the conclusion holds even when the hypothesis only states that
Below, we will present two alternative proofs of Lemma 3.3. Actually, the
second proof yields a stronger lower-bound (of m > 227", rather than m >
27™). Combining all the above lemmas, we get:

Corollary 3.4 Let C: {0,1}" — {0,1}™ be a (2, ¢, €)-smooth linear code.
Then m > gen/(4c)

11



Notice that Theorem 1.3 is an immediate consequence of Corollary 3.4 and
Theorem 2.2.

Proof: We first apply Lemma 3.1 to obtain a (2, ¢, € )-smooth linear code
C': {0,1}" — {0,1}™, for n' > n/2, m' < m and € = ¢/2. Combining
Lemmas 2.4 and 3.2, it follows that 2 S |M;| > €m//c. Finally, applying
Lemma 3.3, we get m' > gen'/c > gen/(4) and using m > m' the claim
follows. =

3.3 A Combinatorial Proof of Lemma 3.3

For starters, let us suppose that all the vectors ai,...,a, are different.
In this special case, Lemma 3.3 is a consequence of the following known
combinatorial result.?

Lemma 3.5 (See Appendix) For any subset S C {0,1}" of the hyper-
cube, the number of edges of the hypercube having both endpoints in S is at
most 5|S|log, |S|.

Note that our (distinct) vectors ag,...,a,, are all vertices of a hypercube,
and we are assuming that, for every 4, there are at least ym edges in the ith
“direction” between such vertices. This gives a total of at least ymn edges,
but this number has to be no more than %mlog2 m, and so it follows that
m > 25m,

To complete the proof of Lemma 3.3, we have to consider the case in
which aq,...,a, are not all different. Note that an analogue of Lemma 3.5
does not hold in this case (e.g., if a1 = --- = apyy = 0" and a(m/2)41 =
“os = @y, = 10" ! then we get (m/2)? edges).3

For every a € {0,1}", let us denote by v, the number of indices j such
that a; = a (so that 32, o,13» ¥a = m). That is, v, is the multiplicity of the
vector a in the sequence a,...,a,. For every k, let us denote by Sy the set
of vectors a such that v, > k, and let s = |Sk|; observe that

2 The proof of Theorem 2 in [2, Sec. 16] implies that the subset S C {0,1}™ of given
size m for which the number of internal edges is maximum is the set of the first m = |S]|
strings in lexicographic order (of {0,1}"). Since each such vertex has at most [log,m]
internal edges, we get an upper-bound of £|5| [log, |S|] on the number of internal edges.
Indeed, the difference is of little significance in the context of our work.

3 Note that this example does not violate Lemma 3.3: for every sequence of M;’s as
in Lemma 3.3, it holds that "  |M;| <1 (since |M1| < 1 and all the other M;’s must
be empty). Thus, the “furthermore hypothesis” only holds with v < 1/(nm), implying a
lower bound of m > 2" > 2 (which indeed holds).

12



Z S = m, (2)
k

because each vector a that occurs in the sequence ai,...,a, is counted
exactly v, times. Finally, define x(a,j) to be 1 if v, > j and to be 0
otherwise. With this new piece of notation we can write

Z Z X(av k) =m, (3)

aef{0,1}7 k>1

and we also note that for any two vectors a,b € {0,1}", we have

min{vg, vp} = Z X(Vas k) x(vp, k). (4)
k>1

Now we would like to argue that for every i, the following upper bound
holds on the size of the matching M;:

IM;| < > min{ve,m}. (5)
a,b:a®b=e;

Indeed, for starters we have by definition that M; is the set of all pairs
{j1,72} such that aj, ® a;, = e;, and that all such pairs are disjoint. Let us
fix two vectors a and b such that a @b = ¢;, and consider how many possible
pairs {ji1,j2} can belong to M; subject to a;, = a and a;, = b; since the
pairs have to be disjoint, both v, and v, are upper bounds on the number
of such possible pairs. Summing over all choices of @ and b gives the bound
of (5).

Combining the lemma’s hypothesis with Equations (5) and (4), we get

ymn <> | Ml
=1
< Z Z min{v,, Vage, }
=1 ae{0,1}"
- Z Z ZX(VGvk)X(VaGBenk)
i=1ae{0,1}" k>1
and so .
ymn < Y33 xX(War k)X (Vagers k) (6)

k>1i=1 ae{0,1}"
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Note that 32021 > acq0,13» X(Vas k)X (Va@e;, k) counts (twice) the number of
hypercube edges with both endpoints in S;. Thus, by Lemma 3.5, we have,
for every k, that

" 1
Z Z X(Vaak)X(VaGBenk) < 2 §|Sk|10g2 |Sk|
1=1a€{0,1}"

= splogy sy < s -logym.
Combining this inequality with (6), and recalling (2), we have

ymn < Zsk-log2m:m-log2m,
k

from which it follows that m > 27",

3.4 An Information-Theoretic Proof of Lemma 3.3

The “information-theoretic” proof in this section is due to Alex Samorod-
nitsky, and was suggested to us after we found the combinatorial proof
presented in the previous subsection.

Let X be a random variable uniformly distributed in the multiset
{a1,...,am}. We will write X = X;Xy---X,,, where X, denotes the ith
bit of X, and X; ; denotes X; --- X;. We consider the entropy of X, denoted
H(X). On one hand, H(X) < logsm. On the other hand, we will prove
that H(X) > 2yn, and Lemma 3.3 will follow immediately.

We can express the entropy of X as

The value of the ith term, H(X1|X1 H 'Xi—l) = H(XZ'|X17Z'_1), is given by
the following formula:

H(X;| X1, 1) = Z Pr[Xi; 1 =b]- H(X;| X1, 1 =b). (7)
be{0,1}i-1

Observe that for any 0-1 random variable Y (in our case Y = (X;| Xy ,;,_1 =

b)), with p def Pr(Y = 1), we have H(Y) = Hy(p), where Hy(z) =

zlog(1/z) + (1 — z)logy(1/(1 — z)) > 2 - min(z,1 — z) is the binary en-
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tropy function.* So Eq. (7) is at least

Z Pr[X;; 1 = b]-2min{Pr[X; = 0| X1, 1 = 0], Pr[X; = 1| X1, 1 = b]}.
be{0,1}+-1
(8)

Now, under any conditioning, the probability that X is an endpoint of an
edge in M; equals the sum over o € {0,1} of the probabilities that X; = o
and X is an endpoint of an edge in the matching M; (which matches events
of the type X; = 0 with events of the type X; = 1). Thus, each of the two
probabilities in the sum is bounded above by min(Pr[X; = 0|cond], Pr[X; =
1|cond]). Thus, Pr[X is an endpoint of e € M;|X; ;1 = b] is bounded
above by 2-min{Pr[Xi = 0|X1,i_1 = b],PI‘[XZ' = 1|X1,i_1 = b]}, and Eq. (8)
is bounded below by

Z Pr(X;; 1 =b]-Pr[X is an endpoint in an edge of M;|X;; 1 = 0]

be{0,1}i-1
= Pr[X is an endpoint in an edge of M;]
_ 2|My|
= 255 9,
m

Then H(X) > 2yn and so m > 227",

Comment: Note that the lower bound established here (i.e., m > 2277)
is a square of the lower-bound claimed in Lemma 3.3. Furthermore, this
stronger lower-bound is tight, and implies Lemma 3.5 as a special case.’

4 Extension To Arbitrary Finite Fields — The
Proof of Theorem 1.4

We extend Theorem 1.3 to linear codes over any finite field F', where F =
GF(2) is a special case treated (slightly better) in Theorem 1.3.

Remember that Theorem 1.4 states that if we let C : F™* — F™ be a
(2,6, €)-locally decodable linear code, then m > 976 n—1-log, |F|,

“We claim that, for « € [0, 0.5], it holds that Hy(z) > 2z (whereas a bound of Ha(z) > =
is obvious). The claim can be verified by noting that f(x) < H, (z) — 2z is convex in that
interval, and that f(0) =0 = f(1/2).

5 Specifically, the set of edges E(S,S) with both endpoints in S can be partitioned
into matchings M’s as in Lemma 3.3. Letting v = (}_, |Mi|)/(n|S|), and applying the
stronger bound (for Lemma 3.3), we get |§| > 22" = 27 2 Mil/IS1 - Thus, log, |S| >
2|E(S, S)|/|S|, which implies |E(S, S)| < (1/2)|S|log, |S].
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This result is proven by an argument analogous to the one in Section 3.
Here we deal with vector spaces over an arbitrary finite field. Specifically, we
let F' denote any such field, and consider n-dimensional vectors over F. In
particular, €; denotes the n-dimensional vector that has 1 in coordinate 7 and
zero in all other coordinates. We say that a pair of vectors (i, ¥) € F™ x F"
spans a third vector w € F™ if there exists a, 3 € F such that @ = ot + 7.
Again, the analysis reduces to providing lower bounds on the cardinality of
multisets that contain many disjoint pairs that span each é;.

Lemma 4.1 Let F be a finite field, n an integer, and S a multiset of F™.
Fori=1,..,n, let M; be a set of disjoint pairs of elements of S that span
€;. Then

D IMi| < 2[8] +2- S| - logy(IS] - |F)).
i=1

Thus, if £ 37, M| > |S], then [S] > 20m/2-1-10ss 1,

4.1 Getting Rid Of Multiples Of ¢;

Motivation: Our first goal is to get rid of queries that are multiples of
some unit vector ;. Intuitively, such queries have limited utility, as shown
in Claim 4.2. One benefit of getting rid of such queries is that recovery via a
remaining pair of queries requires to use both answers, that is, if the query
vectors 4 and ¥ span €; then it must be the case that e; = il + 8, for some
a,f € F\{0}.

Let S be as in the lemma, and E; denote the set of all pairs in S that
span €;. (Recall that M; is a subset of E;, consisting only of disjoint pairs.)
Define

5" ¥ S\{af:a€F&i=1,..n} (9)
E ¥ En(x9) (10)
M MN(S xS (11)

Claim 4.2 Y7, |M;| < 2|S|+ >0, |M]].

Proof: We bound from above the number of pairs in U; M; with an end-
point in S\ S’. We consider two types of pairs:
1. A pair (4,7) such that either @ or U is a multiple of some €. The
number of such pairs is bounded from above by 2 - |S \ S’|, because
element of the form a€; can “account” for at most one pair.

16



2. A pair (4@,7) such that for some i and o, € F \ {0}, €; = aii + 47.
Suppose, without loss of generality, that 4 = ~¢€; and ¥ = 0€; + 7€;.
Then ¢ contributes to M; \ M/, but cannot contribute (under this
case) to any Mj \ Mj with k& ¢ {3,j} (because if (@',7) € My \ M
for k& ¢ {i,j}, then @' must be a multiple of € and it must hold that
€r = o/u’ + B'¢ with 8’ = 0; so this pair is not counted in the current
case). It follows that the number of such pairs is bounded above by
2|5"|.

Combining the two types, the claim follows. |

4.2 Reduction To The Boolean case

Motivation: The first step in the reduction is to convert the system into
one in which recovery is via fixed coefficients. Specifically, we shall define
a redundant form of S’ such that each ¥ € S’ will be represented by its
|F| — 1 nonzero multiples. Recovery of the ith bit via queries @ and ¥ with
multipliers o and —f will be replaced by queries ai and (U and straight
addition.

Let S’ be a multiset as above. Define

" Y g a)deS &ae F\{0}} (12)
def

E' Y (@, a), (5,8) € 8" x §": Iy e F\ {0} s.t. aid — 47 = v&{L3)

That is, if 4 occurs with multiplicity m in S’, then (for every a € F \ {0})
(i, @) occurs with multiplicity m in S”. Clearly, if ((@,«),(¥,3)) € E/,
then (4,7) € E.. On the other hand, if (@,7) € E;, then there exists
a, B,y € F\ {0} such that aii — 3 = +¢é;, and thus there exists § € F'\ {0}
(i.e., 6 = B/a) such that ((@,n), (¢, 6n)) € E! for every n € F \ {0}.

Let M/ be defined as follows. For every (4, 7) € M/ such that ai — v
is a multiple of &, and for every § € F \ {0}, add ((@, 6c), (¥,60)) to M.
Note that since 4,7 € S’ are not multiples of €;, it must be the case that
a, 8 # 0, and thus indeed M/ C E.

Claim 4.3 1. |S"|=(|F|-1)-|9"].
2. Yy MY = (|F| = 1) - 325y [MG].
3. M is a set of disjoint pairs in E;'.

Proof: All items are obvious by the definition. In particular, by the
above discussion, M] C E!, and the disjointness of pairs introduced for
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each single (4, 7) € M/ follows similarly. Specifically, for every (&, ¥) € M],
there exist o, 3 € F'\ {0} such that aii— 3¢ is a multiple of &;. Thus the pairs
(4, 6a),(¥,608)) added to M/, for every 6§ € F \ {0}, are disjoint (because
da = 8« implies § = ¢, and similarly for 68 = §'(). [ |

Motivation: The main reduction step in the reduction is carried out in
the following proof. It relies on the fact that if @' — o' = ~é;, withy € F\{0},
then 4’ and ¥' agree on all but their ith coordinate (and they differ on their
ith coordinate).

Claim 4.4 Let S" be an arbitrary subset of F™ X F and M" be an arbitrary
set of disjoint pairs such that ((@, ), (v, 3)) € M]" implies ot — pU = v€;
for some v € F\ {0}. Then |S"|logy|S™| > 137, |M/"|.

Proof: We consider a randomized mapping of F" x F to {0,1}". The
mapping is based on a uniformly chosen 2-coloring of F', denoted yx, and
(ii,a) € F™ x F is mapped to x(v1)--- x(vn), where (vi,...,v,) = ai. Let
us denote by p, : F™ x F — {0,1}" the mapping induced by the 2-coloring
X : F — {0,1}, that is, p, (%, o) = x(v1) * X(vn), where (v1,...,v,) = .
Thus the multiset S” is randomly mapped (by u,) to a multiset B, of
{0,1}™ such that |B,| = |5"|.

The key observation is that for every ((a, ), (¥, )) € M]", with prob-
ability 1, it holds that (@, ) @ py (7, 8) = e; (and otherwise py (@, ) =
py (7, B)). The observation follows by combining the fact that a@l = S+ ~é;,
with v € F \ {0}, and the fact that Pr[x(e) = x(e +7)] = 1 for every e € F
(and v € F\ {0}). Letting M;, denote the pairs in M;” that are mapped
(by py) to pairs (u,v) such that u @ v = e;, we conclude that the expected
size of M; , equals 1 - |M]"|, where the expectation is taken uniformly over
all possible x’s.

It follows that there exists a 2-coloring x such that Y0 |M;,| > 5 -

1 |M/"|. Fixing this x, we apply (the “furthermore” part of) Lemma 3.3
to By and the M;,’s, and conclude that |B,|logy |By| > 371 | M; |- Thus
" " = ]‘ = m
5" log, |S™| = |By|logy |By| > Y |Miy| > o> IM"].

=1 2 =1
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Finishing the proof of Lemma 4.1: Using Item 3 of Claim 4.3, we may
apply Claim 4.4 to S” and the M/"s, and get |S”|logy |S"| > 3 - Siyq [ M.
Applying the other items of Claim 4.3, we get

1 n
(IF|=1)-|S"[ogs(IF[-|S"[) = (IF|=1)-| 5" [logo((|F|=D)IS"]) = 5-(1F|-1)-3_ [ M.
=1
Thus Y7 |M]| < 2|S'|logy(|F] - |S’]). Combining this with Claim 4.2, we
get 3oit1 [Mi] < 2|S] + 2|5[log,(|F| - [S])-

5 Extension To Binary Linear Block Codes — The
Proof of Theorem 1.5

In this section we deal with linear codes mapping {0, 1}" to ({0,1}¥)™, where
the case £ = 1 corresponds to the main result (presented in Section 3). Thus
each output symbol is an ¢-bit long string, where each of these bits is a linear
combination of the n input bits. We show that providing lower bounds for

the general case reduces to providing lower bounds for the special case of
{=1.

5.1 Reduction to the Boolean case

Lemma 5.1 Let C: {0,1}" — ({0,1}*)™ be a (g, ¢, €)-smooth linear error-
correcting code. Then there is a code C' : {0,1}" — {0,1}2™ that is
(q,c¢- 2% €)-smooth. Furthermore, suppose that C has a decoding algorithm
that uses only k predetermined bits out of the £ bits that it receives as answer
to each query. Then there is a code C" : {0,1}™ — {0,1}*™ that is (g, c-t,€)-
k(L
smooth, where t =37 (7).
Proof: Let x € {0,1}". We define C'(z) as follows: for every j € [m)]
and for every a € {0,1}¢, the entry of C'(z) indexed by (j,a) contains the
inner product between the jth (¢-bit long) block of C(z) and the (£-bit long)

string a. This encoding has length m’ 4 9¢m. We now describe a smooth
decoding procedure for C'.

Let A be the (2,c¢,¢€)-smooth decoding procedure for C. The smooth
decoding procedure A’ for C' will first simulate A, and get two queries
(j1,J2). If z; is in the span of C(z);, and C(z);,, then A’ will reconstruct
x; as a linear combination of C(xz);, and C(z);,, a computation that can be
done by looking at two entries of C'(x) (i.e., specifically the entries (j1,a1)
and (j2,a2), where z; = (a1, C(z);,) + (a2, C(z);,))- If ; is not in the span
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of C(z);, and C(z);,, then A’ will output a random guess. As argued in
the proof of Lemma 2.4, with probability at least 2¢, algorithm A (on input
i) samples a pair (j1,j2) that is good for i (i.e., allows reconstruction with
average success probability above 1/2, when averaging over all possible z’s).
However, whenever (j1,j2) is good for 7, it must be the case that z; is in
the span of C(x);, and C(z);,, and A’ correctly reconstructs z;. Combining
these two observations, we bound the reconstruction probability of A’ below
by 2¢-1+(1—2¢)-(1/2) = 1/2+¢€ (as required). Turning to the smoothness
condition, observe that each entry in C’(z) is queried with probability at
most ¢/m, which equals (2¢ - ¢)/m' as required.

In order to prove the “furthermore” part, we do a similar construction,
except that the entries of C”(z) correspond to pairs (j,a) where j € [m] and
a € {0,1}" is a vector of weight at most k. When introducing the decoding
procedure A” (for C"), we refer not only to the queries made by A but also
the the predetermined bit locations in the answer that are inspected by A.
Specifically, A” first simulates A, and gets two queries (j1,j2) as well as two
corresponding sets of bit locations S1,Ss C [f]. If z; is in the span of the
bit positions S; in C(z);, and the bit positions Sy in C(z);,, then A” will
reconstruct z; as a linear combination of these bit positions, a computation
that can be done by looking at two entries of C”(z), since |Si[,|S2| < k. In
the analysis we note that whenever a pair of queries (made by A) is good
for 4, it must be the case that z; is in the span of the bits of C(z);, and
C(z);, that are inspected by A, and A” correctly reconstructs ;. [ |

5.2 Consequences

Combining Lemma, 5.1 and Corollary 3.4, we obtain the following result.

Corollary 5.2 Let C : {0,1}" — ({0,1}*)™ be a (q,c,€)-smooth linear

error-correcting code. Then m > (1/2!) - 2°0/42 < Pyrthermore, if C has a

decoding algorithm that uses only k of the £ bits that it receives as answer
to each query, then m > (1/t) - 2°*/4¢ where t = Y5, (f)

Theorem 1.5 follows by combining Corollary 5.2 and Theorem 2.2.

6 Extension To Binary Linear Block Codes With
Block Decoding — The Proof of Theorem 1.6

Here we deal with codes mapping ({0,1})" to ({0,1}*)™, that is, mapping
a sequence of n blocks, each being a string of length ¢, to a sequence of m
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such blocks. We consider algorithms that recover a desired (entire) block by
making two block-queries.

We focus on such codes in which the bits of each output block are a linear
combination of the #n input bits (so indeed the £ = 1 case corresponds to the
main result presented in Section 3). We stress that the £ linear combinations
corresponding to one output block are not necessarily consistent with one
linear combination of the input blocks. (In case they were, this could be
handled as a special case of the results presented in Section 4.)% We call
such codes linear block-block codes.

We seek stronger bounds than the ones presented in Section 5, and we
obtain them by extending Theorem 1.3. This extension is analogous to but
different from the one presented in Section 5.

Recall that Theorem 1.6 states that if we let C : ({0,1}£)"* — ({0,1}*)™
be a (2,0, ¢€)-locally decodable code that is linear block-block, then m >
9ign—(¢+1)?,

This result is proven by an argument analogous to the one in Section 3.
Here we deal with ¢n-bit long vectors, and consider queries consisting of
¢ (fn-dimensional) vectors over {0,1}. For every i = 1,..,n, we focus on
pairs of queries that allow one to recover the entire ith block. Thus the 2/
vectors corresponding to this pair of queries must span the vectors €(;_1)ey;
for j = 1,...,4, where a sequence of vectors 1,...,% € {0,1}*" spans the
vector @ € {0,1}*" if for some I C [t], it holds that @;c;¥; = w. We say
that a pair of queries spans the ith block if the 2/ vectors corresponding to
this pair of queries span the vectors €;_1)p4; for j = 1,..,£. Again, the
analysis reduces to providing lower bounds on the cardinality of multisets
that contain many disjoint pairs that span each block.

Lemma 6.1 Let £ > 2 and n be integers, and S a multiset of Q def
({0,1}")¢. For i = 1,...,n, let M; be a set of disjoint pairs of elements

6 A sequence of £ vectors, v?, ..., v, of {0,1}*™ (i.e., £ linear combinations of the ¢n
input bits) is consistent with one n-dimensional vector (b1, ...,b,) € {0,1}" (i.e., a linear
combination of the n input blocks) if, for every j =1, ..., £, the v = (bY), e bz(zi)) such
that b,(cj) =br if k=3 (mod £), and bgj) = 0 otherwise. To see that this case is a
special case of Section 4, consider the blocks as elements of the field GF(2¢), and observe
that the output symbols (i.e., the input blocks viewed as elements of GF(2°)) are merely
linear combinations (over GF(2*)) of the input symbols (and that, furthermore, these
linear combinations over the extension field GF(2*) are restricted to having entries in the

base field GF(2) = {0,1}.
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of S that span the ith block. Then

D IM;| < (£+20%)-]S] +2-|Slog, ||
=1

Thus, it L 7, |M;] > 4|S|, then [S| > 20m/2)—£~¢,

Notations: It will be more convenient to view queries as £ X fn Boolean
matrices (i.e., @ = {0, 1}¥*"), rather than as £-sequences of fn-dimensional
vectors. Correspondingly, it is more convenient to view the recovery (or
spanning) condition in matrix form: Two queries U and V span the ith
block if there exist two £ x £ matrices A and B such that AU + BV = I;,
where I; is the £ X ¢n matrix that consists of £ x £ sub-matrices such that
all but the 7th sub-matrix are identically zero and the ¢th is the identity
matrix.

6.1 Getting Rid of Singular Multiples

Motivation: Unlike the analogous part of the proof of Lemma 4.1, here
we do not modify S but rather only modify the M]’s. Again, we wish
to maintain only query pairs that allow recovery (spanning) via full-rank
matrices. It can be shown that such query-pairs are few in number.

Let S and the M;’s be as in the lemma, and E; be the set of all pairs in
S that span the ith block. Recall that (U,V) € E; implies that there exist
two ¢ x £ matrices A and B such that AU + BV = I;. Let F denote the set
of full rank £ x £ matrices. Define

El ¥ ((U,V)eSxS:3A,BeF st. AU+BV =1L}, (14)

M € M NE. (15)
Claim 6.2 Y7 | |M; \ M]| < ¢|S|.

Proof:  Suppose that (U,V) € M; \ M/, and let AU + BV = I;. Then
either A or B is not full rank. Suppose, without loss of generality, that A
is not full rank and let w be a nonzero vector such that wA = 0. Then
w(AU + BV) = wBYV is a vector that is spanned by I;, and so V spans a
vector in the set {e;_1ye4; : j = 1,...,£}. It follows that V' can appear in at
most £ pairs in U, (M;\ M]) (because if V appears in a pair (U, V) € M;\ M]
such that AU 4+ BV = I; for a singular matrix A, then V spans a vector in
the set {e;_1)4; : 5 = 1,...,£}). Thus each V' € S contributes at most £
pairs to U7, (M; \ M), and the claim follows. |

22



6.2 Reduction To The Boolean case

Let S be a multiset as above and define

" X LUA):UeS&AeF), (16)

E! ¥ {(U,A),(V,B)) € §" x §": A,B € F&IC € F AU + BV = &%)

That is, if U occurs with multiplicity m in S, then (for every A) (U, A) occurs
with multiplicity m in S”. Clearly, if ((U, A), (V, B)) € EY, then (U,V) € E!.
On the other hand, if (U,V) € E!, then there exist A, B € F such that
AU + BV = I, and so for every C € F we have ((U,CA),(V,CB)) € E!.
In other words, there exists D € F (i.e., D = A~'B) such that for every
A" € F we have ((U, A'), (V, A'D)) € E".

Let M/ be defined as follows. For every (U,V) € M, and A, B € F such
that AU + BV = I;, and for every C € F, add ((U,CA),(V,CB)) to M/

Claim 6.3 1. |S"| = |F|-|S| and |M"| = |F| - | M.

2. M is a set of disjoint pairs in E!.

Proof: The claim follows immediately by the definition of S” and the
M!"s. Specifically, for every (U,V) € M], there exist A,B € F such that
AU — BV = I,. Thus the pairs ((U, CA),(V,CB)) added to M}, for every
C € F, are disjoint (because CA = C'A implies C = C’, and similarly for
CB = C'B). m

Claim 6.4 Let S be an arbitrary subset of Q x F' and M}" be an arbitrary
set of disjoint pairs such that ((U, A),(V, B)) € M}" implies AU — BV = CI;
for some C € F. Then |S"|logy|S™| > - S0, |M!").

Recall that @ = ({0,1}")*, but it will be more convenient to view Q as a
set of n sequences of £ x £ matrices, that is, Q = ({0, 1}¥*¢)".

Proof: The proof mimics the proof of Claim 4.4. This time, we consider
a randomized mapping of @ X F to {0,1}". The mapping is based on a
uniformly chosen 2-coloring of M def {0,1}%*¢, denoted x, and (U, A) €
Q@ x F is mapped to x(m1) - x(my,), where (Ui, ...,U,) = AU. Let us denote
by py : M™ x F — {0,1}" the mapping induced by the 2-coloring x, that is,
(U, A) = x(U1) - x(Uy), where (Uy,...,U,) = AU. Thus the multiset S"’
is randomly mapped (by p,) to a multiset B, of {0,1}" such that |By| =
|S”'|. Again, the key observation is that for every ((U, A),(V,B)) € M},
with probability 3, it holds that pu, (U, A) @ py(V, B) = e;, and otherwise
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py (U, A) = py(V, B). Letting M; ,, denote the pairs in M;” that are mapped
(by py) to pairs (u, v) such that u @ v = e;, we conclude that the expected
size of M; equals 5 - |M]"|, where the expectation is taken uniformly over
all possible y’s.
It follows that there exists a 2-coloring x such that Y7, |M;,| >
>, |M]"|. Fixing this x, we apply (the “furthermore” part of) Lemma 3 3
to By and the M;,’s, and conclude that |B,|log, |By| > >"ity | M; |- Thus

n 1 n
5" |logy || = 1Byl logs |Bl > 3_|Mi| > 3+ 1M

Finishing the proof of Lemma 6.1: Using Item 2 of Claim 6.3, we may
apply Claim 6.4 to S” and the M/"s, and get |S”|log, |S"| > & - S0 [ M/"|.
Applying the other item of Claim 6.3, we get

n

1
|F|-|S|Toga(|F| - |S]) > 5 - [F] - > |Mj].

=1

Thus Y7 |M’| < 2|S|logsy(|F| - |S])- Combining this with Claim 6.2 (and
using |F| < ZE ), we get

SM < ]S+ M|

=1 =1
< £-1S|+2-|S|logy(27 - |S))
< (L+20%) 18] +2-]S|logy |S|.

7 Lower Bounds For Private Information Re-
trieval — Proof of Theorem 1.8

The main result of this section is a reduction showing that a one-round PIR
system can be converted into a smooth error-correcting code. This transfor-
mation preserves linearity, and hence, combined with the lower bound for
smooth linear codes, yields a lower bound for linear one-round PIR systems.

7.1 Constructing Smooth Codes Based on PIR Schemes

Actually, we consider a relaxed notion of a PIR. First, recovery is not re-
quired to always be correct but rather only to be correct with probability at
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least 1/2 + €, where the probability is taken over the PIR’s randomization
for any fixed input (i.e., a database and a desired bit). Second, we do not
require perfect secrecy (i.e., 6 = 0), but rather that the distributions of each
query for each desired bit are at pairwise statistical distance at most 6.

Lemma 7.1 Suppose there is a one-round, (1 — 6)-secure PIR scheme with
two servers, database size n, query size t, answer size a, and recovery prob-
ability at least 1/2 + €. Then there is a (2,3,€ — §)-smooth error-correcting
code C: {0,1}" — ({0,1}*)™, where m < 6 - 2'. Furthermore:
1. If in the PIR scheme the answer bits are a linear combination of the
data, then C is linear.

2. If, in the PIR scheme, the user only uses k predetermined bits out of
the a bits it receives as an answer to each question, then the same
property is true for the decoding algorithm of C.

Proof: Let us first develop some intuition about the proof. By enumer-
ating all possible answers from either server, we can view the PIR system
as encoding the database z € {0,1}" as a string PIR(z) € ({0,1}%)!, where
! = 2-2'. The user can reconstruct one bit z; of the database with ad-
vantage € by looking at two entries of the encoded string PIR(z). For any
i and j, the distribution of the first entry read into PIR(x) when recon-
structing z; is 6-close to the distribution of the first entry read into PIR(z)
when reconstructing z; (and similarly for the second entry). Instead of this
closeness property, we would like to have a smoothness property, that is,
we would like each entry to be read with low probability. We are willing to
make the encoding be slightly longer in order to achieve this goal. We will
achieve this goal by duplicating entries that have a high probability of being
read.

Suppose, to start, that 6 = 0. Then, for every j, the probability that
entry j is queried by the reconstruction algorithm (as a first query or as a
second query) is a fixed value p; (independent of which bit of the database
the user wants to reconstruct); note that 3, p; = 2. We will replicate entry
Jj of the encoding n; = [p; - [] times, denoting by C(z) this new encoding
(with repetitions) of 2. Recall that PIR(x) € ({0,1}2)! (and we will show
that C(z) € ({0,1}%)°0),

A reconstruction algorithm for z; from C(z) will generate queries j1, jo
as in the reconstruction algorithm that accesses PIR(z). The algorithm
then picks at random one of the n;, copies of the jith entry and one of the
n;j, copies of the jath entry, and then accesses these selected two entries in
C(z). Clearly, the advantage in decoding z; remains the same. Regarding
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smoothness, let us consider an entry j in PIR(z). If p; < 1/, then the
corresponding (unique) bit in C(x) is accessed with probability p; < 1/I.
Otherwise (i.e., p; > 1/1), the jth entry is replicated n; = [p;I] > 1 times,
and each copy is accessed with probability p;/n;, which is

Pi_ o Pi 1
[pil] ~ pil 1

The length of the new encoding is m = 25'21 nj, and we have

S oTeill+ Y. Ipill

Jpi <1/l Jpi>1/1

< D> 1+ > (T4

jp; <1/l jip;>1/1
< I+ ijl
J

= 3l = 6-2%.

m

Recall that no entry is queried with probability higher than 1/I, which (using
m < 3l) is bounded above by 3/m.

Consider now the general case in which the query distributions for z;,
and z;, are only guaranteed to be §-close. We apply the previously described
construction using the distribution of queries for z;. When we want to
reconstruct x; we proceed as follows. For every j, let p; be the probability
that j is queried when reconstructing z; and let g; be the probability that
J is queried when reconstructing z;. Note that 3_;p; = >, ¢; =2 and that
> |pj—qj| <48, and so 2 jia;>p; (¢; —p;) < 26. We sample queries ji, j2 as
in the original algorithm for x; (modified so as to choose a random copy, if
the required entry has multiple copies), and then if ¢;; < p;,, we proceed to
make query ji. If g;; > pj;;, then we read query j; with probability p;, /g¢;,
and we enter a “failure mode” with the remaining probability. In failure
mode, bit z; is just guessed randomly. Query jo is handled similarly.

Observe that the smoothness requirement is satisfied as before (since
each bit corresponding to the original query j is accessed with probability
min{g;,p;}/n; < pj/n; < 1/1). The probability of entering the failure
mode is Zj:qppj (¢; — pj) < 26, and when the failure mode is entered, the
probability of guessing x; correctly is exactly one half. Thus, in the worst
case, failures subtract § of the probability of guessing x; correctly, and so
the overall probability of guessing =x; right is at least 1/2 4+ € — 4. |
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7.2 Consequences
Theorem 1.8 follows by combining Lemma 7.1 and Corollary 5.2. Specifi-
cally, using m < 6-2', a smoothness bound of ¢ = 3 and recovery advantage

(e=6)mn
€ — 8, we have 6 -2 > f(,i ) 243 f(ka) and Theorem 1.8 follows.
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Appendix: Proof of Lemma 3.5

The proof of Theorem 2 in [2, Sec. 16] implies that the subset S C {0,1}"
for which the number of internal edges is maximum is the set of the first
m = |S| strings in lexicographic order (of {0,1}"). Since each such vertex
has at most [logom] internal edges, we get a bound of 1[S]|[log,|S|] on
the number of internal edges. Indeed, this is what Exercise 1 in [2, Sec. 16]
asserts. To get the claimed bound of |S[log, |S|, a more careful analysis
is required. We assume that such analysis has appeared somewhere before,
but being unable to find it we turned to Noga Alon for help. Noga has
provided us with the following analysis.

Clearly, the problem is equivalent to the statement that the expected
number of 1-bits in (the binary representation of) a random integer between
0 and n» — 1 is at most 0.5logy n. We prove the claim by induction on n.
For n < 2 that’s trivial. For the induction step suppose n = (1 + ¢) - 2%
for an integer k and € € [0,1). Then upper bound the expected number of
1-bits in a random integer between 0 and n — 1 as follows: With probability
1/(1+¢) the random integer is in [0,2* — 1], and in this case the expectation
is exactly 0.5k. With probability £/(1+¢) the random integer is in [2%, n—1],
and in this case bit number k+1 is always 1 and the k other bits represent
all integers in [0, - (28 — 1)]. Hence, by the induction hypothesis, the
contribution of these k bits is at most 0.5log,(2%¢). Thus, the expected
number of 1-bits is bounded above by

1k e (1 n 10g2§2k6)> k € elogy e

= = 18
2 T T1e 2Tt e) (18)

To complete the proof we have to show that Eq. (18) is bounded above by
0.5logyn = (k/2) + 0.5logy(1 + ¢). This is equivalent to proving that, for
every ¢ in [0, 1),
€ elogye < logy (1 +¢€)
1+e  2(1+4¢) — 2

which is equivalent to showing 2e + elogye < (1 + €)logy(1 + €), which

is equivalent to showing that f: R — R is non-negative in [0,1), where

f(x) A (14 2)In(1 4+ ) — xIn(4x). This can be verified by observing that

f(0)=f(1) =0and f"(z) = —1/xz(x+1) < 0in [0,1), which concludes the
proof.
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