Electronic Colloquium on Computational Complexity, Revision 01 of Report No. 083 (2001)

A computably enumerable undecidable set with
low prefix complexity: a simplified proof

Nikolai K. Vereshchagin*
Moscow Lomonossov University
Vorobjevy Gory, Moscow 119899

Email: ver@mccme.ru

Keywords: prefix complexity, KP-trivial set.

Let KP denote prefix complexity. The goal of the paper is to give a simple
proof for the following

Theorem 1 (Solovay, Calude and Coles). There is a computably enumer-
able undecidable set A such that KP(A1.,) < KP(n) + O(1). (Here Ay., stands
for the prefix of length n of the characteristic sequence of A.)

Solovay [9] proved the statement without enumerability requirement and
Calude and Coles [1] added this requirement. Both Solovay’s and Calude and
Coles’ proofs are rather involved (the latter one is 8 pages long). In the present
paper we propose a simplified proof of Solovay—Calude—Coles theorem. Essen-
tially the same proof as ours appears in the paper [4], it is attributed there to
Downey, Hirschfeldt, and Nies (Theorem 50 on page 37). Our work was done
independently of [4]. Both our and Downey—Hirschfeldt—Nies’s arguments are
similar to those of Ku¢era and Terwijn [5] used in construction of an undecid-
able Martin-Lof random set. In the cited paper, Downey gives a second proof
for the result, which is based on the original proof of Solovay [9].

We will recall now all relevant definitions and then present our proof.

Let = denote the set of all binary strings and |z| stand for the length of
string z. Given a partially computable function ¢ : & — Z let Ky(z) =
min{|p|: ¥(p) = z}.

Definition ([6, 3, 2]). A partial function ¢ : £ — E is a prefiz function if for
any p such that ¢ (p) is defined 1(q) is undefined for any proper prefix ¢ of p.

Theorem 2. (see [7, Th. 3.1.1]) The class of partially computable prefiz func-
tions has an optimal function. This means that there is a partially computable
prefiz function ¢ such that for any other partially computable prefix function
there is ¢ such that Ky(x) < Ky(x) + ¢ for any .

*Work was done while visiting LIM, Université de Provence.

ISSN 1433-8092

Choose any optimal partially computable prefix function ¢ and define prefiz
complexity KP(z) of x as Ky(x).

Prefix complexity is closely related to universal semimeasures defined as
follows.

A (total) function P : E — [0;1] is called a discrete semimeasure if

> P(@) <1

TEE

It is called enumerable if the set {(r, z) | r is a positive rational number and z €
E, r < P(z)} is computably enumerable. For a definition of computably (=
recursively) enumerable and decidable (= recursive) sets see [8]. An enumerable
discrete semimeasure P is called universal if it dominates any other enumerable
discrete semimeasure P’, that is there is a constant such that P'(z) < cP(x)
for any .

Theorem 3 ([6]). The function m(z) = 2-5XP(®) is o universal enumerable
discrete semimeasure.

Both KP(zx) and m(z) are defined on binary strings. When we apply KP(z)
and m(z) to natural numbers we actually mean their binary representations.

A simplified proof of Theorem 1. By Theorem 3, the inequality KP(A;.,) <
KP(n) + O(1) is equivalent to the inequality m(A4;.,) > m(n)/c for some con-
stant ¢. And to prove the latter inequality it suffices to find an enumerable
distributon ¢ and another constant ¢’ such that g(A41.,) > m(n)/c'.

We describe an algorithm enumerating the set A. Fix an enumeration of
all programs py,pa, ... such that the function (pg,n) — pi(n) is partially com-
putable. Fix an enumeration of the set {(r,z) | x € E, r < m(x)}, where m
is a universal enumerable discrete semimeasure. The algorithm enumerating A
starts an enumeration of this set and, in parallel, an enumeration of the graph
of the function (pg,n) — pr(n).

In order to ensure that A is undecidable we will associate with every program
pr a number ny such that pg(ng) is either undefined, or defined and different
from A(ny) (where A(ny) is 1 if ny € A and 0 otherwise). To do so we start
with ngy = 2k (say) and with A = (. Once in the enumeration of the graph
of the function (pg,n) — pr(n) we find, for some k, that pg(ng) = 0 then we
enumerate ny into A.

Simultaneously, we define a lower semicomputable distribution ¢ on {0,1}*
such that ¢(A1.,) > m(n)/2 for all n. To this end, for each pair (r,n) enumer-
ated so far into the set {{r,n) | r < m(n)} we enumerate the pair (r/2, A1.p)
into the set {{r,z) | r < q(z)} (for the current value of A;.,). This obviously
will ensure the inequality ¢(A41.,) > m(n)/2. The problem however is that the
function ¢ defined by our process may not satisfy the inequality - q¢(y) < 1.
In other words, it may be not a distribution.

Now comes the crucial point. To force ¢ to be a distribution we will some-
times change ny, for some k. For any particular k the value of ng will be changed

only a finite number of times, thus changing nj; will not disturb the undecid-
ability of A.
More specifically, we keep true the following invariant

Z m'(i) <27k for all k such that pg(ny) has not yet been defined,

ian

where m/(i) denotes the best currently known lower bound for m(i). To this
end, once we see that for some k with pg(ng) not yet defined this inequality is
false we assign ny a greater value different from all current n;’s and such that
the inequality becomes true (note that on any step only finitely many m' (i) are
different from 0). Every n; may be changed only finitely many times: once ny
has become so great that)., m(i) < 2% it remains unchanged forever.
Note that enumerating ny into A implies changing prefixes of the charac-
teristic function of A (of length nj and greater) and thus forces to increase ¢
on changed prefixes. Thus we need to show that 3 q(y) < 1. The sum of
q(y) over all prefixes y of the characteristic sequence of A is at most 1/2 as
q(z) < m(|z|)/2 for any z. However, since A has been changed (infinitely) many
times, ¢(y) may be non-zero also for prefixes y of the previous values of the
characteristic sequence of A. For any such y there is a step t such that y was
a prefix of the characteristic sequence of A on step ¢ but not on step ¢t + 1. In
other words, ny was added in A on step ¢ for some ny not greater than |y|. Let
At denote the value of A before adding n, in A. The invariant implies that the
sum of q(y) (on step t) over all prefixes of the characteristic function of A? of
length ny, or more is at most 27%~1. On later steps q(y) remains unchanged for
all such y’s. Hence the limit value of the sum of g(y) over all prefixes of the
characteristic function of At of length nj or more is at most 27%*~1. Observe
now that for any k only one ny may be added to A (we enumerate ny into
A only when we have found that py(ny) is defined and in this case we do not
change ny any more). Hence the sum of ¢(y) over all y that are not prefixes of
the characteristic function of A is at most Y, ; 27F~1 = 1/2. O

References

[1] C. S. Calude, R. J. Coles. Program-size complexity of initial segments and
domination relation reducibility, in J. Karhumaki, H. A. Maurer, G. Paun,
G. Rozenberg (eds.). Jewels Are Forever, Springer-Verlag, Berlin, 1999, 225-
237.

[2] G. J. Chaitin. A theory of program size formally identical to information
theory. J. Assoc. Comp. Mach., 22:329-340, 1975.

[3] P. Gacs. On the symmetry of algorithmic information. Soviet Math. Dokl.,
15:1477-1480, 1974.

. owney. ome computability-theoretica as-
4 R D S tability-theoretical
pects of reals and randomness. Available from
http://www.mcs.vuw.ac.nz/research/maths-pubs.shtml.

[5] A. Kutera and S. A. Terwijn. Lowness for the class of random sets. Journ.
Symb. Logic., 64(4) (1999) 1396-1402.

[6] L.A. Levin. Laws of information conservation (non-growth) and aspects
of the foundation of probability theory. Problems Inform. Transmission,
10:206-210, 1974.

[7] M. Li, P. Vitdnyi. An Introduction to Kolmogorov complexity and its appli-
cations. Second edition. Springer Verlag, 1997.

[8] P. Odifreddy. Classical recursion theory. North-Holland, 1989.

[9] R. Solovay. Lecture notes on algorithmic complexity. Unpublished, UCLA,
1975.

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

