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Abstract

Classification of Search Problems and Their Definability in Bounded Arithmetic
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Master of Science
Graduate Department of Computer Science

University of Toronto

2001

We present a new framework for the study of search problems and their definability in
bounded arithmetic. We identify two notions of complexity of search problems: verifi-
cation complexity and computational complexity. Notions of exact solvability and exact
reducibility are developed, and exact ¥:2-definability of search problems in bounded arith-
metic is introduced. We specify a new machine model called the oblivious witness-oracle
Turing machines.

Based on work of Buss and Krajicek, we present a type-2 search problem ITERATION
(ITER) that characterizes the class PLS and the exactly X%-definable search problems
of the theory Ti. We show that the type-2 problems of Beame et. al. are not Turing
reducible to I'TER. The separations of the corresponding type-2 classes and the unprov-
ability of certain combinatorial principles in a relativized version of T} are obtained as
corollaries.

We also present the first characterization of the exactly ¥5-definable search problems

of S} and Tj.
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Chapter 1

Introduction

1.1 Background

Computational Complexity is the study of computational problems and the amount of
resources required to solve them. Cook’s introduction of NP-completeness in 1971 [Coo71]
started decades of fruitful research, and since then numerous computational problems
have been shown to be complete for, or at least classified into, various complexity classes.
In particular, a great number of combinatorial problems that arise naturally in practical

settings are shown to be NP-complete.

The interesting aspect of Computational Complexity is that it has been focused
mainly on decision problems, or the problems of deciding whether the input has a certain
property, although most combinatorial problems are more naturally formulated as search
problems, or the problems of finding an object with a certain property. For example,
when we wish to analyze the complexity of CLIQU E-Search(G, k), the problem of find-
ing a clique of size > k in the input graph G, we first transform it to the corresponding
decision problem CLIQU E(G, k) of deciding whether G have a clique of size > k. There
was supposed to be little loss in doing so, since most search problems have corresponding

decision problems that are computationally equivalent in the sense that if one is feasible,
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so is the other, or, more formally, they are Turing reducible to each other. Thus, studying
the complexity of decision problems should reveal the complexity of the corresponding
search problems.

However, it has been realized that search problems have deeper level of structure that
are lost when they are transformed to decision problems, and the existence of search
problems for which there are no computationally equivalent decision problems has been
demonstrated [BCE198]. Thus, it is necessary to study search problems directly, and
several frameworks for this purpose have been proposed. The following is a list of such

frameworks on which our work is based.

The classes FPN? and FPNP[O(log n)] [Kre88]

e FNP, FP, TFNP, and subclasses of TFNP [JPY88, Pap90, MP91, Pap94b,
BCE*98§]

The hierarchy OF of functions [Bus86]

FP> [wit, f(n)] [BKT93, Kra9s]

We should emphasize that the above list is grossly incomplete and there are many other
frameworks that we do not discuss in this report, such as [KPS90, Kre92, Sel94, GKR95].

Krentel [Kre88| studied the complexity of computation of optimal values in terms of
the number of queries to an NP oracle required to perform it in polynomial time. He
came up with the classes FPN? and FPNP[O(log n)]: FPN? is the class of functions
that can be computed in deterministic polynomial time with polynomially many queries
to an NP oracle, and FPN?[O(log n)] is obtained from FPNP by restricting the number
of NP queries to O(log n). One of his many results is that that TSP-COST(G), the
problem of computing the cost of an optimal tour of a graph, is complete for FPNF | while
MAX-CLIQUE-SIZE(G) is complete for FPNP[O(log n)], with respect to a suitable
notion of reducibility. Moreover, he showed that TSP-COST € FPN?[O(log n)] implies
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P = NP; hence, in terms of the number of NP queries required, TSP-COST(G) is
strictly harder than MAX-CLIQUE(G) assuming P # NP, even though the decision

counterparts of both search problems are NP-complete.

Krentel’s framework is a nice setting for the study of functions, that is, search prob-
lems with a unique solution. However, it does not cover search problems with multiple
solutions. Meggido and Papadimitriou [MP91] introduced the classes FNP, FP and

TFNP that easily capture the multiplicity of solutions.

Let R(z,y) be a polynomially balanced, polynomial-time predicate. Then R gives rise
to an NP search problem @Q: given z, find y such that R(z,y) holds. FNP is the class
of NP search problems [MP91]. For example, the problem SAT-Search(¢) of finding a
satisfying solution for a propositional formula ¢ is in FNP. Note that SAT-Search(¢)
has no solution if ¢ is unsatisfiable. We say a search problem is total if every instance of

it has a solution. For example, SAT-Search(¢) is not total.

TFNP is the subclass of FNP containing total search problems [MP91]. TFNP
contains many natural combinatorial problems, but it is a semantic class and therefore
is not expected to have complete problems [BCE98]|. However, TFNP contains several
interesting syntactic subclasses such as PLS [JPY88, Yan97|, PPP, PPA, PPAD, and
PPADS [Pap90, Pap94b, BCET98]|. Each class is defined based on the combinatorial
principle that guarantees the totality of problems in the class. For example, PLS is
the class of local search problems whose totality follows from the combinatorial principle
“every directed acyclic graph has a sink”, and PPP is the class of problems whose
totality is guaranteed by the injective pigeonhole principle “there is no injective mapping
from n + 1 to n”. TFNP and its subclasses are interesting because they contain search

problems that have no computationally equivalent decision problems [BCE*98|.

FP is the subclass of FNP containing problems for which there is a polynomial-time
algorithm that finds a solution [MP91]. Thus, the problem HORNSAT-Search(¢) of

finding a satisfying truth assignment for a propositional Horn formula is in FP.
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Beame, Cook, Edmonds, Impagliazzo, and Pitassi [BCE98] introduced type-2 total
search problems that capture certain combinatorial principles, and they presented an
elegant type-2 characterization of the classes PPA, PPAD, PPADS, and PPP. By
exhibiting the existence or nonexistence of reduction between the type-2 problems, they
showed all possible separations of these classes in a generic relativized world. Further-
more, they proved that none of their type-2 problems is Turing equivalent to any decision
problem.

In his thesis published in 1986, Buss [Bus86] developed a hierarchy of theories of
bounded arithmetic and showed its connection to the polynomial hierarchy. In doing so, he
also introduced a hierarchy of classes of function as follows: [OF is the class of polynomial-
time computable functions, and O0F ;, ¢ > 1, is the class of functions computable in
polynomial-time with access to a predicate from 3?. He showed that a function f is in
007 if and only if it is X0-definable in S5.

More results on the characterization of V3X!-consequences of bounded arithmetic
theories followed [Kra95]. One particularly interesting result is by Buss and Krajicek
[BK94]: they showed that the V3X2-consequences of T corresponds to PLS in a certain
sense, suggesting the existence of other search classes corresponding to Y3¥!-consequences
of various theories. Chiari and Krajicek present in [CK98] many results in this direction.

Buss, Krajicek, and Takeuti [BKT93] introduced the notion of witness oracles, an
extension of oracles whose positive answers are accompanied by an object that witnesses
the correctness of the answer. They defined classes FP™ [wit, f(n)] of total search prob-
lems whose solution can be found in polynomial time using at most f(n) witness queries
to a ¥ predicate. Krajicek [Kra95] characterized V3X%-consequences of S} and T, by

classes of this form.

Thanks to the success of the above lines of research, much has been known about

the search problems and their definability in bounded arithmetic. However, because of
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inconsistent terminology and implicit assumptions, it is hard to see how the results in
one framework relate to the results in another framework.

For example, notice the different usages of the term ‘FP’. In the sense of Krentel
[Kre88|, FP denotes the class of polynomial-time total functions. However, Meggido
and Papadimitriou [MP91] defines FP to be the class of search problems such that it
is easy to recognize solutions and at least one solution can be computed in polynomial
time. Their FP can be modified to be a class of total search problems, but in its original
formulation, it contains nontotal problems. And FP in FP> [wit] of Buss, Krajicek, and
Takeuti [BKT93] denotes the class of total search problems such that one of the solutions
can be found in polynomial time. The problems in this class can have solutions that are

impossible to compute or recognize.

1.2 Owur Work

The purpose of our work is to provide a unified framework for classification of search
problems and their definability in bounded arithmetic. Our framework incorporates most
of the above classes without any inconsistency or confusion, even though some classes

are called by different names in our setting.

In Chapter 2, we present the basic definition of search problems, followed by intro-
duction of the the notions of wverification complexity, computational complezity, eract
solvability, and ezact reducibility.

Verification complexity of a search problem is the hardness of verifying or recognizing
solutions. Magiddo and Papadimitriou’s TFNP [MP91] is called in our setting VP
(verifiable in polynomial time), and it is at the bottom of our verifiability hierarchy

VPH = |J,., VX? where VXP is the class of total search problems for which the

i>0
verification of solutions is in 3¥ of the polynomial hierarchy PH [Sto77, Wra77, Pap94a].

We show that VPH collapses if and only if PH collapses.
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Computational complexity of a search problem is the hardness of finding a solution,
that is, the hardness of ‘solving’ the search problem. We show that the use of an intu-
itive notion of solvability results in the notion of computational complexity that is not
meaningfully related to verification complexity. We introduce a new notion of solvability

called ezact solvability.

Our work is based on a new model of computation called the oblivious witness-oracle
Turing machines. It is as powerful as the ordinary witness-oracle Turing machines of
Buss, Krajicek, and Takeuti [BK'T93] with respect to simple solvability. Interestingly, the
power of oblivious machines seems to be more restricted with respect to exact solvability,

and it allows a more sensitive treatment of computational complexity of search problems.

We develop a collection of search classes of the form EP [oblivious, f(n)] that cap-
ture the hardness of exactly solving the search problems. We show that our classes

contain natural combinatorial problems.

Reducibility between problems is an essential tool in the study of complexity. How-
ever, we show that the commonly-used many-one reducibility is not the right tool for
our purpose. We come up with a stronger notion of exact many-one reducibility that

corresponds nicely to exact solvability.

Chapter 3 is devoted to the type-2 characterization of various search classes. We
present a type-2 total search problem ITERATION and use it to characterize the class
E[PLS], the smallest class closed under exact many-one reduciblity. Using the type-2
problems of [BCE198], we provide type-2 characterization of PPA, PPAD, PPADS,

and PPP that is slightly different from that of Beame et. al.

Then we present the most significant of our theorems: we show that any of the
type-2 problems of Beame et. al. is not Turing reducible to ITER. This theorem has
two important consequences. The first is the type-2 separation of E[PLS] from the other
search classes corresponding to the other type-2 problems. The second, which is stated in

Chapter 4, is the unprovability of certain combinatorial principles in a relativized theory
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T} () of bounded arithmetic. The latter suggests a methodology to obtain separations
of theories of bounded arithmetic via separations of type-2 search problems.

The chapter ends with the introduction of two new type-2 problems: MAXIMIZER
and L-MAXIMIZER. They characterize EPNF [oblivious] and EPNF [oblivious, O(log n)],
respectively.

Chapter 4 connects our framework of search problems with Buss’s theories of bounded
arithmetic. After a brief introduction, we present the notion of eract X0-definability of
search problems in bounded arithmetic, that corresponds to exact solvability and exact
reducibility. This definability notion is from [BKT93], where it is called strong -
definability. Then, we show the equalities between the classes of the exact Y%-definable
search problems of Si, Ty, and variants of S3 and the search classes that we have intro-
duced in Chapter 3.

Lastly, we characterize the classes of exactly Y%-definable search problems of Si and
T) by L- MAXIMIZER and MAXIMIZFER. This is the first characterization of these
classes, although a similar result has been obtained by Chiari and Krajicek [CK98] in a

slightly different context.

1.3 Preliminaries

We work with the natural numbers N. For n € N, |n| denotes the length of binary
representation of n; hence |n| = [log (n +1)]. For a € N, N5l*l denotes {n € N : |n| <
la|}, the set of all numbers that can be represented using |a| bits.

Let A be any unary predicate. A deterministic oracle Turing machine with access to
A, or simply an oracle Turing machine, is a deterministic Turing machine that is allowed
to ask queries of the form ‘A(2)?’, for which the oracle returns ¢ € {0,1}, where ¢ = 1 if
A(z) holds, and ¢ = 0 otherwise. A nondeterministic oracle Turing machine is defined

similarly.
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A deterministic, nondeterministic, or oracle Turing machine M is said to be polynomial-
time if there exists a constant ¢ such that M on inputs of length n halts within O(n®)
steps.

A predicate R(a) is said to be polynomial-time computable if it can be computed by
a deterministic polynomial-time Turing machine. We say R is polynomial-time in A if a
polynomial-time oracle Turing machine with access to A decides R.

Let C,D be complexity classes. Then CP is the class of predicates decidable by a
deterministic or nondeterministic oracle Turing machine that runs within the time or
space bound of complexity class C with access to a predicate in D.

Let R(z,y) be a binary predicate on the natural numbers. We say R is polynomially
balanced if there exists a constant ¢ such that, for all a,b € N, R(a,b) implies |b| < |a|°+c
[Pap94a]. Note that, if R is polynomially balanced, it can be expressed as R(z,y) = |y| <

|z|¢ + ¢ A R/(z,y) for some predicate R'.

Theorem 1.3.1 [Pap9/a] Let R(x) be a predicate. R € NP if and only if there is a poly-

nomially balanced, polynomial-time predicate S(x,y) such that R(x) <= (Jy)S(x,y).

The polynomial hierarchy is the sequence of classes of predicates defined as follows:

First, X = IT§ = A} = P; and for ¢ > 0,

P, = NP¥

I, = coNP¥

Afﬂ = P¥.
Note that £ UTI? € A?,, C 2P, NII7,,, for all i > 0. Finally, PH = J,5, 7. We
say the polynomial hierarchy collapses at the ith level if PH = X, See [Sto77, Wra77,

Pap94a| for more information on the polynomial hierarchy.

Theorem 1.3.2 [Wra77, Pap94a] Let R(z) be a predicate, and i > 1. R € X¥ if and

only if there exists a polynomially balanced predicate S(x,y) € IIZ_, such that R(z) <=
(3y)S(z,y).
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A function f : N — N is said to be polynomial-time if there exists a deterministic
polynomial-time Turing machine M such that M on z halts with the binary representa-
tion of f(x) in its output tape. We say f is polynomial-time in A if an oracle machine
with access to A computes the value of f in polynomial-time.

0 is defined by Buss to be the class of all polynomial-time functions and 07, , is the

class of functions polynomial in a ¥ predicate [Bus86, Bus98|.

The following definitions are from [Bus86, Kra95, Bus98]. Let

Lpa = {OaS,+, ) LgJ: |$|a#ﬂ S}

be the language of bounded arithmetic, where 0 is a constant, S is the successor function,
lz| = [log ,2] denotes the binary length of x, and z#y = 2%l is the smash function.
Note that for every term t(a) in the language Lpa, there exists a constant ¢ such that
[t(z)] € O(|[).

A quantifier is said to be sharply bounded if it is of the form (3z < |t(a)|) or (Vz <
|t(@)]), where ¢ is a term in the language Lps. A quantifier is said to be bounded if it is
of the form (3z < t(a)) or (Vz < t(a)).

The sets 323 = IT) are the sets of formulas in which all quantifiers are sharply bounded.
For i > 1, the set X! is the set containing X! | UTI? ; and closed under A, V, sharply
bounded quantifications and the existential bounded quantification. The set I1? is defined
similarly except that it is closed under the universal bounded quantification, instead of
the existential bounded quantification.

Let N be the standard model of arithmetic, in which nonlogical symbols of Lg4 assume
their standard interpretation. We say that a formula ¢(a, b) represents a predicate R(a, b)
if and only if

N = ¢(sn, Sm) < R(n,m),
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where s,, s,, are numerals representing n, m € N, respectively.

Theorem 1.3.3 [Bus86, Kra95, Bus98] A predicate R is in 3¥ if and only if there exists

a X formula ¢ that represents R.



Chapter 2

Search Problems

2.1 Verification Complexity of Search Problems

The purpose of our study is to present a unified framework for the study of complexity
of search problems, and thus we begin with the formal definition of search problems.
The following is a slight generalization of the definition in [MP91, BCE*98]; a similar

definition appears in [GJ79].

Definition 2.1.1 [BCE" 98] Let R C NxN be any polynomially balanced binary predicate
on the natural numbers. Then R defines a search problem QQr which associates with every
z € N the set Qr(z) = {y : R(z,y)}. We say that Qr(z) is the set of solutions for an
instance x and that R is a defining predicate of Qg.

Qr is said to be total if |Qgr(x)| > 0 for allz € N. We say Qg is a function problem
if |Qr(z)| <1 forallz € N. O

Note that, since we require a defining predicate R to be polynomially balanced, for
every search problem Qg there exists a constant ¢ such that Q(z) C N<I#°+¢ for all z.
The subscript of Qg is omitted when it is not necessary to indicate a defining predicate

of the search problem.

11
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Definition 2.1.2 For any predicate R(x), let fr be the characteristic function problem,
defined as

fr(e) = {y: (y=1AR())V(y=0A-R(x))}.

Intuitively, the characteristic function problem fr of R is the ‘search version’ of the
characteristic function, since fg(z) = {1} if R(x) holds, and fg(z) = {0} otherwise. For
example, fsa7 is the characteristic function problem of the NP-complete predicate SAT.

The following are examples of natural search problems. Let ¢ be a propositional
formula, ¢y a Horn formula, 7 a truth assignment, G an undirected graph, and C' a set
of vertices of a graph GG. W denotes a weighted graph, and T is a sequence of vertices of

W. Under a suitable encoding scheme, these objects can be encoded as natural numbers.

SAT-Search(¢) = {7 :7 satisfies ¢}

)
HORNSAT-Search(v) = {7 :7 satisfies ¥}
MAX-CLIQUE(G) = {C:C is a maximum clique of G}
MAX-CLIQUE-SIZE(G) = {n € N:n is the size of the largest clique of G}
TSP(W) = {T:T is an optimal tour of W}

)

TSP-COST(W) = {n € N:nis the cost of the optimal tour of W}

TSP stands for the Traveling Salesperson Problem.
Note that SAT-Search and HORNSAT-Search are the only total problems among
the above, and MAX-CLIQU E-SIZE and T'SP-COST are the only function problems.

Let Qg be a search problem defined by a predicate R. The wverification problem for Qg
is the task of deciding whether b € Q(a) for arbitrary a,b € N, which can be done by
simply evaluating R(a,b). Hence, the complexity of the verification problems for @ is

same as the complexity of a defining predicate R.
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For example, the verification complexity of SAT-Search and HORNSAT-Search
is P while the verification problems for MAX-CLIQUFE and T'SP are coNP. The
verification problem of MAX-CLIQUE-SIZE and TSP-COST seem harder since they
are complete for the class DP, which contains NP U coNP and is contained in X NIT5.
(See [PY84, Pap94a] for more information on the class DP).

Note that the verification problem for fssr can be solved in polynomial time by

PNP = A’ In general,

making one query to SAT. Thus, its verification problem is in
the verification problem of fg is in PZ,
The remarks above indicate that search problems can be classified, according to their

verification complexity, into the following classes.

Definition 2.1.3 VP is the class of total search problems whose verification problems
are in P. VP stands for ‘Verifiable in Polynomial-time’.
For i > 0, VX? VII, and VA? are the classes of total search problems whose
p

verification problems are in X, II? | and AL, respectively.

Finally, we define the verifiability hierarchy VPH as VPH = UiZO A\ O

Note that VP is the class of search problems @ such that R € P and (Vz)(Jy)R(x,y)
holds; similarly for VX? VII?, and VA?. Hence, MAX-CLIQUE is in VII] and
MAX-CLIQUE-SIZE is in VAY. However, SAT-Search and HORNSAT-Search do
not belong to any of the classes just defined since they are not total.

The problem fga7 is in VAS. The following is an easy lemma that generalizes this

fact.
Lemma 2.1.4 Let i > 0. If a predicate R is in X7, then fr € VAL, ;.
The following lemma connects the polynomial hierarchy and the verifiability hierarchy.

Lemma 2.1.5 For every i > 0, VX! = VXL | if and only if PH collapses to the ith

level.
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Proof. The ‘if’ part is obvious.

Before showing the ‘only if’” part, let us introduce a predicate QSAT; for 1 > 1. Each
instance x of QS AT; encodes a propositional formula ¢ with its variables partitioned
into 7 sets X1, Xo,...,X;. We write ¢(X1, Xy,...X;) to indicate the formula and the

partition. QSAT;(x) is true if and only if
X, VX,3X; ... QXid(X1, Xo, . .., X3)

is true, where @) is 9 if 7 is odd and V if 7 is even. Note that QSAT) is equivalent to
S AT, which is complete for NP; in fact, for all i > 1, QS AT; is complete for ¢ [Wra77,
Pap94a]. QSAT; stands for ‘Quantified Satisfiability with 7 alternations of quantifiers’.

Let T;,1 be a search problem such that

Tini(z) ={y:[y=01V[y=1Az € QSAT; ]}
0,1} it IX1VX53X5 ... QXis1d( X1, -, Xiv),

{0}  otherwise.

It is clear that Tjy; € VX7 . Assume VX! = VX? . Then, T;1; € VX}, and it
follows that QSAT;,1 € ¥, since x € QSAT;,1 <= 1 € T;;1(x). The collapse of the

polynomial hierarchy follows from the fact that QSAT;,; is complete for X7 . O

Note that VP coincides with the class TFNP introduced by Megiddo and Papadim-
itriou [MP91]. Several important subclasses of VP are identified and studied in [JPY88,

Pap94b, BCET98]. We will introduce these classes later.

2.2 Witness Oracles and Computational Complexity

In the preceding section we introduced the notion of wverification complezrity of search
problems. We present in this section the notion of computational complexity of search

problems, or the complexity of ‘solving’ search problems. In order to do this, we need
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to specify a model of computation and formalize the notion of ‘solving a search prob-
lem’. After making necessary definitions, we will show how verification complexity and
computational complexity are related to each other.

We introduce the Turing machines with witness oracle of [BKT93], which is an ex-

tension of the oracle Turing machines.

Definition 2.2.1 /[BKT93] A Turing machine M with witness oracle A, also called a
witness-oracle Turing machine M with access to A, is a deterministic machine with a

special query tape and a write-only output tape with the following properties.

1. On every input, M writes a binary number in its output tape before halting.

2. Oracle A is in ¢ for some i > 1 and of the form A(a) = (3z)B(a,x), where

B € II”_|. Note that there exists a constant ¢ such that if B(a, z), then |z| < |a|*+c.

3. When M asks a witness query of the form ‘A(a)?’ with a binary number a, the

oracle returns a pair (q,w) with ¢ € {0,1} and w € N=I°+¢ such that
(1) ¢ =1 and B(a,w) if A(a) is true; and

(2) ¢ =0 and w =0 if A(a) is false.

Let Outputy(x) denote the set of all possible outputs that can be produced by M on

A nondeterministic Turing machine with witness oracle A, also called a nondetermin-

istic witness-oracle Turing machine with access to A, is defined similarly. O

Although witness-oracle Turing machines M are deterministic, nondeterministic be-
haviour may arise when a query ‘(3w)B(a,w)?’ has multiple witnesses: the oracle may
return any (1, w*) satisfying B(a,w*) and the computation of M branches off according
to the witness it receives. Since M’s next query may depend on w*, different queries

may be asked in different computation paths of M. Thus, valid computations of M on
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input z can contain different sequences of witness queries and answers. For this reason,
witness-oracle machines can be too general for our analysis to work. The following, more

restricted model turns out to be useful.

Definition 2.2.2 Let M be a witness-oracle machine. M s oblivious if its ith query
depends only on the input x and the sequence (¢1,G2, ..., qi—1), where q; is part of the

oracle answer (gj, w;) to M’s jth query.

We work with the oblivious machines. Note that an oblivious witness-oracle machine
M can still exhibit nondeterminism, but it asks the same sequence of witness queries in ev-
ery valid computation. This is because every valid sequence (g, w1), (g2, w2), . . ., (g;, w;)

of answers to M’s queries must have the same sequence (¢1, ¢o, - . ., ¢;) of yes/no answers.

The following is our first attempt to formalize the notion of when a search problem should

be considered solved. This is the notion implicitly used in [BKT93, Kra95].

Definition 2.2.3 Let () be a total search problem and M be a Turing machine with
witness oracle. We say M simply solves Q if, for all x, M on = outputs some y € Q(z)

in every valid computation, that is, Outputy(z) C Q(z). O

The above definition has intuitive value: when a machine M always outputs a correct
solution for () and never fails, it seems reasonable to say M solves (). However, since ()
may contain solutions which M can never find, the connection between M and (@ is not
very tight: M solves any @ with OQutputg(z) C Q(z), and there are infinitely many such
Q’s.

Furthermore, consider the following example.

Example 2.2.4 Let U be a search problem defined as U(zx) = {y : y = 0V [|y| <

|z| A K (x)]}, where K is an undecidable predicate. Even though the verification problem
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for U is undecidable, U can be solved by a trivial machine that outputs 0 on every input,

and therefore U can be simply solved in constant time.

The above example shows that the simple solvability of a search problem is not
meaningfully related to the verification complexity of the problem.
In order to address the issues raised in the preceding paragraph, we present a stronger

notion of solvability of search problems.

Definition 2.2.5 Let Q be a total search problem and M be a witness-oracle Turing

machine. We say that M exactly solves @ if Outputy (z) = Q(x) for all x. a

If a witness-oracle machine M exactly solves ), then Q(z) can be described as
Q(z) = {y : there exists a valid computation of M on x with y as the output}.

Moreover, exact solvability implies a stronger connection between machines and search
problems in the sense that for every machine M, there exists a unique search problem
that is exactly solved by M.

Now we introduce classes of search problems based on their computational complexity.

Definition 2.2.6 EP is the class of total search problems that are exactly solvable by
a deterministic polynomial time Turing machine. EP stands for ‘Ezactly solvable in
Polynomial-time’. SP is defined similarly except that the machines are required to simply
solve the problems instead of exactly solving them. SP stands for ‘Solvable in Polynomial-

time’. O

Example 2.2.4 shows that SP ¢ VPH.
The class FP of [JPY88, MP91, Pap94b, BCE*98] can be defined as the subclass
of VP containing search problems for which a solution can be found in deterministic

polynomial-time. Therefore, FP = VP N SP.
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Note that EP is a class of function problems, since the output of a deterministic
machine is unique. EP and 0¥ coincide in the following sense: f € OY if and only if
Q(z) ={f(z)} € EP.

EP is extended in the following way.

Definition 2.2.7 For ¢ > 1, EP> is the class of total search problems that can be
exactly solved by a polynomial-time oracle Turing machine with access to a X7 predi-
cate. EP™ [wit] is defined by polynomial-time witness-oracle machines with access to X
predicates, and EP™ [oblivious] is defined similarly by oblivious witness-oracle machines.
EPZ [wit, f(n)] and EPZ: [wit, O(f(n))] are obtained by bounding the number of witness
queries by f(n) and O(f(n)), respectively, where n is the input length.

Extensions of SP are defined in a similar way. O

It should be remarked that Krentel’s classes FPNF and FPNP[O(log n)] [Kres8s,
Pap94a] are equivalent to EPNY and EPNP[O(log n)], respectively. Furthermore, Kra-
jicek’s classes FPNP[wit] and FPNP[O(log n)] [Kra95] correspond to SPNF[wit] and
SPNP[O(log n)], respectively. Notice how the term FP is used differently by differ-
ent researchers. In our framework, the subtle differences between Krentel’s classes and
Krajicek’s classes are made explicit.

The following is a restatement of Krentel’s result in our framework.

Lemma 2.2.8 [Kre88, Pap94a/
(1) MAX-CLIQUE-SIZE € EPN?[O(log n)], and
(2) TSP-COST € EPNP,

Based on Krentel’s result above, we can show that two of our classes defined by

oblivious queries contain natural combinatorial problems.

Lemma 2.2.9
(8) MAX-CLIQUE € EPN? [oblivious, O(log n)]
(4) TSP € EPNP[oblivious]
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Proof of Lemmas 2.2.8 and 2.2.9. Suppose we are given a graph G and asked to
compute the maximum size of cliques of G'. Since the size of G’s largest clique is at most

|V| < n, it can be computed by binary search using O(log n) queries to an NP predicate

R(m) = “ G has a clique of size > m”.

Thus, claim (1) holds.

Claim (3) follows from the above argument. Let M be a witness-oracle Turing machine
that first executes the above algorithm to compute the largest clique size m*. Then M
makes a witness query ‘R(m*)?’ for which the oracle returns (1,C), where C is a clique
of the maximum size m*. Then, M is an oblivious witness-oracle machine that exactly
solves MAX-CLIQUE.

Claim (2) is shown similarly to (1). Let = describe a weighted graph G with weights
represented in binary. Then the cost of a tour is at most 2", where n = |z|. Hence, the
cost of an optimal TSP tour can be computed by binary search using O(log 2") = O(n)

NP queries, and (4) easily follows. a

The following lemma shows one aspect of how the computational complexity and ver-

ification complexity are related.

Lemma 2.2.10 For any i > 1, EP™ [wit] C VXP,, C EP[wit, 1].

Proof. The second inclusion is obvious, since if @ € VX7 ,, then (Jy)y € Q(z) is a
> | predicate, which can be used as a witness oracle.

The first inclusion requires more work. If Q € EP™ [wit], then there exists a witness-
oracle machine M with access to an X? predicate R(a) = (32)B(a,2), B € IIY_,, such
that M exactly solves (). We construct a nondeterministic oracle machine N with access
to a X predicate such that N on (z,y) accepts if and only if y € Q(x).

Suppose that M on x asks at most p(|z|) witness queries. Given (z,y), |z| = n,

N rejects if y is too long to be in Q(z). Otherwise, N nondeterministically guesses a
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sequence (g1, w1), (g2, W2), - - - (@pn), Wp(n)) Of oracle answers. Then N starts simulating
M on z using the guessed sequence in the following way. For i = 1,2,...,p(n), when M
asks the ith witness query a;, IV suspends the simulation and test whether the following

condition is satisfied:
e ¢; =1 and B(a;, w;) holds, or
e ¢ =0, w; =0 and —(3w)B(a;, w) holds.

Note that this can be done by making one query to a predicate complete for X?. If the
test fails, then N rejects because the guessed pair (g;, w;) is incorrect. Note, however,
that there is one successful guess for every correct oracle answer for the ith query. Thus,
the number of computations of N that successfully complete the simulation is equal to
the number of valid computations of M on z. Finally, N accepts y if it is the output of
M and rejects otherwise.

It is not hard to see that N accepts (z,y) if and only if y € Q(z), and that N runs in
time polynomial in |(z,y)|. Therefore, the verification problem of Q is in NP = P

and the claim holds. O

The following statement appears in [BKT93, Kra95].

Lemma 2.2.11 /[BKT93, Kra95] For any i > 1, if Q € SPEg[wit,f(n)], then @ is
simply solvable by a machine M with access to a predicate in X% that asks f(n) oracle

queries (not witness queries) followed by one witness query.

Proof. The proof appears in [Kra95] (see Lemma 6.3.4). It is similar to the proof of

Lemma 2.2.13 below. O

Inspired by the machine M in the above lemma, we make the following definition. We

call M above a patient witness-oracle machine.
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Definition 2.2.12 A patient witness-oracle machine M is a special kind of witness-
oracle machine which is allowed to ask only one witness query preceded by a sequence of
oracle queries (not witness queries).

For i > 1, let EP™ [patient, f(n)] be the class of search problems ezactly solvable by
a polynomial-time patient witness-oracle Turing machine M with access to a predicate
A € XP. Note that M is allowed to ask f(n) — 1 oracle queries (not witness queries)
followed by one witness query.

Define

EP> [patient, O(f(n))] = U EP¥ [patient, g(n)).
9(n)€0(f(n))

SP> [patient, f(n)] is defined similarly by replacing ‘exactly solvable’ with ‘simply solv-

able’, and SP=% [patient, O(f(n))] is defined in an analogous way. a

A statement similar to Lemma 2.2.11 holds with respect to EP and oblivious ma-

chines.

Lemma 2.2.13 For any i > 1, EP¥ [oblivious, f(n)] C EP¥ [patient, f(n) + 1]

Proof. This is proven similarly to Lemma 2.2.11 as follows. Let Q € EP™ [oblivious, f(n)]
and assume that M is an oblivious witness-oracle machine that exactly solves . Fix z
and let n = |z|. Then, a patient machine M’ can compute the sequence g, ga, - - ., ¢f(m)
of correct yes/no answers to M’s witness queries by making f(n) oracle queries of the

form

e Is there a valid computation of M on x such that ¢y, ..., g is a correct sequence of

yes/no answers to the first k& witness queries and g1 = 17
Then, M' asks a witness query

e Is there a valid computation of M on z such that gi,...,qsu) is a correct sequence

of yes/no answers to the queries made by M?
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Note that every valid computation of M on z has the same sequence qi, go, - .., qfn)
of yes/no answers. Hence, the final witness query of M’ returns every valid computa-
tion of M on z, from which M’ can easily extract the output of M on x. Therefore,

Outputp(x) = Outputy(x), and M’ exactly solves Q. O

Corollary 2.2.14 For any i > 1,
(1) EPZ [oblivious, O(f(n))] = EPZ [patient, O(f(n))], and
(2) SPZ [wit, O(f(n))] = SPZ [oblivious, O(f(n))] = SP¥ [patient, O(f(n))].

Proof. We show (1). That EP [patient, O(f(n))] C EPZ [oblivious, O(f(n))] is triv-
ial, since every patient witness-oracle machine is oblivious. The other inclusion follows
from Lemma 2.2.13.

For (2), first note that
SP> [patient, O(f(n))] C SP [oblivious, O(f(n))] C SP™ [wit, O(f(n))]
is immediate. The equalities follow from Lemma 2.2.11 which implies

SP¥ [wit, O(f(n))] C SPZ [patient, O(f(n))].

By Corollary 2.2.14, the oblivious witness-oracle machines and the patient witness-
oracle machines are equally powerful. Interestingly, they are as powerful as the ordinary
witness-oracle machines with respect to simple solvability, but we do not know whether
a similar statement holds for exact solvability.

The equality (2) of Corollary 2.2.14 seems to be the reason Buss, Krajicek, and
Takeuti [BKT93|, and Krajicek [Kra95] study search problems in the context of simple
solvability. However, the combination of exact solvability and oblivious witness-oracle

machines turns out to be a natural context for the study of search problems.
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2.3 Reducibility among Search Problems

Reducibility between problems is an essential tool in the field of Computational Com-
plexity, and we need a reasonable notion of reducibility between search problems. In
this section, we present two such notions. The first is many-one reducibility, which is
commonly used in various papers such as [BCE198, JPY88, MP91, Pap94b]. We show
that many-one reducibility corresponds in a certain sense to simple solvability, which is
not a desirable property. We will then introduce a stronger notion of ezact reducibility,

which corresponds to exact solvability.

Definition 2.3.1 Let Q1 and Qo be total search problems. Then ()1 is many-one re-
ducible to @9, denoted Q1 <., Q2, if there exist two polynomial-time functions f, g such

that
y € Qu(x) if (32)[z € Qa(f(x)) Ay = g(=, 2)].

Many-one reducibility is closely connected to the notion of simple solvability in the
following sense. If ()1 and @)y are two total search problems and if ()7 <,, )2, then there
exists a witness-oracle Turing machine M with access to a predicate ‘(Jy)y € Q2(a)’ that
simply solves ()1 in polynomial-time as follows. Given x, M first makes a witness query
‘(Jy)Q2(f(x))?’, which must have at least one witness. The oracle returns (1,y*) with
some y* € Q2(f(x)), and M outputs g(x,y), which is guaranteed to be in Q1 (z).

Let us generalize the notion of witness oracle.

Definition 2.3.2 Let Q be a search problem. Then a Turing machine M with witness

oracle @ is a machine that uses (Jy)y € Q(a) as a witness oracle.

The paragraph preceding the above definition shows that, if Q)1 <,, @2, then there

exits a witness-oracle Turing machine M that simply solves J; by making one witness

query to (s.
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Since we would like a framework based on exact solvability rather than simple solv-

ability, we define a new notion of reducibility, exact many-one reducibility.

Definition 2.3.3 Let (1 and Q2 be total search problems. Then ), is exactly many-one
reducible to Q)o, denoted Q1 <em @2, if there exist two polynomial-time functions f,g

such that

y € Qi(z) <= (F2)[z € Q20f(x)) Ny = g(z, 2)].

Note that <., is transitive. We write exact reducibility when ‘exact many-one re-
ducibility’ is intended. It is easy to see that, if (); and ()9 are total search problems and
Q1 <em @2, there is a polynomial-time witness-oracle Turing machine M that ezactly
solves () by making one witness query to )o. Thus, <., is related to the notion of exact
solvability, as opposed to simple solvability.

Let S be a class of search problems. We say S is closed under many-one reducibility
(exact reducibility) if R € S and Q1 <, Q2 (Q1 <em @2) implies @1 € S. Moreover, we
define C[S] as the smallest class containing S and closed under many-one reducibility,
ie.,

C[S] = {Q:Q <, @ for some Q' € S}.

Similarly, E[S] is defined as

E[S] = {Q:Q < Q' for some Q' € S}.

We say Q1 is Turing reducible to QQo, and write (1 <1 @9, if there exists a polynomial-
time Turing machine M that simply solves ; by making multiple witness queries to Q5.
If ), is exactly solvable by such M, then we say @ is exactly Turing reducible to ()2 and
write @1 <.r Q2. Note that Q1 <, Q2 implies Q1 <,, @2, which implies Q1 <1 Q.

Let S be a class of search problems. Then C7[S] and Er[S] are the smallest classes

containing S and closed under <7 and <.r, respectively.
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The following two lemmas show that notions of exact solvability and exact many-
one reducibility constitute a nice framework for the study of verification complexity and

computational complexity of search problems.

Lemma 2.3.4
(1) EP and EP> [wit, f(n)] for any i > 1 and any f(n) are closed under <e,.

(2) For every i > 1, VX2 is closed under <gp,.

Proof. (1) We argue for the case of EP. Let Q1 <., Q2 and Q2 € EP. By the
discussion following Definition 2.3.3, there exists a polynomial-time witness oracle Turing
machine M that exactly solves (); by making one witness query ‘(Jy)y € Q2(f(x))?".
Since ()o € EP, the query to (Jo can be simulated in deterministic polynomial time, and
therefore @), € EP.

A similar arguments works for EP™ [wit, f(n)]. The only difference is that a witness

query is simulated by using f(n) witness queries to a ¥ predicate.

(2) Let Q <emm @ and @' € VXP, 4 > 1. Then @ can be expressed as

Qx) ={y: (32) [y = g(&,2) Az € Q'(f ()]},

-

-~

(%)
where f,g € O are functions that are asserted to exist in Definition 2.3.3. Since ‘z €
Q'(f(x)) is a X predicate and ‘y = g(z,y)’ is polynomial-time decidable, it follows that
(*) is X and therefore ‘(3z)(x)’ is also X¥. Thus, @ € VX2. O

However, EP and its extensions of Definition 2.2.7 are not closed under <,,,; the search
problem U in Example 2.2.4 is not in EP, but it is many-one reducible to a trivial problem
in EP. The same argument shows that the subclasses of the verifiability hierarchy VPH

are not closed under <,,.

The following lemma shows that the classes VII?, i > 0, are not as robust as VX?.

In particular, it states that VP is closed under <., if and only if P = NP.
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Lemma 2.3.5 For every i > 0, VII! is closed under <., if and only if the polynomial

hierarchy collapses at the ith level.

Proof. Fix i > 0. We show the ‘if’ direction first. Let (); be a problem such that

Q1 <em Q2 for Qo € VII?. Then @) can be expressed as

Qu(z) ={y: (32) [y = g(z,2) Az € Q2(f(2))]},

(.

-~

(%)
where f,g € O} are the reduction. The (*) part is II?, and by Theorem 1.3.2, this

defining predicate of @, is X} ;. If the polynomial hierarchy collapses at the ithe level
(i.e. PH = X?), then ITI? = PH [SP98] and hence @); € VIL.

For the ‘only if’ direction, the actual claim is the following: if VII? is closed under
<em, then XF , C IT?, which implies the collapse of the polynomial hierarchy at the ith
level.

Recall that QS AT; is a predicate complete for X¥ [Wra77, Pap94a]; we introduced it in
the proof of of Lemma 2.1.5. Let S;,; be a total search problem whose instance is the same
as that of QSAT,,,, i.e., instance = encodes a propositional formula ¢(Xq,..., X;1),
where X;’s are a partition of the variables. Let A be an arbitrary number that does not

encode a partial truth assignment to X;. The set of solutions is defined as
Sivi(z) ={X7: Either VXp3X;...QXip10(XT, Xo, ..., Xit1)
or X; =M},
where () is 3 if 7 + 1 is odd and V otherwise. Note that S;,; is total, since the number A

is always a solution. Furthermore, S € VII;.

Let g be a mapping such that for all z,

1 if z encodes a truth assignement to X,
9(z,2) =
0 otherwise.

Then, let T;,; be a search problem such that T}, <., S;y1, expressed as

Tipi () = {y: (F2)[z € Sia(@) Ay = g(2, 2)}.
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From this definition, it follows that

0,1} if AX,VXo3X; ... QXp1d(X0, ..., Xiva),
Tit1(z) =
{0}  otherwise.

The rest of the proof is identical to the final step of the proof of Lemma 2.1.5. If
VII? is closed under <., then 7T;,; € VIL and thus QSAT;., € IL, because x €
QSAT;,; < 1€ T;;1(x). The collapse of the polynomial hierarchy follows from the
fact that QS AT, is complete for X7, ; [Wra77, Pap94a). a

Krentel [Kre88] showed that his classes FPNY and FPN?[O(log n)] have natural com-

plete problems. We can directly translate his results into our framework as follows.

Theorem 2.3.6 [Kre88, Pap94a] With respect to <en,
(1) MAX-CLIQUE-SIZE is complete for EPNY[O(log n)]; and
(2) TSP-COST is complete for EPNF.

Proof Idea. Krentel defines a search problem MAX-OUT PUT as follows.

Input (N,1"), where N is a nondeterministic polynomial-time Turing machine such that
in every valid computation, N on 1" halts with a binary number of length O(n) as

its output.
Output A maximum number that is output by /N on 1™.

He first proves that MAX-OUTPUT is complete for EPNF. Then, he shows several
problems are complete for the class, including T'SP-COST.

Let MAX-OUTPUT[O(log n)] be defined similarly to M AX-OUTPUT except that
N outputs a binary number of length O(log n). This problem can be shown to be
complete for EPNF[O(log n)], and it is used in the proof showing that M AX-CLIQU E-

SIZFE is complete for the class. O
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Based on the above result of Krentel, we believe the following assertions hold: with

respect to <gm,

e MAX-CLIQUE is complete for EPNF [oblivious, O(log n]; and

e TSP is complete for EPNF [oblivious].

2.4 Subclasses of VP

Johnson, Papadimitriou, and Yannakakis [JPY88| defined a polynomial local search (PLS)
problem as an optimization problem that can be formulated as a local search problem.

The following definition of PLS problems is by Buss and Krajicek [BK94, Bus98].

Definition 2.4.1 [BK9/, Bus98] Let Q) be a search problem. We say Q is a PLS problem

iof the following conditions are met.

1. There ezists a set Fo(z) of candidates and a constant ¢ such that for every instance
z, 0 € Fy(z) and Q(z) C Fg(z) C NSE°+¢. The binary predicate v € Fg(x)’ is

required to be polynomial-time.

2. There exist polynomial-time functions Cq, Ng : N — N such that for every instance
z, Ng(z,v) # v implies Cgy(z,v) < Cg(x, Ng(x,v)). Ng is an abstraction of a
heuristic used to improve the cost of the current candidate. When v € Fg(x) A

Ng(z,v) = v, v is said to be locally optimal.
3. Q(z) can be expressed as the set of candidates that are locally optimal, i.e.,

Qz) ={v:v € Fy(x) A Ng(z,v) = v}.

PLS s the class of all search problems satisfying the above conditions. O
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Let () be a PLS problem and z be an instance of (). The instance z, together with F,
Cq and Ny, implicitly define an exponentially large directed graph G = (V, E), where
V = Fy(z) and (u,v) € E if N(z,u) = v A v # u. By the definition of PLS problems, G
is acyclic and Q(z) is the set of sinks of G. Since every directed acyclic graph has a sink,
Q@ is total. Sinks of G' can be recognized in polynomial time, and therefore PLS C VP.

PLS contains optimization problems that arise naturally in practical settings, some
of which are complete for the class; see [Yan97] for more information on PLS.

The relation between PLS and the V3X5-consequences of the theory T3 of bounded
arithmetic is shown in [BK94]; see also [Kra95, CK98|. We will discuss and extend this
result in Chapter 4.

It is obvious that PLS is not closed under <,,; see Example 2.2.4. However, the
question of whether it PLS is closed under <., is related to the question of whether

every PLS problem is simply solvable in polynomial time.

Lemma 2.4.2 If E[PLS] C VP, then PLS C SP.

Proof. Let @ € PLS. Assume that there exists a problem Q* € E[PLS] and

Q*(x) = {2 : Gy)ly € Q@) A = is a prefix of ]},

where z is said to be a prefix of y if it consists of the most significant |z| bits of y. In
other words, if y € Q(x), then Q*(x) contains all possible prefixes of y.

If E[PLS] C VP, then the verification problem for @* is polynomial-time. If this is
the case, we can construct a solution for Q(x) in a bit-by-bit manner as follows. First,
check if 0 € Q*(z). If the answer is yes, then there exists a solution y € Q(x) whose first
bit is 0, so set by := 0. If the answer is no, then set b; := 1. Next, check if b;0 € Q*(x)
and set by accordingly. By repeating this polynomially many times, we can find every bit
of a solution for Q(z). Thus, @ € SP follows.

It remains to show that such Q* € E[PLS] exists. It is done by constructing another
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PLS problem @' so that Q* <., @'. We define Q' as

Q'(x) = {y: Gy, y2)(y = y1lya) A ya| < clog |z A yz € Q(2)},

where ‘y = 1y;1ys’ means that the binary string y is a concatenation of y;, ‘1’, and ys»,
and c is a constant such that Q(z) C NSl#I°+¢_ Intuitively, if y € Q(x) then Q'(z) contains
|z|¢ 4 ¢ solutions of the form i1y, where i € NSl#°+e,

It is not hard to show that @' is also a PLS problem. Recall that F,Cg and Ng
define a dag G such that Q(x) is the set of sinks of G. Then we can easily construct
Fo,Cg and N that define a dag G’ consisting of |z|® 4+ ¢ copies of G' with vertices
named appropriately so that @Q'(z) is the set of sinks of G'.

Now we can define Q* as

Q' (z)={2z: W) |y=wlya Ay € Q' (z) N|z| =y1 A z is a prefix of ys]}.

Note that a prefix y; of y € Q'(z) indicates the length of z, a prefix of y, € Q(z).
From this definition, it is clear that Q* <., @'. Moreover, Q*(z) is the set of all

prefixes of every y € Q(z). O

Corollary 2.4.3 If PLS s closed under <., then PLS C SP.
Proof. If PLS is closed under <, then E[PLS] C PLS C VP. O

Let @ € PLS. Recall that instance z and Fp, Ng, and Cg implicitly specifies an
exponentially large directed acyclic graph (dag) G, and that a PLS problem can be
thought of as the problem of finding a sink of G. The existence of a solution is guaranteed
by a combinatorial principle “every dag has a sink”. The classes PPA, PPAD, PPADS,
and PPP are defined similarly as problems of finding in an exponentially large graph a
node with a certain property [Pap90, Pap94b]. The following combinatorial principles
guarantee the totality of search problems in each class: the parity principle “every graph

of degree two or less has an even number of leaves” (PPA), the parity principle for
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directed graphs (PPAD and PPADS), and the injective pigeonhole principle “there
is no injective mapping from n + 1 to n” (PPP). These classes contain many natural
problems of practical interest, some of which are complete. Type-2 characterization of

these classes appears in [BCET98], and it is a topic of the next chapter.



Chapter 3

Type-2 Characterization

3.1 Basic Definitions

So far we have been working with type-1 predicates, or predicates whose arguments are
numbers. A predicate is said to be type-2 when its arguments are either numbers or
functions on numbers [Tow90, CTY97, BCET98].

Let P(a,z,y) be a type-2 predicate that takes a function argument o and number
arguments z and y. We generalize the notion of polynomially balanced predicate and
say P is polynomially balanced if there exists a constant ¢ such that if P(a,x,y) then
ly| < |z|¢+ ¢. We work only with polynomially balanced type-2 predicates.

The complexity of a type-2 predicate P is measured as the amount of resource (time
or space) required to decide P(«, z, ) in a world in which «/(c) for any ¢ can be computed
at unit cost. More specifically, a Turing machine M that decides P(c, z,y) is allowed to
access « as an oracle: M on (z,y) can ask queries of the form ‘a(c) =7’ and receive the

value of a(c) at unit cost. P is said to be polynomial-time if M runs in time polynomial

in |(z,y)|

Definition 3.1.1 [BCE" 98] Every 3-ary, polynomially balanced type-2 predicate P de-

fines a type-2 search problem Qp(a,z) = {y: P(a,z,y)}. A pair (o, z) is an instance

32
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of Qp, and Qp(a,z) = {y : P(a,z,y)} is the set of solutions for the instance. P is a
defining predicate of Qp.
A type-2 search problem Qp is said to be total if |Qp(c, )| > 0 for every (o, x), and

it is a function if |Qp(z)| < 1 for every (o, z). O

The subscript of )p is omitted when it is not necessary to indicate a defining predicate
of a search problem.

As in the type-1 case, evaluating P(«,x,y) for arbitrary (o, x,y) is the verification
problem for QQp. The wverification complexity of () is the complexity of its verification

problem.

Definition 3.1.2 V2P is the class of type-2 total search problems whose verification
problems are polynomial-time computable. For i > 0, V2X? and V2IT? are the classes of
type-2 total search problems whose verification problems are in type-2 X¥ and type-2 I17,

respectively. O

See [Tow90, CTY97] for more information on type-2 predicates and the type-2 polynomial-

time hierarchy.

The notion of many-one reducibility is generalized to type-2 setting as follows.

Definition 3.1.3 [CIY97, BCE" 98]
Let Q1 and Qo be type-2 total search problems. We say ()1 is many-one reducible to (s,
denoted Q1 <,, Qo, if there exist three type-2 polynomial-time functions F, G and H

such that
Yy e Ql(a: .’17) Zf (32)[2 € QQ(F[O!,JT], G(O!,.’L')) A Y= H(aaxa Z)]:
where Fla,z] = A\z.F (o, z, 2). O

Exact many-one reducibility between type-2 search problems is defined as follows.
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Definition 3.1.4 Let Q1 and Qo be type-2 total search problems. Then Q; is exactly
many-one reducible to (2, denoted Q1 <gm @2, if there exist three type-2 polynomial-time

functions F', G and H such that
Yy e Ql(a’x) — (EIZ)[Z € QZ(F[aa l‘],G(O!,il?)) Ny = H(O!,l', Z)]a
where Fla, z] = Az.F(a, z, 2). O

When @Q; is type-1, the above definitions are applied by treating (); as a type-2
problem with no function argument. More specifically, (); is exactly many-one reducible

to ()2 if there are three type-1 functions f, g, and A such that

Qi(z) = {y : (F2)[z € Qa(flz], g(z)) Ay = h(z, 2)]},

where flz] = Az.f(z, 2).

Let @ be a type-2 total search problem. Then

C(@Q) = {R:Ristype-land R <,, @},and
E(Q) = {R:Ristypeland R <., Q}.

It is straightforward to generalize Turing reducibility to the type-2 setting. When @,
and (), are type-2 total search problems, we say ()1 is Turing reducible to (Q2, denoted
Q1 <71 Q9, if there exists a polynomial-time Turing machine M with witness oracle @)y
that, on (a, ), outputs some y € Q1(a,z). For each query to QQ2, M must provide an
instance (3, z) of @2, where § is polynomial-time computable with access to a.

We say () is exactly Turing reducible to @)y if there exists a witness-oracle Turing

machine M that exactly solves (); using ()2 as a witness oracle.

3.2 Type-2 Problems and Search Classes

We begin with the definition of a new type-2 problem ITERATION (ITER). It is

inspired by the iteration problems of [CK98]. Since both PLS [BK94] and the iteration
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problems [CK98] characterize the V3X:5-consequences of Ty in a certain sense, they have
been known to be equivalent. However, their equivalence has been stated in an indirect
way and therefore it has not been clear how problems in one class relate to the problems
in the other.

We show a more precise correspondence by demonstrating E[PLS| = E(ITER), that
is, a search problem is exactly reducible to a PLS problem if and only if it is exactly
reducible to ITER. Moreover, our result is obtained directly without relying on the

results in bounded arithmetic.

Definition 3.2.1 ITERATION (ITER) is a type-2 problem specified as follows. Let
(o, z) be an instance, where o : N — N is any function and x is a natural number.

V = NIl js the search space. A function o : V — V is such that

“(0) a(v) if a(v) €V and a(v) > v
o (v) =
v otherwise

for all v € V. Note that a*(v) > v for every v € V. Then the set of solutions for an

instance («, ) is

ITER(a,z) ={veV:[v=0Aa"(0)=0]V[v<a(v)Aa(v) =a(a"(v))]}

The totality of ITER follows from the iteration principle which states that if f

satisfies the conditions
1. 0 < f(0)
2. (Ve < a)[f(z) = aV f(z) < f(f(2))], and
3. (Vz < a)f(z) < a,

then there exists a b < a such that f(b) = a [BK94].
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We can also interpret IT'E'R as the problem of finding vertices with a certain property
in an exponentially large directed graph. Let («,z) be an instance of ITER, and let
V = NIl as in the above definition. If we define E as the set of pairs (u,v) € V x V
such that o*(u) = v, then G = (V, FE) is a directed graph with no cycles of length > 2.
We say that v is a loop if a*(v) = v, and we say that v is the successor of u if o*(u) = v,
u # v. Then Q(x) is the set containing (i) 0 if it is a loop, and (ii) every v whose successor
is a loop. It is not hard to see that the totality of IT ER follows from the combinatorial
principle “every dag has a sink”.

The fact that ITER(c, x) can be expressed as the set of sinks and possibly 0 suggests
a strong connection between PLS and ITER. This connection is formalized in the

following statements.

Lemma 3.2.2 PLS C E(ITER).

Proof. Let @Q € PLS, and let Fyy, Ng, Cg be the predicate and functions that specify
a directed acyclic graph (dag) G such that Q(z) is the set of sinks of G. Our goal is to

show that @ <., ITER by constructing functions f, g, and A such that
y € Q(z) <= (J2)[z € ITER(f[z], g(x)) Ay = h(z,2)],

where f[z] = Az.f(z,z), and f[z],g,h € OF). Informally, f[z] and g specify a directed
graph so that h is a mapping from the set of sinks onto Q(x).

The idea is to construct f,g,h so that they define a dag G’ similar to G such that
Q(z) can be extracted from the set of sinks of G'. This seems easy, except that we have
to ensure that if (u,v) € E(G") then u > v. Note that there is no such restriction in G.
We construct G’ in the following way so that this condition is satisfied.

Recall that there exists a constant ¢ and a set Fgp(z) such that Q(z) C Fg(z) C
N<lzl+¢ and 0 € Fy(x) for every z. Since Cg is a polynomial-time function, there is a
polynomial p(n) such that for all v € Fg(z), |Co(z,v)| < p(|z]). Assume without loss of

generality that Cg(z,v) > 0 for all v € Fy(z).
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Fix an instance = of @, and define U = N<P(ZD+2°+¢ the set of numbers of binary
length at most p(|z|)+|z|°+c. We assume that every u € U is described by p(|z|)+|z|+c
bits, possibly with leading 0’s. Then, every u € U is the concatenation of u; and uso,
where u; is a p(|z|)-bit string and us |z|¢ + c-bit. We say u is correct if uy = Cg(us),
that is, if the prefix of u correctly describes the cost of the candidate corresponding to
u’s suffix.

Define a function f[z]: U +— U with parameter z as

)
(ug + Nug if ug € Fo(z) Auy < Colz, us),

wiwWo, where w; is a sequence of 0’s and wy = Ng(z,v),

if ve Fo(x) Ae= Cg(z,v) A Ng(z,v) #v,

| v otherwise.

Note that f[z](u) > u for all u € U.

Now define E C U x U by (u,v) € E if and only if f[z](u) = v. Then G' = (U, E)
is directed graph with no cycles of length > 2. Let us say u € U is isolated when u
is a loop and wu’s indegree is 1. It follows that for every v € Fy(z), E contains a path
(Ov, 1v,...Cq(v)v) and isolated vertices (c+1)v, ..., (2°(#) —1)y. The path may be part

of a longer path.

Lemma 3.2.3 A correct vertexr u = ujus € U is a loop that is not isolated if and only if

us € Q(x).

Proof. (=) Suppose u = ujuy is a loop that is not isolated. Then uy € F(z) because
u is not isolated, and Ng(z, us) = ug since u is a loop. By the definition of PLS problems,
us must be in Q(z).

(<) Suppose v € Q(z). Then, by the definition of PLS problems, v € Fy(z) and
Ng(z,v) = v. The paragraph before the current lemma shows that G contains a path
(Ov, 1v,...Cq(v)v), the last vertex of which is a loop. Then u = ujuy = Cgp(z,v)v.
(Lemma 3.2.3) O
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Now consider ITER(f,p(|z]) + |z|°+ ¢); it is the set of vertices in G’ whose successors

are loops, which, by the above lemma, are the solutions for Q(x). Thus,

Qx) = {y : Fu)[u = uruy € ITER(f[z], 9(x)) Ay = No(z, us)l},

where g(z) = p(|z|) + |z|¢ 4+ ¢, which is polynomial-time computable. Therefore, @ <.,

ITER. O

Let @ be a type-2 search problem. Then we write Q[O7] to denote the set of type-1
search problems @' for which there exist functions f € O0F such that Q'(z) = Q(f[z], z),
where flz] = Az.f(z,z). Intuitively, Q[O%] is the set of instances of @ such that the

function given as an argument is polynomial-time computable.

Lemma 3.2.4 ITER[O7] C PLS.

Proof. It suffices to show that, for every f € O0F, there is a PLS problem @ satisfying
Q(z) = ITER(f[x],x) for all .

We construct @ by specifying Fy, Cq and Ng. First, let V = N<Il. We define
Fo(z) = {v € V : flz](v) > v} U {0} C NSkl Tt easily satisfies Q(z) C Fg(x)
and 0 € Fp(z). For v € Fg(zx), the cost function is simply Cg(z,v) = v, and the

neighbourhood of v is

flal(v) if fla](v) €V,

v otherwise.

Ng(z,v) =

To see that Q(z) = ITER(f[x], g(x)), note that v < f[z](v) and f[z](v) = flz](f[z](v))

if and only if v € Fy(z) and Ng(z,v) = v. O

The above lemmas establish a direct connection between IT ER and PLS with respect

t0 <em-

Theorem 3.2.5 E[PLS| = E(ITER).
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Proof. Lemma 3.2.2 states that PLS C E(ITER), from which E[PLS| C E(ITER)
follows. The opposite inclusion follows from Lemma 3.2.4, since Q € E(ITER) if and

only if Q <., @' for some Q' € ITER|OY] C PLS. O

We introduce below the V2P type-2 search problems that originally defined by Beame,
Cook, Edmonds, Impagliazzo, and Pitassi [BCE*98]. Each problem is defined on in-
stances of the form (o, x), where « is any mapping from N to N and z is a string that
defines the search space V = NIl = {n € N: |n| < |z|}. Given (o, z), ay : V = V from
« can be defined as ay(v) =0 if a(v) ¢ V and ay(v) = a(v) otherwise, for all v € V.

Under a reasonable encoding scheme, o can be interpreted as a mapping from N to

N x N. When « is interpreted as such, ay denotes a function ay : V=V x V.

Definition 3.2.6 [BCEt98] LEAF (o, ) is defined as follows. Let V. = NIl and
define ay : V=V XV from a. Then every instance (o, z) defines an undirected graph

G = (V, E), where {u,v} € E(Q) if and only if u # v Au € ay(v) Av € ay(u). Finally,

LEAF(a,z) ={v eV : (v=0Awvis not a leaf of G)
V(v #0Awv is aleaf of G)},

where a leaf of G is a vertex with degree 1. O

It is easy to see that G has maximum degree < 2 and therefore GG consists of isolated
vertices and paths. Because of the parity principle “every graph of degree two or less has

an even number of leaves”, LEAF is total.

Definition 3.2.7 [BCE" 98] The type-2 search problem SOURCE.OR.SINK (SOS) is
defined as follows. An instance (o, x), defines a graph in a way similar to LEAF except
that the graph G = (V, E) is directed. There is a directed edge from u to v if and only if
u# v Aay(u) = (x,0) Aay(v) = (u,x), where x denotes an arbitrary vertex. A vertex

v € V is a source if it has indegree 0 and outdegree 1, and it is a sink if its indegree is
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0 and outdegree is 1. Then

SOS(a,z) ={veV: (v=0Awvis not a source of G)

V(v # 0 Awv is a sink or source of G)}.

The directed graph G in the above definition has maximum outdegree and indegree
< 1, and hence it consists of isolated vertices and directed paths. Thus, the existence of
a solution is guaranteed by the variant of the parity principle “every directed graph with

indegree and outdegree < 1 has a sink if it has a source”.

Definition 3.2.8 [BCE" 98] The type-2 search problem SINK is defined in the same
way as SOURCE.OR.SINK except that

SINK (a,z) ={veV: (v=0Awv is not a source of G)
V(v #0Awv is a sink G)}.

Finally, the following problem is total because of the injective version of the pigeonhole

principle “there is no injective mapping from a + 1 to a”.

Definition 3.2.9 /[BCE" 98] For every (a,x), PIGEON («,x) is specified as follows.
Let V = NPl and define oy : V =V from a. Then

PIGEON (a,z) = {(v1,v2) € V XV i ay(v) =0V ay(v1) = ay(v)}.

Using the type-2 problems above of Beame et. al., we can define Papadimitriou’s

classes PPA, PPAD, PPADS, and PPP [Pap94b| in a clean way.

Definition 3.2.10
(1) PPA = LEAF[X],
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(2) PPAD = SOS[¥],
(8) PPADS = SINK[O?], and
(4) PPP = PIGEON|]. O

It is not hard to prove that our definition and Papadimitriou’s definition in [Pap94b]
define the same classes. Our definition is inspired by the following, slightly different

definitions by Beame et. al [BCET98|: we rename the classes to avoid confusion.

Definition 3.2.11 /[BCE" 98]

(1) PPA* = C(LEAF) N VP,

(2) PPAD" = C(SOS) N VP,

(3) PPADS" = C(SINK)N VP, and

(4) PPP* = C(PIGEON) N VP. O

It should be noted that PPA™ is not the same as Papadimitriou’s PPA, since it is
possible to show that PPA* = C(LEAF)N VP contains problems with an even number
of solutions, while every PPA problem must have an odd number of solutions. The same
argument shows that PPAD # PPAD*. We do not know whether PPADS = PPADS"*
and/or PPP = PPP” hold.

The starred classes of Definition 3.2.11 have an advantage of being closed under <,,
in VP. On the other hand, the classes of Definition 3.2.10 are not closed under <.,
assuming that they are not simply solvable in polynomial time. However, we feel that
the classes of the form F(Q), where Q is LEAF, SOS, SINK, or PIGEON are more
natural, not only because of the following lemma but also because of their relationship

to theories of bounded arithmetic, which is discussed in the next chapter.

Lemma 3.2.12
(1) E(LEAF) = E[PPA] C VX}
(2) E(SOS) = E[PPAD] C VX}
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(3) E(SINK) = E[PPADS] C VX}
(4) E(PIGEON) = E[PPP] C VX

Proof. Immediate from Definition 3.2.10. O

Interestingly, if we define classes in the style of Beame et. al. (Definition 3.2.11,
[BCET98]) but intersect C(Q) with VX! instead of VP, the resulting class is F(Q).

Lemma 3.2.13
(1) E(LEAF) = C(LEAF) N VX?

(2) E(SOS) = C(SOS) N VP

(3) E(SINK) = C(SINK) N VS?

(4) E(PIGEON) = C(PIGEON) N V!

Proof. We sketch the proof for (1); the others can be shown by similar arguments.
First, note that E(LEAF) C C(LEAF) N VX easily follows from E(LEAF) C VXI.

Our goal is to show C(LEAF)N VX! C E(LEAF). Let Q € C(LEAF)N'VX]. We
first describe a nondeterministic witness-oracle Turing machine N that exactly solves @),
and then we show that NV can be simulated by a deterministic witness-oracle machine. N
on z first computes a solution y for Q(z) deterministically by making one witness query
to LEAF. Then, N nondeterministically guesses a number z and an alleged witness w
to the NP predicate ‘z € Q(z)’. If w correctly witnesses ‘z € Q(x)’;, N outputs z and
halts. Otherwise, it halts with y. It is easy to check that Qutputy(z) = Q(x) and that
N runs in polynomial time.

Next, we show that N can be simulated by a deterministic witness-oracle machine
M that makes one witness query to LEAF. Since N does not exhibit nondeterminism
until it queries LEAF, it suffices to show that, by asking a witness query to LEAF, M
can obtain a nondeterministically chosen number in addition to the witnesses N would

receive form LEAF'.
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Suppose that the simulation of N by M requires a nondeterministically chosen c-bit
number. We claim that, for every functions f and ¢, there exist f. and g. such that for

any 0 < s < 2¢
y € LEAF(f[z],9(z)) <= (y2°)+ s € LEAF(f.z], g.(x)).

Note that every solution for LEAF(f.[x], g.(z)) is the concatenation of y and s such that
y € Q(x) and s is nondeterministically chosen c-bit number. Now our goal is to show
such f. and g, exist.

Recall that LEAF(f[z],g(z)) is the set of leaves of the graph G = (V, E), where
V = NSl9@) such that E is specified by f[z]. Consider a graph G’ = (V'E') consisting 2°
copies Gy, Gy, ...,Ga 1 of G, so that the vertex of G; corresponding to j € V' is named
12°+ 7. Note that ¢2¢ + j is a leaf of V' if and only if j is a leaf of G. However, we do not
want i2° to be a leaf when 0 is not a solution for LEAF(f[z],g(x)). We ensure that i2¢,
1>14>2°—1, is not a leaf by modifying G’ in the following way: first, modify Gac 1 so
that it consists of one large cycle; then, create an edge between vertices i2¢ and (i 4 1)2°,
fori=1,3,5,...,2°=3. Let f.[z], g.(z) be functions that implicitly specify the resulting

G": we can easily construct them from f[z] and g(z). O

The following can be shown similarly to Lemma 2.4.2, which states that if E[PLS] C
VP, then PLS C SP.

Lemma 3.2.14 If E[PPA] C VP, then PPA C SP. Similarly for PPAD, PPADS,

and PPP.

3.3 Reducibility among the Type-2 Search Problems

Beame et. al. obtained all possible reducibility and nonreducibility results among their

type-2 search problems.
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Theorem 3.3.1 [BCE* 98]

(1) SOS <om SINK <o PIGEON, and SOS < LEAF.
(2) LEAF is not Turing reducible to PIGEON.

(8) PIGEON is not Turing reducible to SINK.

(4) SINK is not Turing reducible to LEAF.

Remark. SOS <., SINK in (1) is not obvious, and it is not shown in [BCE*98]. We
briefly describe how SOS <., SINK follows from SOS <,, SINK which is proven in
[BCE198]. We use the technique we used to prove Lemma 3.2.13. First, show that there
exists a nondeterministic witness-oracle machine N with access to « that exactly solves
SOS by making one witness query to SINK. Then, it is possible to show that N can
be simulated by a deterministic witness-oracle machine M with access to o and SINK.

O

Let us define the type-2 analog of E(Q) as follows.

Definition 3.3.2 Let Q be a type-2 total search problem. Then, E*(Q) is the set of

type-2 problems that are exactly many-one reducible to @, that is,
E*(Q) ={R: R is type-2 and R <., Q}.
Then, Theorem 3.3.1 yields the following.

Corollary 3.3.3 /[BCE" 98]

(1) E(SOS) C E*(SINK) C E*(PIGEON),

(2) E2(SOS) C E*(LEAF),

(3) E2(PIGEON) ¢ E*(LEAF) and E*(LEAF) ¢ E2(PIGEON).

Proof. Note that Q; <., Q2 implies (); <7 Q). Then, the claims easily follow from

Theorem 3.3.1. O
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Now we present our main theorem. Using the techniques applied in [BCE*98], we show

the following new nonreducibility result for ITER.

Theorem 3.3.4 SOS is not Turing reducible to ITER.

Corollary 3.3.5 SINK, PIGEON, and LEAF are not Turing reducible to ITER.

Proof of Corollary 3.3.5. By Theorem 3.3.1, SOS is exactly many-one reducible to
SINK, SOS, and PIGEON. If any of them is Turing reducible to IT ER, then it would
follow that SOS <r ITFER, which contradicts Theorem 3.3.4. O

Corollary 3.3.6 LetQ be any of LEAF, PIGEON, SINK, and SOS. Then, E*(Q) ¢
EX(ITER).

Proof of Corollary 3.3.6. This is immediate from Corollary 3.3.5. O

Because we connect E?[ITER)] with a relativized theory Ty (a) of bounded arithmetic
in the next chapter (Corollary 4.3.6), Theorem 3.3.4 yields interesting consequences on
the provability of some combinatorial principles in T, («) (Corollary 4.3.7). This is a
topic of Chapter 4.

It is worth remarking that we do not know whether I'TER is reducible to any of
LEAF, SOS, SINK, and PIGEON.

The rest of this section is devoted to the proof of Theorem 3.3.4.

Proof of Theorem 3.3.4. Our proof is a straightforward application of the techniques
used in [BCE198] to prove Theorem 3.3.1. Assume, for the sake of contradiction, that

SOS <r ITER. Then, there exists a polynomial-time witness-oracle Turing machine M
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that, on input (o, x), finds a solution to SOS(«, z) by making queries to o and ITER.
We show that there exists (a, z) such that M’s output is incorrect.

Fix an instance z with |z| sufficiently large, and let « : N +— N. We interpret « as a
function from V to V x V, where V = N<I#l. For all v € V, a(v) is a pair (u,v) € V xV
consisting of the predecessor u and the successor w of v; we write u = pred(v) and
w = succ(v) to mean that u and w are the first element and the second element of a(v),
respectively. Then a directed graph G = (V| E) is defined by letting (u,v) € E if and
only if u = pred(v) A v = succ(v). Note that G has indegree and outdegree at most 1.
Recall that v € V is a sink if its outdegree is 0 and a source if its indegree is 0. We
consider « that makes 0 a source so that Q(x) is the set of sinks and sources of G other
than 0.

Assume that M on (o, z) runs in time ¢. For i = 0,1,...,¢, let o; be a restriction of

o such that
dom(c;) = {v € V : a(v) is queried during the first i steps of M’s computation on (¢, z)}.

Note that each o, is an extension of a;. The restriction «; represents the part of G
that is known to M at the end of the ith step.

Our goal is to show the following:

Lemma 3.3.7 Fori=0,1,...,t, there exists o; such that (i) |dom(c;)| is bounded by a
polynomial in |x|; and (ii) o; does not specify any v € dom(«;), v # 0, to be a sink or a

source.

Suppose that the lemma holds. Since |dom(ay)| is bounded by polynomial, only
a small part of an exponentially large graph G is is known to M at the end of its
computation. Moreover, the known part of G contains neither a source nor a sink. Thus,
M is forced to output a sink or a source of G without knowing one, and we can extend

oy to a so that M’s output is incorrect.
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We have shown that Theorem 3.3.4 follows from Lemma 3.3.7. See below for the

proof of the Lemma. O

Proof of Lemma 3.3.7 We prove the claim by induction on 2. The base case is trivial.
Assume «; satisfies the conditions of the Lemma. We construct «;; that extends «;. If
M does not access o nor ITER at the 7 4 1st step, o;11 = o suffices.

There are only two cases remaining. Define
Si ={w: (Fv € dom(w))a;(v) = (%, w)}, and
P, ={u: (Fv € dom(e;))a;(v) = (u,*)},

where * denotes an arbitrary vertex.

Case: Step 7 + 1 is a query v to a. Assume that v ¢ dom(q;); otherwise this case is
trivial. If v = 0, then we set a(0) = (0, w) with arbitrary w ¢ S;, w # 0. Note that

0 does not have an incoming edge, since succ(0) # 0.

Otherwise, we answer the query with (u,w) as follows. If there exists x € dom(«;)
with suce(x) = v, we set u := z. Note that such x is unique if it exists. Otherwise,
pick an arbitrary uw such that u ¢ P;. Similarly, if there is y € dom(q;) with

pred(y) = v, set w := y; otherwise, find an arbitrary w ¢ S;.
It is easy to see that o; thus constructed satisfies conditions (i) and (ii).
Case: Step i+ 1 is a query (B,2) to ITER. Let V' = NSl and assume, without loss of

generality, 5 : V' +— V' is such that S(c) > c for all ¢ € V'. Then ITER(, z) can

be expressed as

ITER(B,2) ={ceV':[c=0AB(0) =0]V[c < (c) AB(c) = B(B(c))]}-

Our goal now is to show that there exists a solution to ITER(, z) that can be
found by making polynomially many queries to «, even if we answer the queries in

such a way that no sink or source is specified by a.
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Recall that 3 is required to be polynomial-time in «.. Then, there exists a determin-
istic machine M* such that M* on ¢ computes 3(c) in polynomial time by making
queries to a. Consider the computation paths of M* on c¢. The paths all start at
the initial state, and they diverge only at the point when M* asks a query ‘a(v) =7’
for v ¢ dom(ay), since there are multiple ways we can answer the query. Thus, the
value of (c) depends only on the values a(v) for v ¢ dom(c;), and therefore we
can express possible values of 3(c) by a decision tree T'(c) whose leaves of T'(c) are
labeled by {£(c) = d} for some d € V' and whose internal nodes represent queries
‘a(v) =7 for v ¢ dom(«y).

To simplify our argument, we represent a query ‘a(v) =7’ by two successive queries
‘pred(v) =7 and ‘succ(v) =7’; note that there is no loss of generality in doing this.
Then, an internal node of T'(c) is labeled by either {pred(v)} or {succ(v)} for some
v € V, and every edge is labeled with some u € V. If an edge labeled {u} leaves a
node labeled {pred(v)}, it indicates that pred(v) = u. Similarly for an edge leaving
a node with a label {succ(v)}. Let k£ be the maximum height of the trees. Note

that k£ is bounded by a polynomial in |z|.

Next, we prune branches of T'(c) that specify a solution to SOS(«,z). First, we
prune every edge specifying that succ(u) = 0 for any u. Then, we prune an edge
{z} leaving from a node {pred(y)} if if either x € P; or the path in T'(c) from the
root reaching that node contains an edge specifying that pred(w) = = for some w.
Similarly, an edge {z} is pruned if it originates from a node {succ(y)} and if x has
been defined as the successor of some element of V. It follows that a node at depth
j of any T'(c) has at least |V| — |dom(c;)| — j — 1 outgoing edges.

Note that every path p from the root to a leaf of T'(c) defines a collection of values
of pred and succ and thus values of . We say two paths p, p" are consistent if they
agree on the answers to the common queries. Let label(p) denote the leaf label of

a path p. We claim the following:
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Lemma 3.3.8 At least one of the following holds:
(1) T(0) has a path p with label(p) = {B(0) = 0}; or

(2) There are two consistent paths p in T(c) and p' in T(d), ¢ < d, such that

label(p) = {B(c) = d} and label(p') = {B(d) = d}.

If item (1) holds, then we can find a solution to ITER(f, z) by simply computing
£(0). Similarly, if (2) is true, computing 5(c) and 3(d) yields a solution. In either
case, o;11 has only polynomially more values than «;, and the pruning procedure

ensures that ;1 specifies neither a sink nor a source (other than 0).

Our final goal is to show that Lemma 3.3.8 holds. We show that if (1) is false, (2)
must be true. Thus, we assume that every leaf label of T'(0) states that 5(0) # 0.

Let w = 2/ — 1; in other words, w is the greatest element of V'. Then, every leaf of
T(w) is labeled by ‘{8(w) = w}’. From this fact and the assumption we made in the last
paragraph, it follows that there exists ¢ € V' which is the greatest element whose tree
T(c) contains a path p with label(p) = {5(c) = d}, ¢ < d. Since every path of T'(d) has
a leaf label {3(d) = d}, it suffices to show that T'(d) has at least one path p' consistent
with p.

We prune every branch of 7T'(d) that is inconsistent with p. Let {pred(z)} be a node
of T(d). If p contains the same query, then we prune all outgoing edges except at most
one edge which agrees with the answer specified in p. If the query is not asked in p, then
we prune an outgoing edge {y} if p specifies y as the predecessor of a node other than z.
Note that in this case at most k£ outgoing edges of {pred(z)} are pruned, and therefore
the node still has at least |V| —|dom(e;)| — j — 1 — k outgoing edges, where j is the depth
of the node. We do similarly for an edge specifying a successor.

It is easy to see that, after the pruning, every node of T'(d) reachable from its root

has at least one outgoing edge. Hence there must be a path from the root to a leaf. O
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3.4 The Maximization Problems

In this section, we introduce and study type-2 problems with higher verification com-

plexity.

Definition 3.4.1 A type-2 search problem MAXIMIZER is defined as follows. For
an instance (o, z), let V = N<I°l and define ay : V=V from o by
a() if a(v) €V,

ay(v) =
0 otherwise.

Then,

MAXIMIZER(o,z) ={v eV :(Vue V)ay(u) < ay(v)}.

MAXIMIZER is the problem of finding an argument of ay that realize the max-
imum value of ay. Our definition of the problem MAXIMIZER is inspired by the
function mazimization problem of Chiari and Krajicek [CK98|.

If we place a restriction on the size of the range of ay/) so that oy : V = {0, 1,...1log |V},
then we get another interesting search problem L-MAXIMIZFER, which is the type-2

counterpart of the sharply bounded function mazimization problem of [CK98].

Definition 3.4.2 A type-2 search problem L-MAXIMIZER is defined as follows. For

an instance (o, z), let V = N=I?l. Define a* as

oy = 4 o) Tal) <l

0 otherwise

Then,

L-MAXIMIZER(o,z) ={v eV :(Vue V)a*(u) < a*(v)}.
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The ‘I’ in L-MAXIMIZFER stands for log, since the range of the function «y has
size logarithm in the size of the domain.

From the definitions above, it is clear that MAXIMFER and L-MAXIMIZER are
in V217,

We show the first type-2 characterization of EP™NF [oblivious] and EPNF [oblivious, O(log n].

Theorem 3.4.3
(1) EPNF [oblivious| = E(MAXIMIZER)
(2) EPNPoblivious, O(log n)] = E(L-MAXIMIZER)

Proof. We show (1) as follows. First, E(MAXIMIZER) C EPYP[oblivious] is easy.
If Q <.n MAXIMIZER, then

Q(z) ={y: (F2)[z € MAXIMIZER(f|z],9(z)) Ny = h(z, 2)]}.

Since the function f[z] is polynomial-time, its maximum value can be computed by
making log |V| = |g(z)| NP queries by binary search. Since |g(x)| is bounded by a
polynomial in |z|, the claim holds.

Next, we show that EPNF [oblivious| C E(MAXIMIZER). Let Q@ € EPNP[oblivious]
and M be a polynomial-time, oblivious witness-oracle machine with access to an NP pred-
icate R such that Outputy(x) = Q(z) for all . Let R(a) = (32)B(a, z), B € P, be the
witness oracle that M has access to. Note that there exists a constant ¢ such that, for all
z, if (¢, w) is an oracle answer to M’s witness query, then |(¢, w)| < |z|° + ¢. Moreover,
there exists a polynomial p(n) such that M on z asks at most p(|x|) witness queries.

Fix an instance z, |z| = n, and define V = N<P(®):("°+¢)  Then, every possible (not
necessarily valid) sequence of answers to M’s witness queries is encoded by some v € V
of the form v = (q1,w1), (g2, w2), - - -, (@p(2))» Wp(z)))- Define f : V = V to be a function
that maps each v € V to a binary number f(v) = b1b; .. .by(s|), where each b; € {0, 1}.

Given v, f(v) is computed by a deterministic polynomial-time machine M’ as follows.
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Given v, M’ starts simulating M on z. For i = 1,2,...,p(n), when M makes the ith
witness query a;, M' test whether ¢; = 1 and B(a;, w;) holds. If succeeds, M’ sets b; = 1
and continues the simulation using (g;, w;) as an oracle answer. Otherwise, M’ sets b; = 0
and use (g;, w;) = (0,0).

Since M is oblivious, all correct sequences of oracle answers have the same g1, go, . . ., gy(n)
and therefore the same b1y ...byr). In fact, if we let f* := maz,ey f(v), f(v) = f*if
and only if v = (by, w1), (b2, wa), - . ., (bp(n), Wp(n)) is a sequence of correct oracle answers.
It follows that MAXIMIZER(f,p(|x|) - ||+ ¢) is the set of all possible sequences of

correct oracle answers to M’s queries. The claim holds, since

Qx) ={y: Gv)[ ve MAXIMIZER(f, p(|lz[) - (lz|°+ ¢c))

AM on z with a sequence v of answers outputs y|}.

For E(L-MAXIMIZER) C EPN?|oblivious, O(log n)], simply observe that the
maximum value of f[z] can be found by binary search using log |g(z)| € O(log n) queries.
For the other direction, a reduction similar to the above works because p(n) is in O(log n)

in this case. u

Note that it is trivial that L-MAXIMIZER <., MAXIMIZFER. We have not
proved that MAXIMIZFER is not exactly reducible to L-MAXIMIZFER, but it must
be the case because of Chiari and Krajicek’s result that is stated in the next chapter.
The relationship between the maximizer problems and theories Si and T of bounded

arithmetic will also be shown below.



Chapter 4

Bounded Arithmetic and Type-2

Search Problems

4.1 Theories of Bounded Arithmetic

We connect our framework with Buss’s theories S3 and 7% of bounded arithmetic, which
have been shown to be closely linked to complexity classes in the polynomial hierarchy
[Bus86, Bus95, Bus98, Krad5]. These theories are defined over the language Lpa of
bounded arithmetic. Let BASIC is the set of axioms that define the meaning of the

nonlogical symbols in Lgy .

Definition 4.1.1 [Bus86, Bus98] Let ® be a set of formulas. The ®-PIND azioms are

the formulas

A(0) A (V:v)[A(L%J) D A(z)] D (Vz)A(=)

for all formulas A € ®. Similarly, ®-IND azioms are the formulas
A(0) A (Vx)[A(x) D A(Sz)] D (Vz)A(x)
for all A € ®.

93
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Fori >0, Si is the theory aziomatized by BASIC azioms plus X~-PIND, and T is

the theory aziomatized by BASIC plus X¢-IND. O

The theories S3 and Ti are related to each other in the following way [Bus86]:
S CTyCSCT;CS5C. ...

However, it is not known whether this hierarchy extends infinitely or collapses at a finite
level. This question is related to whether the polynomial-time hierarchy collapses at a

finite level [Bus95].

Definition 4.1.2 [Bus86, Bus98] Let R(T) be a predicate. We say R is Al-defined in
theory T if there is a X2-formula A(Z) and a 11°-formula B(Z) such that (1) R has a
defining aziom R(Z) <> A(Z) and (2) T + (VZ)[A(Z) <> B(Z)]. O

In other words, a theory T" Al-defines a predicate R if T can prove that R is repre-
sentable by both a X! formula and a 1% formula.

We write (J!z) to mean that “there exists a unique x such that ...”.

Definition 4.1.3 [Bus86, Bus98] Let f be a function. We say f is ¥.2-defined in theory
T if f has a defining aziom y = f(Z) < A(Z,y), where A € X° with all free variables
indicated, such that T = (VZ)(3ly)A(Z, y). O

The following theorems of Buss show that the computational complexity of a function

corresponds to its definability in the hierarchy of bounded arithmetic theories.

Theorem 4.1.4 [Bus86, Bus98]
(1) A function is polynomial-time computable if and only if it is X°-definable in S3.

2) Let i > 1. A function is in OF if and only if it is X0-definable in Sb.
1 1 2

Theorem 4.1.5 [Bus86, Bus98]
(1) A predicate is polynomial-time computable if and only if it is A®-definable in S, .

2) Let i > 1. A predicate is in AP if and only if it is Ab-definable in S3.
7 % 2
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Chapter 7 of [Kra95] contains more results of this kind.

4.2 Definability of Search Problems

Since our object of study is search problems, the notion of definability should be extended
to take into account the multiplicity of solutions. Buss, Krajicek, and Takeuti [BKT93|

introduced the following definition.

Definition 4.2.1 [BKT93] Let Q be a total search problem and T be a theory of bounded

arithmetic. Then we say Q is Yt-definable in T if and only if for some X2 -formula ¢(z,y),

1. T+ (Vz)(3y)o(x,y), and

2. N ¢(n,m) implies m € Q(n).

O

Note that, in the above definition, the formula ¢(a, b) is not required to hold for every
solution b of Q(a); in other words, ¢ is not required to represent a defining predicate for
Q. This requirement is not strong enough, since the ¥:2-definability of ) provides a mean-
ingful bound on neither the verification complexity nor the computational complexity of
(@ with respect to exact solvability. For example, the search problem U in Example 2.2.4
is Y¢-definable in S, since Si + (V) (3y)y = 0.

We need a stronger notion of definability for search problems, which corresponds
to exact solvability. It turns out that strong X0-definablity, which Buss, Krajicek, and
Takeuti introduced in [BKT93] but used in a limited way, is precisely what is required
for our purpose. We call it ezact definability, because of its obvious connection to exact

many-one reducibility and exact solvability.

Definition 4.2.2 Let ) be a search problem, R be a defining predicate of Q, and ¢ a
formula of bounded arithmetic. Then, we say ¢ is a defining formula of Q) if ¢ represents

R. a
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Definition 4.2.3 [BKT93] Let Q be a total search problem and T be a theory. Then we
say Q is exactly Yt-definable in T if and only if there exists a X2-formula ¢(z,y) such

that
1. ¢(a,b) is a defining formula of Q, and

2. TH (Vz)(3y)p(z,y).

We know that a predicate is X7 if and only if it is represented by a X! formula
(Theorem 1.3.3). Thus, if @ has a defining predicate R € X, the condition (1) in the
above definition is automatically satisfied. On the other hand, if Q is exactly Y¢-definable
in 7, then it is immediate that Q € VX?.

In order to simplify our discussion of classes of search problems exactly definable in

theories of bounded arithmetic, we introduce the following notation.

Definition 4.2.4 Let T be a theory of bounded arithmetic. Then d[%2,T] and ed|X¢, T
denote the classes of search problems that are X.-definable and ezactly X-definable in T,

respectively. O

The following lemma shows that exact ¥:¢-definability is the right notion of definability

with respect to exact solvability and <,,.

Lemma 4.2.5 Let T be a theory such that Sy C T. Then, ed[S¢, T) is closed under <epn,.

Proof. Let Q) <. Q2 and @y € ed[X!, T]. Then, there exist functions f,g € OF such

that
Qi(z) ={y: (32)[z € Q(f(2)) Ny = g(z,2)]},

where ‘2 € Qo(f(z)) is represented by a X¢-formula ¢ such that T proves (Vz)(Jy)d(z, y).
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Since Si C T, T X!-define polynomial-time functions f and g; thus, 7 proves

(Vz)(3y)y = f(z) and (Vz,2)(Ty)y = g(z,z), where ‘y = f(z) and ‘y = g(x,z)" are

represented by Y%-formulas. Then, we can construct a ¥¢-formula 1) as

P(a,b) = (Fw < t(a))(3z < s(a))[w = f(a) A p(w, 2) Ab=g(a,2)] = b € Qa),

where ¢ and s are terms. It is easy to see that ¢ (a,b) represents ‘b € @Q;(a)’ and

T+ (Vo) Fy)(z, y). O

Chiari and Krajicek [CK98] obtained many interesting results on the relationship be-
tween various classes of search problems and classes of Y.2-definable search problems of

various theories. Their results are stated in the following framework.

Definition 4.2.6 [CK98] Let T be a theory of bounded arithmetic and S be a class of
search problems. S is said to characterize d[%2, T if the following conditions are satisfied:
(1) Every problem Q € S is X:¢-definable in T.

(2) If T + (V) (3y) o (z,y) for ¢ € XL, there exists a search problem Q' € S such that for
every a €N, if b € Q'(a) then b is of the form b = (c,dy,ds, ..., d) and ¢(a,c) holds. O

The above definition is not satisfactory for our goal because (i) it is based on the
notion of simple solvability and (ii) the condition (2) is unnecessarily complicated. (i)
can be resolved easily by requiring exact Y.2-definability in (1). Since condition (2) is
saying that {y : ¢(z,y)} is reducible to ', (ii) disappears if we always use a class closed
under <., in place of S.

Our results will be stated in the form S = ed[X¢, T], where S is some search class
closed under <,.,,. Such a result shows a close connection between the class S and the
theory T in the following sense: @ € S if and only if T - (Vz)(Jy)[y € Q(z)], where

[y € Q(x)] is represented by a Y:¢-formula.
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4.3 Exactly X’-definable Search Problems

Theorem 4.3.1 ed[X}, S1] = SPN VL.

Proof. First, we show that ed[¥¢, S]] C SPNVX]. Let Q € ed[X?, Si] represented
by a Xi-formula ¢g(a,b); thus, Q € VEY. Since S3 proves (Vz)(Jy)dg(z,y), by Buss’s
witness theorem [Bus86, Bus98], there exists f € O such that for all n € N, ¢g(n, f(n))
holds. Thus, @ € SP and @ € VX7.

Next, we prove that any @ in SP N VX! is exactly Y%-definable in Si. Because
@ € SP, there exists a polynomial-time function f such that f(z) € Q(z) for all z. By
(1) of Theorem 4.1.4, there exists a X¢-formula t;(a, b) that represents ‘b = f(a)’ such
that Sy F (Vz)(3y)Ys(z, y). It then easily follows that S3 = (V) (3y)[vs(z,v) V ¢o(z, y)],
where ¢ is a Y¢-formula that represents (). Note that b € Q(a) = v4(a,b) V ¢r(a,b);

thus, the claim holds. O
The following can be shown in a similar way, based on (2) of Theorem 4.1.4.

Theorem 4.3.2 For any i > 2, ed[X?, Si] = SP¥-1 N VXL,

Proof. Omitted. O

Buss and Krajicek [BK94] related PLS and the V3X-consequences of T :

Theorem 4.3.3 [BKY9//

(1) For every Q € PLS, T} + (Vz)(3y)oq(z,y), where ¢g(z,y) is a b formula that
represents ‘y € Q(x) .

(2) If v € X% and if T} & (Vo)(Iy)p(z,y), then there is a polynomial-time projection
function f and a PLS problem @ such that whenever b € Q(a), ¥(a, f(b)) holds.

The above theorem is stated in our framework as follows.
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Corollary 4.3.4
(1) PLS C ed[X°, T}], and

(2) ed[¥}, 1] C C[PLS].

We strengthen the above corollary to obtain an exact characterization of ed[¥¢, T7].

Theorem 4.3.5 E(ITER) = ed|X?, T}].

Proof. Recall that ed[¥¢, Th] is closed under <., (Lemma 4.2.5); therefore, E[PLS] C
ed[X8, T3] follows from (1) above. Since E(ITER) = E[PLS] (Theorem 3.2.5), we have
E(ITER) C ed[X%, T3).

Next, we show that ed[X?, T}}] C E[PLS]. Let Q € ed[X%,T;] and let A € NP be a
defining predicate of @ such that b € Q(a) = A(a,b) = (32) B({a, b}, z). Then, by (2) of
Corollary 4.3.4, there exists @' € PLS such that Q <, @'.

We use the technique we used in the proof of Lemma 3.2.13. Let N be a nondeter-
ministic witness-oracle machine with access to ). Given z, N computes one solution
y for Q(z) by querying @' once; note that this is done without nondeterminism. Then,
N nondeterministically guesses another solution z and a witness w to the NP predicate
‘z € Q(z)’. If w witnesses z € Q(x), then N outputs z and halts. Otherwise, N halts
with y in its output tape. Note that OQutputy(z) = Q(x).

Suppose N on zx requires at most c-bit nondeterministically chosen binary string.

Then, it is not hard to construct a PLS problem Q" such that

y€Q(z) = y2°+s€Q"(2),

for all 0 < s < 2¢—1. Thus, a deterministic witness-oracle machine M can simulate N by
making one witness query to Q”. It follows that @ <., @" and therefore ) € E[PLS].

O
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Let T(a) be a theory corresponding to 7, in the language L U {a}, where « is a new
function symbol with no defining axiom, and let ¥:2(), 7 > 0, be the set of X2-formulas
in the language Lpa U {a}. Then, the above theorem easily relativizes in the following

sense.

Corollary 4.3.6 E*(ITER) = ed[2}(a), T, (a)].

Proof. Omitted. O

Let @ : N +— N be any function. Then, APIGEON («) is the formula
(Fvy € V) (Fvg € V)[ay(v1) =0V ay(v1) = ay(vq)],

where V = N=l9l and oy : V +— V are defined in the same way as in the definition of
PIGEON (Definition 3.2.9). Note that a is a free variable. Thus, 3PIGEON (a) is a
formula which asserts the existence of a solution for PIGEON (o, a) for all a € N, that
is, IPIGEON («) is a defining formula for PIGEON.

Similarly, let ILEAF (), 3S0OS (), and 3SIN K () be defining formulas for LEAF,
SOS, and SINK.

From the Corollaries 3.3.5 and 4.3.6, we obtain the following unprovability result for
THc).

Corollary 4.3.7 T)(a) does not prove any of the following:
(1) IPIGEON (o).

(2) ALEAF (),

(8) ASINK («), and

(4) 3505(a),

Proof. We argue for (1). Suppose T, (a) proves IPIGEON (a). Then, by Corollary
4.3.6, PIGEON € E*(ITER), since 3PIGEON («) is a defining formula of PIGEON (o, z).
It follows that PIGEON <., ITER, which contradicts Corollary 3.3.5. O
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The unprovability of IPIGEON () in T} () has been known; in fact, Ty («) does
not prove that there is no injective mapping from 2a to a, a > 1 [Kra95]. However, we
are not aware of any result on the unprovability of the other combinatorial principles
JdLEAF(a), 3SINK («), and 3SOS(«). Moreover, the way we demonstrated this result
is new: it is obtained by showing that there is no reduction between the corresponding

type-2 search problems.

Let S3(07) be a theory corresponding to S5 obtained by adding to the language a new
functions symbol for every function in OY. Note that Si(OY) is conservative over Si
[Bus86, Bus98].

Let @ be a total type-2 search problem and F be a class of functions. Then 3Q(F)
denotes the set of formulas of the form 3Q(f) for every f € F. In other words, 3Q(F) is
the set of defining formulas for Q(f,a) for all € N and f € F.

The following statement appears without a proof in [Kra95]: a search problem is
Y-definable in Si(0F) +3ILEAF (DY) if and only if it can be witnessed by PPA problem
(Theorem 7.5.5). The above statement inspired the following theorem, which explicitly

connects the type-2 problems in [BCE198] and the theories of bounded arithmetic.

Theorem 4.3.8

(1) E[PPP] = E(PIGEON) = ed[S}(0F), S1(O?) + 3PIGEON ()]
(2) E[PPA] = E(LEAF) = ed[S}(0?), S1(CF) + ALEAF (7)),

(3) EPPPADS] = E(SINK) = ed[X%(0?), S1(0?) + ISINK(T?)], and
)

(1) E[PPAD] = E(SOS) = ed[St(T), S1(0?) + 3SOS(T)].

Proof. We sketch a proof for (1), since the rest can be shown analogously. Note that

APIGEON () is the set of formulas that represent defining predicates for problems in



CHAPTER 4. BOUNDED ARITHMETIC AND TYPE-2 SEARCH PROBLEMS 62

PIGEON(OY) = PPP. Since S3() + IPIGEON () is closed under <., (Lemma
4.2.5), we have E[PPP] C ed[X! (), SY(OP) + IPIGEON (TP)].

For the other direction, let Q € ed[X%(0%), Si(O7) + IPIGEON(OY)]; we show that
Q <em PIGEON. Note that Q has a defining formula ¢g(z, y) € X%(0) such that

Sy (O%) + APIGEON(X) = (Vx)(3y)do(w, ).

Assume, for simplicity, that the proof of (Vz)(3y)dg(z,y) involves only one instance of
IPIGEON(D); let us call it IPIGEON(f). Then,

SH(@) - 3PIGEON(f) > (¥2)(3y)d(a, ).

By Buss’s witness theorem [Bus86, Bus98|, there exists a deterministic polynomial-time
machine M such that M on (a,w), where w is a witness to IPIGEON(f), outputs b
satisfying ¢g(a,b) and therefore b € Q(a). Since w can be obtained by a witness query
to PIGEON, it follows that @ <,, PIGEON.

When the proof of (Vz)(3y)dg(x,y) contains multiple instances of IPIGEON (OY),
we obtain witnesses to all of them by one witness query to PIGEON. This can be done
because a constant number of instances of PIGEON can be combined in a straight-
forward way so that a solution for the combined instance contains solutions for all the
instances.

Finally, @ <,, PIGEON can be strengthened to ) <., PIGEON by the techniques

we used in the proof of Theorem 4.3.5. O

4.4 Exactly Y’-definable Search Problems

Chairi and Krajicek [CK98] used their function mazimization problem and sharply bounded
function mazimization problem to characterize d[X5,T)] and partially d[>%, S1] in the
sense of Definition 4.2.6. Their results inspired our definition of type-2 problems MAXIMIZER

and L-MAXIMIZER (Definitions 3.4.1 and 3.4.2) and our type-2characterization of
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ed[Y5, T3] and ed[¥5, S2] below. Since our characterization is based on exact reducibility
and exact definability, it is slightly stronger than Chairi and Krajicek’s results.

We base our result on the following theorem of Krajicek.

Theorem 4.4.1 [Kra95]
(1) SPNP[wit, O(log n)] = d[8, S3], and
(2) SPNP[wit] = d[24, T}].

Note that (2) is not explicitly stated in [Kra95], but it can be shown by modifying

Krajicek’s proof of (1). We strengthen the above result as below.

Theorem 4.4.2
(1) EPNPoblivious, O(log n)] = ed[~5, S].
(2) EPNP [oblivious] = ed[%5, Ty ].

Proof. First, let Q@ € EP?|oblivious, O(log n)] and assume M is a witness-oracle
machine that exactly solves @ by asking O(log n) witness queries. That Q € ed[¥$5, Si]
follows directly from Krajicek’s proof for (1) of Theorem 4.4.1 (Theorem 6.3.3 of [Kra95]).
The idea is to construct a formula WitCompys(x,w) which states that w encodes a legal
computation of M on x. Note that w contains (possibly incorrect) answers to M’s witness
queries. S; can prove the existence of w with all answers correct by proving the existence
of the largest sequence ¢ = ¢1,qo, . . ., qx, where k € O(log |z|), of yes/no answers, using
the X8-LENGTH-M AX principle. The output of M on z can be easily extracted from
w.

For (2), this direction can be carried out in T, using the X-M AX principle.

We show the other direction of (1). Let Q be a search problem defined by a ¥3-formula
bg(z,y) of the form (32 < t(x,y))Y(z,y, 2), where ¢ € I1?. Our goal is to show that if

Q € ed[x8, S3], then Q € EPN?[oblivious, O(log n)]. Assume @ € ed[25, S3]. Then,

Q € ed[5, S3] C d[¥5, S3] = SPNP[wit, O(log n)] = SPNF [oblivious, O(log n].
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The first inclusion is trivial, and the first equality is from Krajicek’s theorem above. The
last equality is by Corollary 2.2.14.

Thus, there exists an oblivious polynomial-time witness-oracle machine M such that
(i) Outputpy(xz) C Q(z) for all z; and (ii) M on z makes at most clog |x| witness queries
to some R € NP. By applying a technique that Buss, Krajicek, and Takeuti used in
[BKT93], we construct another witness-oracle machine M’ with access to an NP-complete
predicate P that exactly solves Q. Given z, M’ simulates M on z until it is about to halt
with some y € Q(x). M' makes two more queries so that M’ can output every solution
for Q(x). The first query is to obtain two numbers z,w nondeterministically. This is
done by asking (Jz,w)[|z| < |z|°+ ¢ A |w| < |z|? + d] with some appropriate c,d that
depend on the formula ¢g. Then, M’ tests if z is a solution for Q(z) by asking whether
—)(x, z,w) holds, which is an NP question. Finally, M outputs z if z € Q(x), and
otherwise M’ outputs y, which is obtained by the simulation of M on z.

This direction of (2) is similar. O

Corollary 4.4.3
(1) E(L-MAXIMIZER) = ed[3%, S1].
(2) EMAXIMIZER) = ed[%5, T3].

Proof. This trivially follows from Theorems 3.4.3 and 4.4.2. 0O

The above is the first characterization of ed[¥5, T} and ed[X%, S3].
Note that Chiari and Krajicek [CK98] showed that the oracle function maximization
problem, is not Y%-definable in a relativized version of the theory Si. Since teh oracle
function maximization problem corresponds to MAXIMIZFER, the above statement

implies that MAXIMIZER 4., L-MAXIMIZER.



Chapter 5

Conclusions and Future Works

We developed a new framework for the study of search problems and their definability
in bounded arithmetic. It would be fruitful to extend it further by importing into our
setting more results obtained in the other contexts outlined in Section 1.1. Another
interesting direction is to see if more classes of the form ed[Z!, T] for various i’s and T’s
can be characterized by type-2 search problems. Results in this direction would enable
us to separate theories by exhibiting separations of the type-2 problems. The paper by

Chiari and Krajicek [CK98] is a natural starting point for this direction.

In Section 3.3, we showed that none of LEAF, SINK, SOS, and PIGEON is
Turing reducible to I'TER. However, we do not know whether T ER is reducible to any
of the above. This question is equivalent to the question of whether S;(a) + IQ(a) is

V3¥t-conservative over T} (), where @ is any of the type-2 problems of Beame et. al.

Chiari and Krajicek [CK98| showed that the relativized version of their function
mazimization problem, which is essentially our type-2 MAXIMIZER problem, is not
Yb-definable in a relativized Si. In our context, it implies that MAXIMIZER is not
reducible to L-MAXIMIZFER. It may be interesting to demonstrate directly the nonex-

istence of reduction between the problems.

65
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Recall that we obtained the equality
E(L-MAXIMIZER) = ed[%}, Si]

(Corollary 4.4.3) by showing that both the RHS and LHS are equal to EP™NF [oblivious, O(log n)]
(Theorems 3.4.3 and 4.4.2). It would be interesting to directly show the equality without

going through EPNP[oblivious, O(log n)]. Similarly, it is open whether we can prove
E(MAXIMIZER) = ed[¥5, T, ]

without going through EPN? [oblivious].

Finally, recall that SP= [wit, O(f(n))] = SP> [oblivious, O(f(n))] for any i > 1 and
any function f (Lemma 2.2.14), and therefore the oblivious witness-oracle machines are
as powerful as the ordinary witness-oracle machines with respect to simple solvability. We

do not know whether EPZ [wit, O(f(n))] properly contains EP! [oblivious, O(f(n))].
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