Electronic Colloquium on Computational Complexity, Report No. 84 (2001)

When does a dynamic programming formulation
guarantee the existence of an FPTAS?

GERHARD J. WOEGINGER / Institut fiir Mathematik B, TU Graz, Steyrergasse 30,
A-8010 Graz, Austria, Email: gwoegi@opt.math.tu-graz.ac.at

Abstract

We derive results of the following flavor: If a combinatorial optimization problem can be
formulated via a dynamic program of a certain structure and if the involved cost and tran-
sition functions satisfy certain arithmetical and structural conditions, then the optimization
problem automatically possesses a fully polynomial time approximation scheme (FPTAS).

Our characterizations provide a natural and uniform approach to fully polynomial time
approximation schemes. We illustrate their strength and generality by deducing from them
the existence of FPTASs for a multitude of scheduling problems. Many known approxima-
bility results follow as corollaries from our main result.

Keywords: Approximation algorithm; approximation scheme; FPTAS; worst case analysis;
dynamic programming; combinatorial optimization; scheduling theory.

1 Introduction

Assume that we are working on a combinatorial optimization problem in which each feasible
solution has a positive integer cost. We are looking for an optimal solution. Our problem
may either be a minimization problem where the optimal solution is a feasible solution with
minimum possible cost, or a mazimization problem where the optimal solution has the mazimum
possible cost. For many important optimization problems it is NP-hard to determine the exact
optimal solution. One approach to getting around N P-hardness is not to look for exact optimal
solutions, but to look for near-optimal solutions instead, which often is good enough in practice.
An algorithm that returns near-optimal solutions is called an approximation algorithm.

Assume that we have an approximation algorithm that always returns a near-optimal so-
lution whose cost is at most a factor of p away from the optimal cost, where p > 1 is some
real number: In minimization problems the near-optimal cost is at most a multiplicative factor
of p above the optimum, and in maximization problems it is at most a factor of p below the
optimum. Such an approximation algorithm is called a p-approximation algorithm. A family of
(1+ €)-approximation algorithms over all € > 0 with polynomial running times is called a poly-
nomial time approximation scheme or PTAS, for short. If the time complexity of a PTAS is also
polynomially bounded in 1/¢, then it is called a fully polynomial time approximation scheme or
FPTAS, for short. An FPTAS is the strongest possible polynomial time approximation result
that we can derive for an N'P-hard problem (unless, of course, P = NP holds).

ISSN 1433-8092

The first fully polynomial time approximation schemes were developed in the mid-1970s in
the work of Horowitz, Ibarra, Kim, and Sahni [20, 21, 39]. The term ‘approximation scheme’
itself seems to be due to a paper by Garey & Johnson [12] from 1978 which mainly discusses
negative results: It identifies certain conditions on optimization problems that guarantee that
the problem does not possess an FPTAS. The results in [12] lead to the natural problem of
finding a ‘meaningful’ and ‘useful’ characterization of the fully polynomial time approximable
optimization problems. What we ideally would like to have is a mathematical theorem from
which we could tell at first glance whether some given optimization problem does have an
FPTAS or whether it does not have an FPTAS unless P = NP or whether it does not have an
FPTAS at all. Theoretical computer scientists studied this problem (cf. e.g. Ausiello, D’Atri &
Protasi [2], Ausiello, Marchetti-Spaccamela & Protasi [3], Paz & Moran [36], Ausiello, Crescenzi
& Protasi [1]), and they derived deep and beautiful characterizations of fully polynomial time
approximable problems. Unfortunately, all these characterizations seem to be of the form “An
optimization problem has an FPTAS if and only if there exists a polynomial time computable
function for which ” The whole difficulty of the problem seems to be concentrated in
this “polynomial time computable function”, and the characterization does not help us at
all in detecting this function and in designing the FPTAS (we advise the reader to study e.g.
Theorem 4.20 in [36]). This is of course a consequence of the fact that all these characterizations
are ezact characterizations of the class of fully polynomial time approximable problems and thus
implicitly suffer from the difficulty of the P = NP question.

In this paper, we are going for a more modest goal: We will be satisfied with a set of
conditions on optimization problems that (i) guarantee the existence of an FPTAS, that (ii)
cover a relatively large subclass of the fully polynomial time approximable problems, and that
— probably the most important — (iii) are easy to verify. In order to reach this goal, we will
carefully analyze one of the standard constructive approaches for designing an FPTAS.

The first FPTASs in [20, 21, 39] and apparently all the FPTASs that were developed since
then are based on dynamic programming formulations which do always find the exact optimal
solution, but not necessarily in polynomial time. There are two standard approaches for trans-
forming a dynamic programming formulation into an FPTAS. The first approach is probably
due to Sahni [39]. The main idea of this approach is to round the input data of the instance.
The goal is to make the resulting rounded problem easy to solve and to bring the running time
of the dynamic program down to polynomial. We call this technique the rounding-the-input-
data technique. The second approach is due to Ibarra & Kim [21]. This approach does not
round any numbers. The main idea is to iteratively thin out the state space of the dynamic
program, and to collapse states that are ‘close’ to each other. The goal is to bring the size
of the state spaces down to polynomial. In a pictorial setting, Ibarra & Kim are cleaning up
the state space of the dynamic program, and therefore their technique is sometimes called the
trimming-the-state-space technique.

Of course in both techniques the crucial point is how to control the error that is introduced by
the changes in the input data and in the state space, respectively. Just from searching through
the literature and from counting research articles, we conclude that the rounding-the-input-data
technique by far is the more popular approach. This is strange, since the trimming-the-state-
space technique seems to be more powerful and flexible. If we just round the input data and
then let the dynamic program run as a black box until it terminates, we can neither control
the propagation of error inside of the dynamic program, nor can we control the size or the

structure of the state space. As a consequence, the initial rounding in the rounding-the-input-
data technique must yield an input of a very primitive and severely restricted form. In contrast
to this, in the trimming-the-state-space technique we thin out the state space at the end of
every phase in the dynamic program. Hence, we always have full control over the dynamic
program and we can smooth out the propagation of error.

In this paper, we will identify a class of optimization problems that we call DP-benevolent
problems. A DP-benevolent problem possesses a simple dynamic programming formulation that
fulfills four structural conditions. The first three of these conditions are purely combinatorial
and just enforce certain inequalities on the underlying functions in the dynamic program. The
fourth condition imposes the existence of polynomial time algorithms for the initialization phase
of the dynamic program and for the computation of the state spaces; clearly, this condition is
rather mild. As our main result, we prove that every DP-benevolent optimization problem is
fully polynomial time approximable. The proof is based on a very general implementation of
the trimming-the-state-space technique of Ibarra & Kim [21]. In the rest of the paper, we then
discuss a sequence of basic scheduling problems from the literature. All discussed scheduling
problems have an FPTAS, and most of these FPTASs were derived via the rounding-the-input-
data technique. We will demonstrate that all these problems in fact are DP-benevolent; hence,
their fully polynomial time approximability also follows as a corollary from our main result.

Organization of the paper. The paper is organized as follows. Section 2 collects and clari-
fies some notations that are used throughout the paper. Section 3 defines the concept of DP-
benevolence and formulates the main result; the proof of the main result is given in Section 4.
Section 5 introduces the ex-benevolent problems which form an extremely simple subclass of the
DP-benevolent problems. Section 6 discusses five scheduling problems that are all shown to be
ex-benevolent and hence possess an FPTAS. Section 7 introduces the cc-benevolent problems,
another simple subclass of the DP-benevolent problems. Section 8 analyzes six optimization
problems that are all cc-benevolent and hence are fully polynomial time approximable. Sec-
tion 9 discusses the possibilities for extending the notion of DP-benevolence to a wider class of
optimization problems. Section 10 completes the paper with a short conclusion.

2 Notations and elementary definitions

The set of real numbers is denoted by IR, and the set of non-negative integers is denoted by IN;
note that 0 € IN. The base two logarithm of z is denoted by log z, and the natural logarithm
by In z.

We recall the following well-known properties of binary relations < on a set Z. The relation
=< is called

o reflexive, if for any z € Z: 2z < z,
e symmetric, if for any 2,2’ € Z: z < 7' implies 2’ < z,
e anti-symmetric, if for any 2,2’ € Z: z < 2' and 2/ < z implies z = 2/,
e transitive, if for any z,2/,2" € Z: 2z <2z and 2/ < 2" implies z < 2".
A relation on Z is called a partial order, if it is reflexive, anti-symmetric, and transitive. A

relation on 7 is called a quasi-order, if it is reflexive and transitive. A quasi-order on Z is called
a quasi-linear order, if any two elements of Z are comparable.

The trivial relation on Z is the relation {z <X z: z € Z}. The universal relation on Z is the
relation {z < 2’ : 2,2’ € Z}. Note that the trivial relation is a partial order, and the universal
relation is a quasi-linear order.

For Z' C Z, an element z € Z’ is called a mazimum in Z' with respect to <, if 2/ < z holds
for all 2’ € Z'. The element z € Z' is called mazimal in Z' with respect to =<, if the only 2’ € Z’
with z < 2/ is z itself.

Proposition 2.1 For any binary relation < on a set Z, and for any finite subset Z' of Z the
following holds.

(i) If < is a partial order, then there exists a maximal element in Z.

(1) If < is a quasi-linear order, then there exists at least one mazimum element in Z.]

A polynomial function P in v variables z1,...,x, is a function that can be written in the
following form:

v
P(,’]}l,...,.'IJ»U) = Z CK'Ha;?ia
i=1

K=(a1,...,0v)

where the summation is done over all tuples K in INY, where the coefficients cx are integers,
and where only finitely many of the values cx are non-zero. Every term cg [[j—; z;® in the
summation with cx # 0 is called a monomial of P. The degree of a univariate polynomial
function f : IN — IN is denoted by deg(f).

3 Formulation of the main result

Throughout this section, we consider a GENEric optimization problem GENE. We start with
four definitions that specify the representation of problem GENE and the relationship of GENE
to its dynamic programming formulation DP.

Definition 3.1 (Structure of the input in GENE)

In any instance I of GENE, the input is structured into n vectors X1,...,X, € IN®. Every
vector X, (k =1,...,n) consists of a non-negative integer components [k, Tok,---,Tak)- All
components of all vectors Xy are encoded in binary.

The number « is a positive integer whose value may depend on the input I. Let T denote the
sum Y7, Y%, x;k. The size of the input of instance I is ©(n + logZ). Note that in case
instance I was encoded in unary, then its size would be O(Z).

Definition 3.2 (Structure of the dynamic program DP)

The dynamic program DP for problem GENE goes through n phases. The k-th phase (k =
1,...,n) processes the input piece Xy and produces a set Sy of states. Any state in the state
space Sy is a vector S = [s1,...,58] € INA. The number B is a positive integer whose value
depends on GENE, but does not depend on any specific instance of GENE.

Intuitively speaking, every state in the state space Sp encodes a solution to the subproblem
specified by the partial input Xy, ..., Xj.

Definition 3.3 (Iterative computation of the state space in DP)
The set F is a finite set of mappings IN® x IN? — INA. The set H is a finite set of mappings
IN* x IN® - R. For every mapping F € F there is a corresponding mapping Hr € H.

In the initialization phase of DP, the state space Sp is initialized by a finite subset of INP.
In the k-th phase (k =1,...,n) of DP, the state space Sy is obtained from the state space Sip_1
via S = {F(Xk,S) : FeF, Se8 1, HF(Xk,S) < 0}

The mappings in F translate the states of the ‘old’ state space Sy_1 into states of the ‘new’
state space S;. Some of these new states may be infeasible and may not correspond to solutions
for the subproblem specified by the partial input Xi,...,X;. The mappings in H serve as a
tool for keeping such infeasible states out of the state space Sk. For several illustrations how
this tool can be applied, the reader is referred to the examples in Section 8.

Definition 3.4 (Objective value in DP)

The function G : IN? — IN is a non-negative function. The optimal objective value of an
instance I of GENE is denoted by OpT(I).

e If GENE is a minimization problem, then OPT(I) = min {G(S): S € S, }.
e If GENE is a mazimization problem, then OPT(I) = max {G(S):S € S, }.

An optimization problem GENE is called DP-simple, if it can be expressed via a simple
dynamic programming formulation DP as described in Definitions 3.1-3.4. The dynamic pro-
gramming formulation for a DP-simple problem GENE is summarized in Figure 1. Our next
goal is to state a set of conditions that automatically guarantee the existence of an FPTAS for
a DP-simple optimization problem GENE.

1 Initialize Sy

2 For k=1tondo

3 Let S := 0

4 For every S € §;_1 and every F' € F do

5 If Hp(Xy, S) <0 then add F(Xy, S) to Sk
6 EndFor

7 EndFor

8 Output min/max {G(S):S € S,}

Figure 1: The dynamic programming formulation for a DP-simple optimization problem GENE.

In dynamic programs we often have a dominance relation among the states: Consider two
states S and S’ in the state space that represent solutions to the same subproblem. Assume that
for any extension 7" of S to a solution for the complete problem, the corresponding extension
T' of §' yields a solution whose objective value is at least as good as the objective value of the
extension T'. In such a situation we usually say that the state S is dominated by the state S’.

To capture the concept of dominance with respect to the DP formulation, we introduce two
binary relations <go,, and <4, on INA. The dominance relation <gum, is a partial order on
IN?, and =qua 18 @ quasi-linear order on IN?. Moreover, =qua 18 any extension of =gom, i.e.,
S =dom S’ always implies S <40 S'. For two vectors S, 5’ € IN? with S <gom S, we say that
S’ dominates S. The dominance relation <g,,, will typically be the product of linear or trivial
orders on the components of the states. For several illustrating examples for relations =<gom
and <gyq, the reader is referred to Section 8.

In the fully polynomial time approximation scheme, we are going to trim the state space by
merging certain states that are ‘close’ to each other into single states. While performing these
mergings, we must ensure that the resulting errors cannot propagate in an uncontrolled way.
To this end, the concept of [D, Al-closeness is introduced in the following paragraph.

We fix a vector D = [dy,...,dg] € IN? which throughout the paper will be called the degree-
vector. The degree-vector depends on GENE and on the DP formulation, but it does not depend
on any specific instance of GENE. For a real number A > 1 and two vectors S, 8" € IN? with
S =[s1,...,88) and §' = [s},...,sp], we say that S is [D, A]-close to S if

A .5 < s < A% . s fort=1,...,0. (1)

Note that for any A > 1, the relation of being [D, A]-close is a symmetric and reflexive relation
on IN?. Moreover, note that if two vectors are [D, Al-close to each other, then they must agree
in all coordinates ¢ with d; = 0.

Now let us state some conditions that relate the functions in DP to the concepts of dominance
and [D, A]-closeness.

Condition C.1 (Conditions on the functions in F)
For any A > 1, for any F € F, for any X € IN®, and for any S, S € IN?, the following holds:

(i) If S is [D,Al-close to S and if S <qua S'; then (a) F(X,S) <qua F(X,S") holds and
F(X,S) is [D,A]-close to F(X,S"), or (b) F(X,S) <d4om F(X,S") holds.
(ii) If S Zgom S, then F(X,S) <4om F(X,S").

Condition C.2 (Conditions on the functions in H)
For any A > 1, for any H € H, for any X € IN%, and for any S, S' € IN?, the following holds:

(i) If S is [D, Al-close to S" and if S <qua S', then H(X,S') < H(X, S).

(ii) If S <4gom S', then H(X,S") < H(X, S).
Suppose for the moment that the degree-vector does not contain any zero entry. Then for
any 5,5 € NP , there exists some sufficiently large A such that S is [D, Al-close to S’. Since

IMOTeover =g, is an extension of <o, in this case the statements (i) and (ii) in Condition C.2
boil down to: If § <4y, S, then H(X,S') < H(X, S).

Condition C.3 (Conditions on the function G)

(i)

(ii)

There exists an integer g > 0 (whose value only depends on the function G and on the
degree-vector D) such that for any A > 1 and for any S, S’ € IN? the following property
holds: If S is [D, A]-close to S’ and if S <qua S', then G(S') < AY-G(S) holds (in mini-
mization problems), respectively, A=9 - G(S) < G(S') holds (in mazimization problems).
For any S,8' € IN® with S <g4om S', G(S'") < G(S) holds (in minimization problems),
respectively, G(S') > G(S) holds (in mazimization problems).

Finally we want that in DP every atomic step can be performed in polynomial time and
that the lengths of the involved numbers do not explode. This is ensured by the following set
of technical conditions.

Condition C.4 (Technical conditions)

(i)

(i)
(iii)

(iv)

Every F € F can be evaluated in polynomial time. Fvery H € H can be evaluated in
polynomial time. The function G can be evaluated in polynomial time. The relation <gyq
can be decided in polynomial time.

The cardinality of F is polynomially bounded in n and logT.

For every instance I of GENE, the state space Sy can be computed in time that is poly-
nomially bounded in n and logT. As a consequence, also the cardinality of the state space
So is polynomially bounded in n and logT.

For an instance I of GENE, and for a coordinate £ (1 < £ < f3), let Vy(I) denote the set
of the values of the £-th components of all vectors in all state spaces S (1 < k <mn). Then
the following holds for every instance I.

For all coordinates £, (£ = 1,...,0), the natural logarithm of every value in Vy¢(I) is
bounded by a polynomial mw1(n,logZ) in n and logT; equivalently, one may say that the
length of the binary encoding of every value is polynomially bounded in the input size.

Moreover, for coordinates £ with dy = 0, the cardinality of Vy(I) is bounded by a polynomial
ma(n,logT) in n and .

A DP-simple optimization problem GENE is called DP-benevolent iff there exist a partial
order <g4om, a quasi-linear order <44, and a degree-vector D such that its dynamic program-
ming formulation DP fulfills the Conditions C.1-C.4. DP-benevolent problems are easy to

approximate:

Theorem 3.5 (Main result on DP-benevolent problems)
If an optimization problem GENE is DP-benevolent, then it has an FPTAS.

4 Proof of the main result

This section is devoted to the proof of Theorem 3.5. Before describing the FPTAS, let us state
two simple but useful propositions.

Proposition 4.1

(i) For any © > 1, Inz > (z — 1)/z holds.
(ii) For any 0 <z <1 and for any real m > 1, (1 + z/m)™ < 1+ 2z holds.

Proof. The inequality in (i) can be derived from the Taylor expansion of Inz. In (ii) the left-
hand side is a convex function in z, and the right-hand side is a linear function in z. Moreover,
the claimed inequality holds at £ = 0 and z = 1.]

Proposition 4.2 Let S, S', and S" be vectors in IN®. Let A1, Ay > 1. If S is [D, A]-close to
S, and if S'" is [D, Ag]-close to S”, then S is [D, Ay - Ag]-close to S”. n

Throughout the rest of this section we deal with the dynamic programming formulation
DP of the DP-benevolent problem GENE in the statement of Theorem 3.5. By applying the
trimming-the-state-space technique of Ibarra & Kim [21] to DP, we will derive the claimed
FPTAS for GENE. The main idea in trimming-the-state-space is to clean up and to thin out
the state space of the dynamic program DP. If this is done in the right way, the cardinality
of the state space shrinks down to polynomial, whereas the loss in precision and the loss in
information can be kept under control. The dynamic program that results from trimming DP
will be abbreviated by TDP.

We work with three types of state spaces: with S;, Uy, and T;. The state space that
is produced at the end of the k-th phase in the original dynamic program DP is denoted by
Si. In the trimmed dynamic program TDP, we have two types of state spaces: The iterative
computation in the k-th phase of TDP expands an old state space from the (k — 1)-th phase
to a new state space; this new (untrimmed) state space is denoted by Ug. In the second half
of the k-th phase in TDP, the new state space Uy is thinned out and trimmed; this yields the
(trimmed) state space 7. The trimming is based on the so-called trimming parameter A > 1,
where

A =145

(2)

Here € > 0 is the desired precision of approximation, n is the length of the input sequence as in
Definition 3.1, and g is the integer constant that exists by Condition C.3(i). Moreover, define
an integer L by

p= [RERET) o[2 o, dog)| 3)

2gn’

Here 71 (-, -) is the polynomial function introduced in Condition C.4(iv); the upper bound on L
follows by setting z := A in Proposition 4.1(i). Next, define L+ 1 intervals as follows: Zy = [0],
T; = [AY1 AY) fori =1,...,L—1,and Tj, = [AL~1 AF]. Note that every integer in the range
[0, AL] is contained in precisely one of these intervals.

Define a partition of the integer vectors in [0, AL]ﬂ into orthogonal, axes-parallel boxes: For
every coordinate £ (1 < £ < B) with dy > 1, the integer range [0, AL] is partitioned into the
intervals Z;, 1 = 0,..., L. For every coordinate £ (1 < £ <) with dy = 0, the integer range
[0, AL] is partitioned into AL 4 1 intervals that each contain a single integer. The boxes in the
thereby induced orthogonal partition of [0, A”]# will be called A-bozes.

Observation 4.3 FEwvery state in every state space Sg in DP is contained in one of the A-bozes.
If two states S,S' € IN? are contained in the same A-boz, then they are [D, Al-close to each
other.

Proof. By Condition C.4(iv), the values of all components of all vectors in all state spaces
Sy, are integers less or equal to ¢™(™1°%€%) By the definition of L in (3), the latter bound in

turn is less or equal to AL. This proves the first statement. If two states S = [s1,..., s3] and
S" = [si,...,8p] are contained in the same A-box, then A5 < s) < A~ s holds for all
coordinates £ with d; > 1, and sy = s} holds for all coordinates £ with d; = 0. This implies (1),
and thus proves the second statement.]

Definition 4.4 (Trimming the state space in TDP).
Let U, T C INP be sets of non-negative integer vectors whose components are bounded by A”.
We say that T s a trimmed copy of U, if the following holds:

(i) T is a subset of U.

(ii) For every A-box B with U N B # 0, the set T contains ezactly one state from U N B.
This state is a mazimum of U N B with respect to <guq; such a mazimum state exists by
Proposition 2.1(1i).

Figure 2 presents the full description of the trimmed dynamic program TDP; the trimming
is performed in Line 7.

1 Initialize T := Sy
2 For k=1tondo
3 Let U, =0

4 For every T € T,_1 and every F € F do

5 IfHF(Xk,T) SOthen add F(Xk,T) to Z/{]c
6 EndFor

7 Compute a trimmed copy 7Ty of Uy

8 EndFor

9 Output min/max {G(T):T € T}

Figure 2: The trimmed dynamic program TDP for the DP-benevolent problem GENE.

Observation 4.5 In the trimmed dynamic program TDP, the state spaces fulfill the following
properties fork=1,...,n.

(i) T C U C Sp.

(1i) For every state U in the untrimmed state space Uy, the trimmed state space Ty contains
a state T that is [D, Al-close to U and that fulfills U <4, T [

This observation is a straightforward consequence of Definition 4.4 and Observation 4.3. The
statement in Observation 4.5(ii) tells us that the trimmed copy 7y forms a good system of
representatives for the state space Uy with respect to [D, A]-closeness.

Lemma 4.6 The running time of TDP is polynomial in n, in logZ, and in 1/e.

Proof. First, let us estimate the cardinality of 7;. By Definition 4.4, |7%| equals the number
of A-boxes that have non-empty intersection with Uy. In coordinates ¢ with dy > 1, these
non-empty A-boxes arise from at most L + 1 distinct intervals in the partition. In coordinates
£ with dy = 0, these non-empty A-boxes arise from at most mo(n,logZ) distinct intervals in the
partition; cf. Condition C.4(iv). Hence,
—\\A 2gn _ _ B

Tkl < (L+14ma(n,logz))” < [(1 + ?) m1(n,logT) + 1+ 7T2(n’log:1:)-‘ . (4)
Here we used the upper bound on L in (3). Since the values § and g only depend on DP and
hence are constants, and since 7 (-,-) and ma(,-) are polynomials, we conclude that for every
k=1,...,n, the cardinality of 7 is polynomially bounded in n, logZ, and 1/¢.

Next, let us discuss how to perform the trimming. We compute for every state in U, its
A-box and thereby get a list of A-boxes that have non-empty intersection with Uy. For every
A-box B in this list, we compute the relation <,,, on U, N B and find a maximum element with
respect to <4uq. By Condition C.4(i) all this can be done in polynomial time per A-box. Since
the list contains at most |Uy| A-boxes, the overall time needed for the trimming is polynomial
in n, logZ, and 1/e.

Finally we observe that the trimmed dynamic program TDP goes through several nested
for-loops. In every for-loop, the index either runs through a range of n, a range of |7|, or a
range of |F| values. By the above discussion and by Conditions C.4, the index range of every
for-loop and the lengths of all encountered numbers are polynomially bounded in n, logZ, and
1/e. This completes the proof of the lemma. [

For a set S C IN? and a state S € S, we say that S is undominated in S if S is maximal in
S with respect to <gom; otherwise, S is dominated in S.

Lemma 4.7 Let S € S; be a state that is undominated in Sy, for some 1 < k < n. Then
there exists a state S* € Sg_1 which is undominated in Sp_1, and a mapping F* € F with
corresponding mapping H* € H, such that

H#(Xk,S#) S 0 and F#(Xk,S#) = S (5)

Proof. Let us assume that S enters the state space S; when the function F# € F is applied to
X and to some state in Sx_1 in Line 5 in DP. Let H# € H be the mapping that corresponds to
F#. Consider the non-empty subset S of S;_; that contains all states S in S;_; for which

H*(X;,8%) < 0 and F#(X;,8°) = &S. (6)

Let S* be a state in S¢ that is undominated in S¥; such a state exists by Proposition 2.1(i).
Suppose that S# is dominated by some state S’ in Sp_; \ S¥. Since S#* =<ym S', Condi-
tion C.2(ii) together with (6) yields

H#*(Xy,S") < H*(Xy,S*) < 0. (7)
Consequently, F#(Xy,S') is in Sg. Since S’ dominates S#, the state F#(Xy, S') dominates S by
Condition C.1(ii). Since S’ is not contained in the set S, F#(X}, S') # S must hold. Hence,

S would be dominated in Sj. This contradiction shows that S# is undominated in S, 1, and it
also completes the proof.]

10

Lemma 4.8 For every k = 0,...,n and for every state S that is undominated in Sy, there
exists a state T € Ty, that is [D, A¥]-close to S and that fulfills S <qua T

Proof. The proof is by induction on k. Since Sy = 7y holds, there is nothing to show for & = 0.
As induction hypothesis we assume that for every state S# that is undominated in Si_1, there
exists a state T# in T;_; that is [D, AF~!]-close to S# and fulfills S# =qua T#.

Consider an arbitrary undominated state S in Sx. By Lemma 4.7, there exists a state S#
that is undominated in S;_1, and there exists a mapping F'# € F with corresponding mapping
H#* € H, such that (5) is fulfilled. Now by the induction hypothesis, there exists a state T# in
Ti—1 that is [D, A¥~1]-close to S# and that fulfills S# <,,, T#. Then Condition C.2(i) and (5)
yield that

H#(XkaT#) S H#(Xkas#) S 0. (8)

By (8) and by Line 5 of TDP, the state space Uy, contains the state U = F#(Xy, T#). Since T#
is [D, A¥~1]-close to S# and since S# <, T#, Condition C.1(i) implies that either (Case a) U
is [D, AF~1]-close to S and S <4, U, or that (Case b) U dominates S.

In (Case a), Observation 4.5(ii) yields that the state space T contains a state 7' that is
[D, Al-close to U and that fulfills U <44, 7. Since T is [D,A]-close to U and since U is
[D, AF~1]-close to S, Proposition 4.2 yields that T is [D, A¥]-close to S. And since S <4ua U
and U =<guq T hold, we have S <4, T'. This completes the analysis of (Case a).

In (Case b), Observation 4.5(i) implies that U is in Si. Since S is undominated in S, we
infer that S = U. Then Observation 4.5(ii) yields that the state space 7T contains a state T
that is [D, Al-close to U = S, and that fulfills S <, T. Then trivially, T is also [D, A¥]-close
to S. This completes the analysis of (Case b), and it also completes the inductive argument. m

Completing the proof of Theorem 3.5 now is routine. Recall from Definition 3.4 that there
exists a state S* € S, such that G(S*) = OpT. By Condition C.3(ii), we may assume without
loss of generality that S* is undominated in S,. By Lemma 4.8, there exists a state T* € T,
that is [D, A™]-close to S* and that fulfills S* <, T%. Then for minimization problems, we
conclude from Condition C.3(i) that

G < A™.G(S%) = (1+2gin)gn0m < (1+e)Opr. (9)

Here we have applied Proposition 4.1(ii) with z := /2 and m := gn to get the final inequality.
Similarly, for maximization problems we conclude from Condition C.3(i) that

o
GT*) > A= G(S") = (1+i) OpT > OpT > (1—¢)OpT. (10)

2gn — 1+¢
Summarizing, if GENE is a minimization problem then the objective value of the approximate
solution TDP is at most a factor of 1 4+ ¢ above the optimal objective value, and if GENE is
a maximization problem then the objective value of the approximate solution TDP is at most
a factor of 1 — ¢ below the optimal objective value. This yields the desired approximation
guarantee. Moreover, by Lemma 4.6 the running time of TDP is polynomial in the input size
and in 1/e. This completes the proof of Theorem 3.5.

11

We remark that the FPTAS described above only produces an approximation of the optimal
objective value, whereas it does not produce the corresponding feasible solution. However, by
storing appropriate auxiliary informations in the dynamic program and by performing some
backtracking, we can also explicitly compute the corresponding feasible solution. This will
increase the running time only by a constant factor. Since these are standard techniques, we
do not elaborate on them.

5 Definition of ex-benevolent problems

In this section we consider a subclass of the DP-simple optimization problems that possesses
extremely simple DP formulations: A DP-benevolent optimization problem GENE is called
extremely benevolent (or ez-benevolent, for short), if

H=0forall HeH,
< dom is the trivial relation on IN?,

=qua 1s the universal relation on INA.

In an ex-benevolent problem, the condition in the ‘If-then’ statement in Line 5 of the DP
in Figure 1 is always fulfilled. Hence, the iterative computation of the state space becomes
unconditional: For every state S in the old state space Sx_1 and for every mapping F in F,
the dynamic program DP must put the state F(Xj,S) into the new state space Si. This
unconditional computation will prevent us from modeling any data dependent constraints (like
hard due dates on the jobs in a scheduling problem) and it will not allow us to get rid of any
infeasible states.

The statements in Conditions C.2 and C.3(ii) are by default fulfilled in any ex-benevolent
problem GENE. Moreover, Condition C.1 boils down to the following statement.

Condition C.5 (Condition C.1 in ez-benevolent problems)
For any A > 1, for any F € F, for any X € IN®, and for any S, S’ € IN?, the following holds:
If S is [D, A]-close to S', then F(X,S) is [D,A]-close to F(X,S'").

By the above discussion, a DP-benevolent problem is ex-benevolent iff there exists a degree-
vector D such that the dynamic programming formulation DP fulfills the Conditions C.5, C.3(i),
and C.4. By Theorem 3.5 every ex-benevolent optimization problem GENE has an FPTAS.

Now suppose that we have found a DP formulation of a DP-simple optimization problem
GENE and that we want to know whether GENE is also ex-benevolent. How do we check
whether the Conditions C.5, C.3(i), and C.4 are satisfied? Whereas Condition C.4 is rather
transparent and usually easy to verify, Conditions C.5 and C.3(i) depend on the degree-vector
in a non-trivial way. In the remaining part of this section we will identify a simple special
case of these conditions that is based on polynomial mappings and that is straightforward to
recognize.

With a polynomial function f : IN®t# — IN in o + 3 variables, we associate the univariate
polynomial f® : IN — IN that depends on the degree-vector in the following way:

f(D)(f) = f(1113---a15 fdla£d2a---afdﬂ) (]‘1)
—_——

a—times

12

Lemma 5.1

(i) Let F be a set of mappings of the following form: Every F € F is a vector [fi,..., fg] of
polynomial functions fo : Nt — IN in o + 8 variables with non-negative coefficients.
Moreover for £ =1,...,0, the inequality deg(féD)) <d; holds.

Then the set F fulfills Condition C.5.
(i) Let G : IN? — IN be a polynomial function with non-negative coefficients.
Then the function G fulfills Condition C.3(i) for any degree-vector D.

Lemma 5.1 provides us with a simple tool for proving the ex-benevolence of optimization prob-
lems. This tool will be applied many times in the illustrating examples in Section 6. Lemma, 5.1
will be proved in Appendix A.

6 Examples of ex-benevolent problems

This section discusses five scheduling problems. With the help of Lemma 5.1 we will show that
these scheduling problems are all ex-benevolent, and consequently do possess an FPTAS by
Theorem 3.5. We will roughly follow the standard scheduling notation (see e.g. Graham, Lawler,
Lenstra & Rinnooy Kan [15] and Lawler, Lenstra, Rinnooy Kan & Shmoys [32]). The discussed
problems are: minimizing the makespan on two identical machines (Section 6.1), minimizing
the sum of the cubed job completion times on two identical machines (Section 6.2), minimizing
the total weighted job completion time on two identical machines (Section 6.3), minimizing
the total completion time on two identical machines with time dependent processing times
(Section 6.4), and minimizing weighted earliness-tardiness about a common non-restrictive due
date on a single machine (Section 6.5).

6.1 Makespan on two identical machines

The problem. In the scheduling problem P2||Cpax, the input consists of n jobs Ji,. .., J, with
positive integer processing times p1,...,p,- All jobs are available for processing at time 0. The
goal is to schedule the jobs without preemption on two identical machines such that the largest
job completion time is minimized. Karp [23] shows that P2||Cpax is NP-hard in the ordinary
sense, and Sahni [39] gives an FPTAS for the problem.

The dynamic program. Let « =1 and = 2. For k = 1,...,n define the input vector X} = [p].
A state S = [s1,s2] in S encodes a partial schedule for the first k jobs Ji,...,Jg: s1 is the
total processing time on the first machine in the partial schedule, and s5 is the total processing
time on the second machine. The set F consists of two functions F; and Fy:

Fi(pk,s1,82) = [s1+ Pk, s2]

Fy(pk,s1,82) = [s1, s2+ pi]

Intuitively speaking, the function F; puts the job Jj on the first machine in every partial
schedule [s1, s3] € Si—1 for the jobs Ji, ..., J;_1, and function F5 puts Jj, on the second machine.

13

Finally, set
G(s1,82) = max{s1,s2}.

The initial state space Sy is set to {[0,0]}. This dynamic programming formulation is due to
Horowitz & Sahni [19].

Benevolence. Consider the degree-vector D = [1,1]. The functions F; and F» are vectors of
polynomial functions with non-negative coefficients; Lemma 5.1(i) yields that Condition C.5 is
satisfied. Condition C.3(i) is satisfied with ¢ = 1. The statements (i), (ii) and (iii) in Condi-
tion C.4 are straightforward; the statement (iv) is fulfilled, since all components in all states
are upper bounded by Z?Zl pj. Hence, problem P2||Cpayx is ex-benevolent and Theorem 3.5
yields the following result.

Corollary 6.1 (Sahni [39], 1976)
The scheduling problem P2||Cmax has an FPTAS. n

The result can easily be carried over to the problems Pm||Cpax, @m||Cmax, and Rm||Cpax
with any fixed number m of identical, respectively, uniform or unrelated machines.

6.2 Sum of cubed job completion times on two machines

The problem. In the scheduling problem P2|| 3 C]:-)’, the input consists of n jobs Ji,...,J, with
positive integer processing times p1,...,pn. All jobs are available for processing at time 0. The
goal is to schedule the jobs without preemption on two identical machines such that the sum
of the cubes of the job completion times is minimized. Lenstra [34] proves that this problem is
NP-hard in the ordinary sense.

The dynamic program. We renumber the jobs such that p; < ps < --- < p,, holds. A straightfor-
ward job interchange argument shows that there is an optimal schedule in which both machines
process the jobs in increasing order of index. Moreover, an optimal schedule will not contain
any idle time.

Now let « = 1 and 8 = 3. For k = 1,...,n define the input vector X = [pg]. A state
S = [s1, 82,83] in S encodes a partial schedule for the first k jobs Ji,...,Jg: s1 (respectively
s9) is the total processing time on the first (respectively second) machine in the partial schedule,
and s3 is the sum of the cubes of the job completion times in the partial schedule. The set F
consists of two functions F; and Fy:

Fi(pky$1,52,83) = [51+Dk, s2, 83+ (51 +)’
Fy(pr,s1,82,83) = [s1, 82+ Pk, 83+ (52 +pr)?]

Intuitively speaking, the function F; puts the job Ji at the end of the first machine in every
partial schedule [s1, 2, s3] € Sg—1 for the jobs Ji,...,Jx—1. The function F; puts Ji at the
end of the second machine in a symmetric way. Finally, set G(s1, s2,83) = s3 to extract the
objective value from a partial schedule, and set the initial state space Sp to {[0,0,0]}.

Benevolence. Consider the degree-vector D = [1,1,3]. The functions F; and F are vectors of
polynomial functions with non-negative coefficients. Let Fy = [f1, fo, f3] where fi1, f2, and f3
are the induced polynomial functions IN* — IN. Then

() =¢+1, 26 =¢, SP(€) =263 + 362 + 36 + 1.

14

Hence deg(f{”’) = 1, deg(fs”’) = 1, and deg(f5”’) = 3. In an analogous way it can be shown
that function F» also fulfills the conditions in Lemma 5.1(i). The function G is a polynomial with
non-negative coefficients and thus fulfills the conditions in Lemma 5.1(ii). Condition C.4(iv)
is fulfilled, since all components in all states are upper bounded by n(37_; p;)3. The state-
ments (i), (ii) and (iii) in Condition C.4 in this case are trivial. Summarizing, Lemma 5.1 and
Theorem 3.5 now yield the following result.

Corollary 6.2 The scheduling problem P2||Y CJ‘?’ is ex-benevolent and has an FPTAS. []

An analogous result holds true for any problem Pm||}" C;‘, and Qm] | EC;‘ with any fixed
number m of machines and with any fixed exponent A > 1.

6.3 Total weighted job completion time on two identical machines

The problem. In the scheduling problem P2||> w;C;, the input consists of n jobs J; with
positive integer processing times p; and positive integer weights w; (j = 1,...,n). All jobs
are available for processing at time 0. The goal is to schedule the jobs without preemption
on two identical machines such that the weighted sum of job completion times is minimized.
The problem P2||Y w;C; is N'P-hard in the ordinary sense (Bruno, Coffman & Sethi [7] and
Lenstra, Rinnooy Kan & Brucker [35]). Sahni [39] constructs an FPTAS for the problem.

The dynamic program. We renumber the jobs such that py/w; < po/wy < -+ < pp/wp. A
job interchange argument shows that there always exists an optimal schedule which does not
contain any idle time and in which both machines process the jobs in increasing order of index.

Let « = 2 and 8 = 3. For k = 1,...,n define the input vector Xy = [pg,wg]. A state
S = [s1,892,83] in S encodes a partial schedule without idle time for the first k jobs: s;
(respectively s3) is the total processing time on the first (respectively second) machine, and s3
is the objective value for the partial schedule.

Fi(pg, wg, 81,82,83) = [s1+ Pk, S2, 83+ wi(s1+ pg)]
Fy(pk, wg, s1,52,53) = [s1, S2+ Pk, s3+ wi(s2+ pr)]

Set F = {F1, Fy}, set G(s1,2,83) = s3, initialize the state space Sy = {[0,0,0]}, and define
the degree-vector D = [1,1,1]. Lemma 5.1 implies that P2||} w;C; is ex-benevolent, and
Theorem 3.5 yields the existence of an FPTAS.

Corollary 6.3 (Sahni [39], 1976)
The scheduling problem P2||>> w;C; has an FPTAS. m

For any fixed number m of machines, also the scheduling problems Pm||> w;C; and
Qm|| Y w;C; are ex-benevolent and thus fully polynomial time approximable.

6.4 Total completion time on two identical machines with time dependent
processing times

The problem. In the scheduling problem P2|time-dep|). Cj, the input consists of n jobs
Ji,...,Jp and of m = 2 identical machines. For every j = 1,...,n, a positive integer b; is

15

associated with job J;. All jobs are available for processing at time 1. The actual processing
time of a job depends on its starting time: If job J; is started at time ¢;, then its processing time
equals b;t;. The goal is to schedule the jobs without preemption on two identical machines such
that the total completion time is minimized. Chen [9] proves that problem P2|time-dep|)" C; is
NP-hard in the ordinary sense, and he also poses as an open problem to determine the precise
approximability status of P2|time-dep|} C;.

The dynamic program. Assume that in some schedule the total processing time on one of the
machines is P, and and that job J; is scheduled at the end of this machine. Then the total
processing time becomes P(1 + bj). We renumber the jobs such that b, < by < --- < b,. A job
interchange argument shows that under this numbering, there always exists an optimal schedule
in which on every machine the jobs are processed in increasing order of index.

Now let « = 1 and = 3. For k = 1,...,n define the input vector Xy = [bg]. A state
[s1, 82, s3] encodes a partial schedule for the first k& jobs Ji,...,Jx: s1 is the total processing
time on the first machine in the partial schedule, and ss is the total processing time on the
second machine. s3 is the objective value of the current schedule. The set F consists of two
functions F; and F5:

Fl(bk131732533) = [81(1+bk)1 52, 33+31(1+bk)]
Fy(bk,81,82,83) = [s1, s2(1+bg), s3+ s2(L + b)]

Hence, function F} puts the job Ji at the end of the first machine in every partial schedule for
the jobs Ji,...,Jx_1, and function F, puts Ji at the end of the second machine. Finally, set
G(s1, s2,83) = s3. The initial state space Sy is set to {[1,1,1]}.

Benevolence. The values of all components in all states are upper bounded by n []7_;(1+b;) <
nz". Hence, their natural logarithms are bounded by nInZ + Inn, and statement (iv) in
Condition C.4 is fulfilled. Lemma 5.1 implies that P2|time-dep|}_ C; is ex-benevolent for the
degree-vector D = [1,1,1], and Theorem 3.5 yields the existence of an FPTAS.

Corollary 6.4 The scheduling problem P2|time-dep|}_ C; has an FPTAS. m

The result can easily be carried over to the corresponding problems with any fixed number m
of identical or uniform machines. Moreover, the corresponding problems with the objective of
minimizing the total weighted job completion time are also ex-benevolent and fully polynomial
time approximable.

6.5 Weighted earliness-tardiness about a common non-restrictive due date
on a single machine

The problem. In the scheduling problem 1| |3 w;|C}|, the input consists of n jobs J; with
positive integer processing times p; and positive integer weights w; (7 = 1,...,n). All jobs
are available for processing at time —oo. The goal is to schedule the jobs without preemption
on a single machine such that the sum of the weighted absolute values of the job completion
times C; is minimized. Intuitively speaking, every job should have its completion time as close
as possible to a common due date at time 0. Hall & Posner [16] show that this problem is
NP-hard in the ordinary sense and provide an FPTAS for the special case where the total

16

weight 3% ; w; of the jobs is polynomially bounded in n. Jurisch, Kubiak & Jézefowska [22]
establish that this special case in fact is solvable in polynomial time. Kovalyov & Kubiak [24]
present an FPTAS for the general case without putting any restriction on the total weight of
the jobs.

The dynamic program. We renumber the jobs such that py/wy < po/wy < --- < p,/wy holds.
Hall & Posner [16] show by a job interchange argument that under this numbering, there always
exists an optimal schedule which does not contain any idle time, in which some job is completed
at time 0, in which the jobs with non-positive completion times are processed in decreasing order
of index, and in which the jobs with positive completion times are processed in increasing order
of index.

Now let @« =2 and 8 = 3. For k = 1,...,n define the input vector Xy = [pg, wy]. A state
S = [s1, 2, s3] in S encodes a partial schedule without idle time for the first k£ jobs: s is the
total processing time scheduled before time 0, sy is the total processing time scheduled after
time 0, and s3 is the objective value for the partial schedule.

Fl(pkawk581732as3) = [81 +pk‘7 52, 33+wk‘81]
Fy(p, wi, s1,82,83) = [81, 82 + Pk, 83+ wi(s2 +p)]

Intuitively speaking, the function F} puts Ji at the left end of a partial schedule for the jobs
Ji,...,Jk—1, and function F, puts Ji at the right end. Set F = {F1, F»}, set G(s1, s2, s3) = s3,
and initialize the state space Sp = {[0,0,0]}.

Benevolence. For the degree-vector D = [1,1,1], Lemma 5.1 implies Conditions C.5 and
C.3(i). Condition C.4(iv) holds since all components in all states are upper bounded by
(X7=1pj) (3= wy). Summarizing, the problem 1||3> w;|Cj| is ex-benevolent. Now Theo-
rem 3.5 yields another proof for the following result.

Corollary 6.5 (Kovalyov & Kubiak [24], 1997)
The scheduling problem 1||%- w;|C;| has an FPTAS. n

Of course, the result carries over to any fixed number m of machines.

7 Definition of cc-benevolent problems

In this section we discuss another subclass of the DP-simple optimization problems. The defi-
nition of this subclass is based on a special quasi-linear order on IN?.

From now on the first coordinate s; of any vector S = [s1,...,sg] in IN? will be called its
critical coordinate. For two vectors S, S’ € IN? we write S <. S iff the critical coordinate of
S’ is less or equal to the critical coordinate of S. Then the relation <. is a quasi-linear order
on IN? which is called the critical coordinate quasi-linear order. A DP-benevolent optimization

problem GENE is called DP-benevolent under critical coordinates (or cc-benevolent, for short),
if

the relation <g,, is the critical coordinate quasi-linear order <.

17

By Theorem 3.5 every cc-benevolent optimization problem GENE has an FPTAS. The following
Lemma 7.1 will be proved in Appendix A. Lemma 7.1 yields a convenient way for proving the
cc-benevolence of DP-simple optimization problems.

Lemma 7.1 The following statements hold for a DP-simple optimization problem in which the
relation =guq 15 the critical coordinate quasi-linear order <.

(i) Assume that the set F is a set of mappings of the following form: Every F € F is a
vector [fi1,..., fg] of polynomial functions fy : IN*tA — IN with non-negative coefficients
£=1,...,8). For£=1,...,0, the inequality deg(féD)) < dy holds; c¢f. Lemma 5.1(i).
Furthermore, the value of function f1(X,S) only depends on X, on the critical coordinate
of S, and on those coordinates £ of S for which the entry dy in the degree-vector equals 0.

Then Condition C.1(i) on the functions in F is fulfilled.

(1i) Assume that every function H € H is a polynomial H(X,S) that only depends on X, on
the critical coordinate of S, and on those coordinates £ of S for which the entry dy in the
degree-vector equals 0. Furthermore, every monomial in H(X,S) that does depend on the
critical coordinate has a non-negative coefficient.

Then Condition C.2(i) on the functions in H is fulfilled.

(i1i) Let G : IN? - IN be a polynomial function with non-negative coefficients.
Then the function G fulfills Condition C.3(i) for any degree-vector D.

(iv) Assume that <gom is the trivial relation.

Then the statements in Conditions C.1(ii), C.2(ii), and C.3(ii) are fulfilled.

8 Examples of cc-benevolent problems

In this section, we present six illustrating examples for cc-benevolent optimization problems.
The discussed problems are the 0/1-knapsack problem (Section 8.1), the scheduling problem of
minimizing the weighted number of tardy jobs on a single machine (Section 8.2), batch schedul-
ing to minimize the weighted number of tardy jobs (Section 8.3), minimizing the makespan
of deteriorating jobs on a single machine (Section 8.4), minimizing total late work on a single
machine, (Section 8.5), and finally minimizing total weighted late work (Section 8.6).

By Theorem 3.5 all these problems do possess an FPTAS. The example in Section 8.3 uses
a degree-vector one of whose coordinates is 0. In the examples in Sections 8.5 and 8.6, one of
the functions in F is not a polynomial and the dominance relation is not the trivial relation.

8.1 The 0/1-knapsack problem

The problem. In the 0/1-knapsack problem the input consists of n pairs of positive integers
(pk, wr) and a positive integer W. The py are called profits, the wy, are called weights, and W is
called the weight bound. The goal is to select an index set K C {1,...,n} such that the selected

18

weight obeys the weight bound } ;. wr < W and such that the selected profit > ;. py is
maximized. The 0/1-knapsack problem is A'P-hard in the ordinary sense (Karp [23]).

The dynamic program. Let a« = 2 and 8 = 2. For k = 1,...,n define the input vector
Xk = [pk,wg]. A state S = [s1,s2] in Sk encodes a partial solution for the first k& indices: The
critical coordinate s; stands for the total selected weight, and so stands for the total selected
profit in the partial solution. The set F consists of two functions F; and Fj.

Fi(wg,pk,s1,82) = [s1+ wk, S2+ pil
Fy(wg, p, s1,52) = [s1, s2]

Intuitively, the function F; adds the index k to the partial solution, and function F5 does not
add it. In the set H there is a function H(wg, pg,S1,82) = $1 + wx, — W which corresponds
to Fy and a function Ho(wg,pg,S1,82) = 0 which corresponds to F». With this, the iterative
computation in Line 5 of DP for both functions in F reads

If s;+w,—W <0 then add [81 + wg, S92 +pk]
If 0 <0 then add [s1, s2].

The reader will observe that this is the standard dynamic programming formulation of the 0/1-
knapsack (Bellman & Dreyfus [4]). Finally, set G(s1, s2) = s2 to extract the total profit from a
solution. Define the initial state space Sy = {[0,0]}.

Benevolence. Use the trivial dominance relation <4, and the degree-vector D = [1,1]. By
Lemma 7.1(iii) and (iv), the above dynamic programming formulation fulfills Condition C.3.
The functions F; and F, are vectors of polynomials with non-negative coefficients, and the
polynomial functions in F; and F5 that yield the critical coordinates are polynomials which
do not depend on the second coordinate so. The functions H; and Ho are polynomials; the
monomials do not depend on s9, and the monomial that depends on s; has a positive coor-
dinate. With this, Lemma 7.1 yields that the Conditions C.1 and C.2 are satisfied. Verifying
the correctness of Conditions C.4 is straightforward. Summarizing, the 0/1-knapsack problem
indeed is cc-benevolent. After all, the well-known result of Ibarra & Kim can be given as a
corollary to Theorem 3.5.

Corollary 8.1 (Ibarra & Kim [21], 1975)
The 0/1-knapsack problem possesses an FPTAS.]

Lawler [30] elaborates on the running time of FPTASs for knapsack problems. He constructs a
set of extremely fast algorithms that only perform O(nlog(1/¢) + 1/&*) operations on integers
with O(logT) bits.

8.2 Weighted number of tardy jobs on a single machine

The problem. In the scheduling problem 1| | w;Uj, the input consists of n jobs J; with positive
integer processing times p;, weights w;, and due dates d; (j = 1,...,n). All jobs are available
for processing at time 0. In some schedule a job is early if its processing is completed by its
deadline, and otherwise it is tardy. The goal is to schedule the jobs without preemption on a

19

single machine such that the total weight of the tardy jobs is minimized. Problem 1||3 w;U;
is N"P-hard in the ordinary sense (Karp [23]).

The dynamic program. We renumber the jobs such that dy < dy < -+ < d,. Under this
numbering, there always exists an optimal schedule in which all early jobs are processed before
all tardy jobs and in which all early jobs are processed in increasing order of index.

Now let « = 3 and 8 = 3. For k = 1,...,n define the input vector Xy = [pg,wg,dx]- A
state S = [s1, s, s3] in S, encodes a partial schedule for the first k jobs: The critical coordinate
s1 measures the total processing time of the scheduled early jobs, so measures the total weight
of the tardy jobs, and s3 measures the total weight of the early jobs. Define functions F; and
F2:

Fi(pg, wk,di,51,82,83) = [81+ Dk, 2, 83+ wg]
Fo(pg, wk, dg, 81,82,83) = [s1, S2+ wy, s3]

Intuitively, the function F; causes job J; to be early and function F5 causes job Jj to be
tardy. The function Hi(pg, wg, di, S1, 2, 83) = 81 + pr — di corresponds to F} and the function
Hy(pg, wg, di, 81, 52, 83) = 0 corresponds to Fy. Now the iterative computation in Line 5 of DP
for both functions in F reads

If s14+pp—dip <0 then add [31 + P, S2, 83+ wk]
If 0 <0 then add [s1, s2 + wg, s3]

The reader will recognize the Lawler & Moore [33] dynamic programming formulation for
1|| > w;U;. Finally, set G(s1, s2,53) = s2 and initialize the state space Sy = {[0,0,0]}.

Benevolence. Use the trivial dominance relation <g,,, and the degree-vector D = [1,1,1]. By
applying Lemma, 7.1 in very much the same way as in Section 8.1, one argues that the scheduling
problem 1| | > w;Uj; is cc-benevolent. Theorem 3.5 yields the existence of an FPTAS.

Corollary 8.2 (Gens & Levner [14], 1981)
There exists an FPTAS for minimizing the weighted number of tardy jobs in the scheduling
problem 1|3 w;Uj. [

If we set G(s1, S2, 83) = s3 while leaving everything else unchanged, we get a DP formulation
for mazimizing the total weight of the jobs that are processed early.

Corollary 8.3 (Sahni [39], 1976)
There exists an FPTAS for maximizing the weighted number of early jobs in the scheduling
problem 1| |- w;Uj. [

8.3 Batch scheduling to minimize the weighted number of tardy jobs

The problem. This section discusses a batch scheduling problem 1|batch| Y~ w;U; that is a simple
generalization of the problem 1|| > w;U; discussed in Section 8.2: The input consists of n jobs
Jj with integer processing times p;, weights w;, and due dates d; (j = 1,...,n), together with a
batch setup time b. All jobs are available for processing at time 0. The processing of the jobs is

20

grouped into batches. Each batch starts with a setup time b, which is followed by the sequential
processing of all jobs in the batch. The completion time of every job in the batch coincides with
the completion time of the batch. The goal is to schedule the jobs on a single machine such that
the total weight of the tardy jobs is minimized. The problem 1|batch|> w;U; is N'P-hard in
the ordinary sense, since it contains problem 1| |- w;U; as a special case. Brucker & Kovalyov
[6] design an FPTAS for it.

The dynamic program. We renumber the jobs such that di1 < dy < --- < d,. Hochbaum &
Landy [18] observe that under this numbering, there always exists an optimal schedule in which
all early jobs are processed before all tardy jobs and in which all early jobs are processed in
increasing order of index. Hence, there are three possibilities for adding a new job J; to a
partial schedule for the jobs Ji,...,Jx_1: The new job may be scheduled tardy (F}); the new
job may be added to the currently last batch (F»); the new job may start a new batch (F3).

Let « =3 and 8 = 3. For k = 1,...,n define the input vector Xy = [pg,wy,dg]. A state
S = [s1,82,83] in S encodes a partial schedule for the first & jobs: The critical coordinate s;
measures the total processing time and setup time of the scheduled early jobs, sy measures the
total weight of the tardy jobs, and s3 stores the due date of the job with lowest index in the
latest batch. Let F contain the functions Fy, Fy, and Fj:

Fl(pkawkadk731782as3) = [317 82+wk" 33]
FQ(pkawkadka817‘52a83) = [81 + P, s2, 33]
F3(pk7wk7dk,51,52,53) = [’51 +b+pka 82, dk]

The functions Hi, Ho, and Hg in H correspond to Fy, Fy, and Fj, respectively.

Hi(pg, wg,dg, 51,82,83) = 0
Hy(pr, wk, dg, 51, 52,83) = S1+ Pk — 53
H3(pk’wkadk731782a53) = Sl+b+pk_dk

Finally, set G(s1, s2, $3) = s2 and initialize the state space Sy = {[0,0,0]}.

Benevolence. Use the trivial dominance relation <40, and the degree-vector D = [1,1,0].
Note that the third coordinate in the states can only take the n due dates as values; hence,
Condition C.4(iv) is fulfilled. Lemma 7.1 then implies that problem 1|batch|}> w;U; indeed is
cc-benevolent, and Theorem 3.5 implies the existence of an FPTAS.

Corollary 8.4 (Brucker & Kovalyov [6], 1996)
There exists an FPTAS for mazimizing the weighted number of tardy jobs in the scheduling
problem 1|batch| Y w;Uj. [

8.4 Makespan of deteriorating jobs on a single machine

The problem. In the scheduling problem 1|deteriorate|Cmax, the input consists of two non-
negative integers d and D, and of n jobs Ji, ..., J, that are specified by positive integers p; and

21

wj, j = 1,...,n. All jobs are available for processing at time 0. The actual processing time a;
of job J; depends on its starting time #;:

a; = Pj +wj(tj—d), ifd<t; <D,
pj +w;(D —d), ifD <t
The goal is to schedule the jobs on a single machine such that the makespan is minimized.
Kubiak & van de Velde [28] show that the problem 1|deteriorate|Cmax is NP-hard in the

ordinary sense, and they provide a pseudo-polynomial algorithm for it. Kovalyov & Kubiak [25]
construct an FPTAS for 1|deteriorate|Cmax.

The dynamic program. A job that is started before or at time d is called early, A job that is
started after time d but before or at time D is called tardy, and a job that is started after time
D is called suspended. We renumber the jobs such that pi/wq < po/ws < -+ < pp/wp. A
job interchange argument (cf. Browne & Yechiali [5]) shows that under this numbering, there
always exists an optimal schedule in which all early jobs are sequenced in increasing order of
index, all tardy jobs are sequenced in increasing order of index, and all suspended jobs are
sequenced in increasing order of index.

Lemma 8.5 (Kubiak & van de Velde [28])
Let J1,...,Jp be the sequence of tardy jobs in some schedule; let C; denote the completion time
of Jj; let d+ X\ with A > 0 be the total processing time of the early jobs and hence, the starting
time of job J1. Then fori=1,...,¢,
Cc;, = (1 —|—wi)(1 —|—wi_1) (1 +w2)(1 +w1) A+
(T4 ws) (T +wi—1) -+ (1 +wa) -p1 +
(T4 wi) (1 +wi-1) -pi2+
(1+w;) - pi-1+
pi+d

Denote by x; the coefficient of X in the above equation, and let y; = C; —x;A —d. Define zg =1
and yo =0. Then fori=1,...,¢,

z; = (1 4+ wi)w; 1 and y; = (1 +wy)yi 1+ pi. (12)

Note that with this notation, the last tardy job Jy is completed at time Cp = oA + yy + d.]

Now let @« = 2 and f = 4. For k = 1,...,n define the input vector X} = [pg, wi]. A state
[s1, s2, 83, 54] encodes a partial schedule for the first & jobs Ji, ..., Jk:

e s; is the total processing time of the early jobs.

e sg is the product of the values (1 4+ w;) where j runs over all tardy jobs; in other words,
s2 is the current z-coefficient in the completion time of the tardy jobs in Lemma 8.5.

e s3 is the current y-coefficient in the completion time of the tardy jobs in Lemma 8.5.

22

e 34 is the total processing time of the suspended jobs.

The set F consists of three functions: F} schedules job J; early, F5 schedules job J; tardy, and
F3 makes Ji a suspended job.

Fl(pkawk731a52a53734) = [31 +pka 82, 83, ’54]
FQ(pkawk;31732as3as4) = [817 82(1"'11]]9), 33(1+wk)+pk; 84]
F3(pk7wk531552133584) = [31’ $2, 83, S4 +pk+w/€(D_d)]

These functions are justified by the recursion in (12). Moreover, set H1(pg, wg, 1, S2, 83, S4) =
s1 —d, Hy =0, and Hs = 0. Finally, initialize Sy by {[0,0,0,0]} and set

G(s1, 82, 83, 84) = 82 - max{0,s1 — d} + s3 + d + s4.

Intuitively, G adds the total processing time s4 of the suspended jobs to the last completion
time of a tardy job.

The reader should observe the following: Function H; controls the total processing time of
the early jobs; as soon as s; exceeds d, no more job can be scheduled early. Function Hs does
not prevent any job from being scheduled tardy. Hence, in some states the total processing
time of the tardy jobs may be much larger than D — d, and the last tardy job may actually be a
suspended job. In this case, however, the whole state will be dominated by another state that
instead assigns the last tardy job as suspended job.

Benevolence. Consider the degree-vector D = [1,1,1,1], the quasi-linear order <., and the
trivial dominance relation. Then by Lemma 7.1, Conditions C.1, C.3(ii), and C.2 are fulfilled.
Condition C.3(i) holds for g = 1: If S = [s1, s9, 3, 84] is [D, A]-close to S’ = [s], s, s5, 4] and if
S <qua 9, then 8§ < s; and s < Asy for ¢ = 2,3,4. Hence, G(S') < AG(S). Since the technical
Condition C.4 is easy to verify, we get that problem 1|deteriorate|Cpax is cc-benevolent.

Corollary 8.6 (Kovalyov & Kubiak [25], 1998)
The scheduling problem 1|deteriorate|Cmax has an FPTAS. n

8.5 Total late work on a single machine

The problem. In the scheduling problem 1||}_ V;, the input consists of n jobs J; with positive
integer processing times p; and due dates d; (j = 1,...,n). All jobs are available for processing
at time 0; preemption is not allowed. Denote by C; the completion time of job J; in some
schedule.

e If C; < dj, then job J; is early and V; = 0.

e If d; < C; < dj+ pj, then job J; is partially early and V; = C; — d;.

o If d;j + p; < Cj, then job J; is late and V; = p;.

In other words, the late work V; measures the processing of job J; that is done after the due
date dj. The goal is to schedule the jobs on a single machine such that the total late work is

23

minimized. Problem 1|| Y V; is N'P-hard in the ordinary sense (Potts & Van Wassenhove [37])
and it has an FPTAS (Potts & Van Wassenhove [38]).

The dynamic program. We renumber the jobs such that di < dy < --- < d,,. Potts & Van
Wassenhove [37] show that under this numbering, there always exists an optimal schedule in
which all early and partially early jobs are processed before all late jobs, and in which the early
and partially early jobs are processed in increasing order of index.

Now let @« =2 and 8 = 2. For k = 1,...,n define the input vector Xy = [pk,d]- As in the
preceding sections, a state S = [s1, s2] in S;, encodes a partial schedule for the first k£ jobs: The
critical coordinate s; measures the total processing time of the scheduled early and partially
early jobs, and so measures the total late work in the schedule. Define functions F; and Fb:

Fi(pk,di,s1,s2) = [s1+pk, s2+ max{0,s1 +pr — di}]
Fy(pr,dg, 51,52) = [s1, S2+ i)

Intuitively speaking, the function F; schedules job J; as early or partially early job. In this
case the completion time of J; will be Cp = s1 + pg, and the late work V will be equal to
max{0, Cx — dx} = max{0,s; + px — di}. Function F5 schedules job Jj as late job with late
work Vi = pg. For all functions H € H, H = 0 holds. Finally, set G(s1, s2) = s2 and initialize
the state space Sp = {[0,0]}.

Benevolence. Consider the degree-vector D = [1, 1] and the dominance relation
[31532] =dom [SllaSIQ] — 511 <s; and 312 < s9. (13)

The critical coordinate quasi-linear order clearly is an extension of this dominance relation.
Condition C.2 is trivially fulfilled. The function G is a polynomial and satisfies Condition
C.3(i) with ¢ = 1; Condition C.3(ii) is fulfilled since G is non-decreasing in s; and in ss.
Condition C.1(ii) is satisfied since every coordinate of the functions F; and F5 is non-decreasing
in s1 and in sg, and also the technical Conditions C.4 are easy to verify.

It remains to verify the Condition C.1(i). Since function Fj is not a vector of polynomial
functions, we cannot invoke Lemma 7.1(i). We will give a direct proof instead.

Lemma 8.7 The described dynamic programming formulation with the degree-vector D = [1,1]
and the dominance relation in (13) satisfies Condition C.1(i) on the functions in F.

Proof. Consider a real number A > 1, a positive integer vector X = [p,d], and two vectors
S = [s1,82] and S’ = [s], s5] that fulfill S <., S" and that are [D, A]-close to each other. Hence,

1
st <s1 and x5 < sy < As; fori=1,2. (14)

First, let us show that function F; satisfies Condition C.1(i). From (14), from p > 0, and from
A > 1, we infer that
1

F(61+p) < sitp < A +p). (15)

From s} < s we conclude max{0, s} + p — d} < max{0,s; + p — d}, which together with
sh/A < s9 yields that

1
Z(s'g + max{0, s} +p —d}) < s2+ max{0,s1 +p —d}. (16)

24

Now we distinguish two cases. In the first case, we assume that
89 + max{0,s; +p —d} < A(sy+ max{0,s] +p — d}). (17)

Then (15), (16), and (17) together yield that Fy(X,S) is [D, Al-close to Fi(X,S’). Moreover,
from s} +p < s1 + p we get that F1(X,S) <. Fi1(X,S"). Hence, F; satisfies Condition C.1(i)
in the first case. In the second case, we assume that (17) does not hold. As an immediate
consequence, so+max{0, s1+p—d} > sh+max{0, s] +p—d} holds. Together with s} +p < s1+p,
this implies that F;(X,S) dominates F;(X,S’), and that F; satisfies Condition C.1(i).
Summarizing, in each of the cases function F; satisfies Condition C.1(i). Since F5 is a vector
of polynomials, we get from the proof of Lemma 7.1(i) that F» also satisfies Condition C.1(i). m

To summarize, problem 1| | " Vj is a cc-benevolent optimization problem, and Theorem 3.5
can be applied to it.

Corollary 8.8 (Potts & Van Wassenhove [38], 1992)
The scheduling problem 1|| 3" V; possesses an FPTAS. n

8.6 Total weighted late work on a single machine

The problem. This section is closely related to the preceding section; we will mainly discuss
the updates and the differences to the approach for the unweighted problem. In the weighted
problem 1| |} w;Vj, a job J; (j = 1,...,n) is specified by its processing time p;, its due date
d;, and its weight w;. The goal is to schedule the jobs on a single machine such that the total
weighted late work is minimized. Problem 1|| Y w;V; is N'P-hard in the ordinary sense, since it
contains 1|| Y- V; as a special case. Kovalyov, Potts & Van Wassenhove [26] describe an FPTAS
for 1| | - w; V.

The dynamic program. Renumber the jobs such that d; < dy < --- < d, holds. The main
difference to the unweighted problem is that in an optimal schedule for the weighted problem,
the early and partially early jobs need not be scheduled in strict increasing order of index.

Proposition 8.9 (Hariri, Potts & Van Wassenhove [17])
There always exists an optimal schedule of the following form: Let o denote the sequence of
early and partially early jobs. Then for each job J;j in o there is at most one other job J; in

o that has a smaller due date than j but is scheduled after J; in o (such a job J; is called a
deferred job).

Let « = 3 and = 5. For k = 1,...,n define the input vector X, = [py, di, wg|; moreover,
there is a dummy vector X,41 = [0,0,0]. As above, the critical coordinate s; in a state
[s1, 82, S3, 84, S5] measures the total processing time of the scheduled early and partially early
jobs, and so measures the total weighted late work in the partial schedule. The three additional
coordinates s3, s4 and ss5, respectively, store the processing time, the due date, and the weight
of a deferred job.

Fi(pg, d, wg, 51,52,83,54,55) = [S1+ Dk, S2 + wpmax{0,s; +py — d}, S3, S4, 5]
F>(p, di, wg, 51,52, 83,54,85) = [S1, S2+ Dk, $3, S4, S5]
F3(pk, dg, wg, 81, 2, 83, 84,85) = [s1+ 83, 2 + s5max{0,s1 + s3 — sa}, Pk, di, w]

25

Fy schedules Ji, immediately as early or partially early job. F5 schedules J; immediately as late
job. F3 schedules the deferred job stored in s3, s4 and s5 as early or partially early job, and it
stores Ji as the new deferred job. The dummy vector X, 1 ensures that the last (deferred or
non-deferred) non-late job can be scheduled. For all functions H € H, H = 0 holds. Set

n
G(Sl, 82,83, 84, 35) = 89+ 83 Z wW;P;-
j=1
Observe that the coefficient of s3 in G equals the objective value of a schedule in which all
jobs are processed late. Hence, in the cases where s3 is non-zero, the value of function G
becomes prohibitively large. In the remaining cases, s3 equals zero and the dummy vector
X, 41 constitutes the final deferred job. Finally, initialize the state space Sy = {[0,0,0,0,0]}.

Benevolence. Consider the degree-vector D = [1,1,0,0,0] and the dominance relation

!
[31532533,34a35] =dom [31532,33,34535] <~

sp<sp for£=1,2, and s; =5y for £ =3,4,5

The critical coordinate quasi-linear order is an extension of this dominance relation. Condi-
tions C.2, C.3, and C.1(ii) are satisfied. Condition C.1(i) can be verified by arguments that are
analogous to those in Lemma 8.7. Summarizing, problem 1||” w;Vj is cc-benevolent.

Corollary 8.10 (Kovalyov, Potts & Van Wassenhove [26], 1994)
The scheduling problem 1|| Y w;V; possesses an FPTAS. m

9 Discussion of DP-benevolence

In this section we briefly discuss the Conditions C.1-C.4 on DP-benevolence.

Let us start our discussion with the technical Condition C.4. Although the statements
in this condition look harmless at first sight (all elementary steps in the dynamic program
should be performable in polynomial time), they in fact are very restrictive. There are dynamic
programming formulations that use steps like the following:

For i =1 to B do
Update every state in the old state space

In case B is encoded in binary, the running time of the dynamic program will be pseudo-
polynomial. One example for such a dynamic program is Lawler’s dynamic programming
formulation [29] for the total tardiness problem 1||> 7. Another example is the dynamic
programming formulation of Florian, Lenstra & Rinnooy Kan [11] for economic lot-sizing.
Dynamic programming formulations of this type are not covered by Theorem 3.5. The
number of update steps in every for-loop (= cardinality of F) is exponential in log B (= logT).
Hence, Condition C.4(ii) is violated and our main result in Theorem 3.5 cannot be applied. One
way to work around this situation would be to modify TDP as follows: We do not first expand
the old state space Tp_1 to U, and then trim Uy down to Ti. Instead, we try to compute

26

Tr directly from T_1. We look at the partition into A-boxes, and we check for every A-box
whether some state in 7; 1 and some function in F will lead to a state in this specific A-box.
If F is sufficiently nicely structured, this checking can be done in polynomial time for every
A-box. Since the total number of A-boxes is polynomial, this then would yield a polynomial
time computation of 7;. However, it seems that the set F must be highly structured and
severely restricted in order to make this modification go through in polynomial time. In all
applications that we can think of, the rounding-the-input-data technique yields a much simpler
and more direct way to an FPTAS. This is especially true for the two problems mentioned
above, the total tardiness problem and the economic lot-sizing problem. Lawler [31] uses his
dynamic programming formulation as a basis for an FPTAS via the rounding-the-input-data
technique, and Van Hoesel and Wagelmans [40] develop an FPTAS for economic lot-sizing that
is also based on the rounding-the-input-data technique.

Next, let us discuss Condition C.3 on the function G. In Sections 9.1 and 9.2, we will exhibit
two optimization problems. Both of them are very ‘close’ to being DP-benevolent: Both of them
are DP-simple, and for both of them the dynamic programming formulation fulfills Conditions
C.1, C.2, and C.4. For both of them, Condition C.3 is not fulfilled (except in the uninteresting
case where all entries of the degree-vector are zero); cf. equations (18) and (20) below. The first
problem provably does not possess an FPTAS unless P = NP. The second problem possesses
an FPTAS that is based on a more elaborate implementation of the trimming-the-state-space
technique. We do not know how to formally capture the difference between these two functions.

Finally, in Section 9.3 we will describe an optimization problem that has a DP-formulation
that fulfills the Conditions C.3, C.2, and C.4, but does not fulfill Condition C.1. Again, the
problem is very ‘close’ to being DP-benevolent, but it provably does not possess an FPTAS
unless P = N'P.

9.1 A variant of the partition problem that does not have an FPTAS

The problem. In the partition problem, the input consists of n positive integers p1,...,pn.
The standard version of the partition problem asks whether there exists an index set K such
that 3 pcx Pk = 2g¢x Pk holds. This problem is NP-hard in the ordinary sense (Karp [23]).
We will consider a variant of the partition problem where the goal is to find an index set K
that minimizes the objective function (Y pcx Pk — Zkex pr)?. Since the objective value in this
variant equals zero if and only if the standard version has answer YES, the variant is also N'P-
hard in the ordinary sense. Moreover, the variant cannot possess an FPTAS unless P = NP,
since the FPTAS could be used to decide in polynomial time whether the optimal objective
value equals zero.

The dynamic program. We recycle the dynamic programming formulation for problem P2||Cpax
in Section 6.1: Let & = 1 and 8 = 2, and define input vectors X = [px] for k = 1,...,n. The
set F consists of two functions Fi(pg, s1,82) = [s1 + pk, s2] and Fa(pg, s1,82) = [s1, 82 + pkl-
The function G is changed to

G(81,82) = (81—82)2. (18)

We set Hy(pg, s1,52) = 0 and Ha(pg, s1,82) = 0. Moreover, the initial state space Sy is set to

{[0, 0}

27

Discussion. If we choose =4, to be the trivial relation and <4, to be the universal relation,
then it is easy to find degree-vectors D € IN? for which the described DP formulation fulfills
the three Conditions C.1, C.2, and C.4. However, the following lemma (which is proved in
Appendix A) shows that not all Conditions C.1-C.4 can be fulfilled simultaneously.

Lemma 9.1 For any degree-vector D, one of the Conditions C.3(i) and C.4(iv) is not fulfilled.

Hence, Theorem 3.5 cannot be applied to this DP formulation.

9.2 Completion time variance on a single machine

The problem. In the scheduling problem 1| |CTV, the input consists of n jobs J; with positive
integer processing times p; (j = 1,...,n). All jobs are available for processing at time —oo.
The goal is to schedule the jobs without preemption on a single machine such that the objective
function

2 Ci—-(3.C) (19)

is minimized. The quantity in (19) measures the variance of the job completion times. The
problem 1| |CTV is NP-hard in the ordinary sense (Kubiak [27]) and possesses an FPTAS (Cai
[8] and Woeginger [41]).

The dynamic program. We renumber the jobs such that p; < py < --- < p, holds. Eilon &
Chowdhury [10] observe that under this numbering, there always exists an optimal schedule
which does not contain any idle time, in which some job is completed at time 0, in which the
jobs with non-positive completion times are processed in decreasing order of index, and in which
the jobs with positive completion times are processed in increasing order of index.

Let « = 1 and f = 5. For k = 1,...,n define the input vector X, = [pg]. A state
S = [s1, 892,83, 84, 85] in Sk encodes a partial schedule where s; (respectively s9) is the total
processing time scheduled before time 0 (respectively, after time 0), s3 (respectively s4) is the
sum of the absolute values of the job completion times before time 0 (respectively, after time 0),
and s5 is the sum of the squared job completion times.

Fi(pk, 51,589, 83,54,85) = [s1+ Dk, S2, 83+ 81, 84, 85+ (51)%]
F>(pk, 81,52, 83,54,55) = [S1, S2+ Dk, S3, Sa+ S2+ D, S5+ (52 +Pk)2]

Similarly as in the DP in Section 6.5, the function F3 puts Ji at the left end of a partial schedule
and function F5 puts J at the right end.
1
G(s1,52,83,84,85) = S5 — 5(54 — s3)2 (20)

All functions H € H are set H = 0. The initial state space Sy is set to {[0,0,0,0,0]}.

Discussion. For the degree-vector D = [1,1,1,1,2], for the trivial relation <4,,, and for the
universal relation <4, the described DP formulation fulfills the Conditions C.1, C.2, and C.4.
By similar arguments as in the proof of Lemma 9.1, we see that function G does not satisfy

28

the Condition C.3(i), and again Theorem 3.5 cannot be applied to the DP formulation. Nev-
ertheless, the problem 1||CTV does possess an FPTAS. Woeginger [41] constructs an FPTAS
by applying the trimming-the-state-space technique twice: Once the technique is applied to
the dynamic program described above, and once it is applied to the dynamic program whose
zero-point is shifted by p; time units to the right. It can be shown that one of the two resulting
approximations will be within 1 + ¢ of the optimal solution.

9.3 A variant of the knapsack problem that does not have an FPTAS

The problem. In the 2-weighted knapsack problem, the input consists of n triples of positive
integers (pg, vk, wy) and a positive integer W. The py are called profits, the vy and wy, are called
weights, and W is called the weight bound. The goal is to select an index set K C {1,...,n}
such that the selected weight obeys the weight bound

(D w)?+ (D0 w)? < W, (21)
keK keEK

and such that the selected profit >, x pr is maximized. The 2-weighted knapsack problem is
NP-hard in the ordinary sense, since it contains the 0/1-knapsack problem in Section 8.1 as a
special case. The following lemma is proved in Appendix A.

Lemma 9.2 Unless P = NP, the 2-weighted knapsack problem does not have an FPTAS.

The dynamic program. Let « = 3 and 8 = 3. For k£ = 1,...,n define the input vector
Xy = [pk, vk, wg]- A state S = [s1, 82, s3] in S; encodes a partial solution for the first k indices:
The coordinate s; stands for the total selected v-weight, coordinate so stands for the total
selected w-weight, and s3 stands for the total selected profit in the partial solution. Let the set
F consist of two functions F; and Fj.

Fi(vg, Wk, pr, 1, 52,83) = [s1+ Uk, 82+ wg, $3+ pi)
Fo(vg, wgy P, S1,82,83) = [s1, S2, 3]

Similarly as in the DP formulation in Section 8.1, function F; adds the index & to the partial
solution, whereas function F5 does not add it. The functions Hy and Hs correspond to F; and
F,, respectively.

Hl('l)k,’wk,pk, 81,82,83) = (81 + ’Uk)2 + (82 + wk)2 4

Hj (v, W, Pk 81, 82,83) = 0.
Finally, define G(s1, s2, s3) = s3 and Sp = {[0,0, 0]}.
Discussion. Let D = [1,1,1] and let <4y, be the trivial relation. Consider the following
quasi-linear order =<,, on IN?: For S = [s1,s92,53] and S’ = [s,5h,54], S =<qua S' holds iff
(81)% + (s5)? < (s51)? + (s2)%2. Then the described DP formulation fulfills Conditions C.2, C.3,

and C.4. However, it can be shown that it does not fulfill Condition C.1(i). Consequently,
Theorem 3.5 cannot be applied.

The 2-dimensional knapsack problem is very similar to the 2-weighted knapsack problem:
the input consists of n triples of positive integers (pg, vk, wx) and two positive integers V' and

29

W. The goal is to select an index set K C {1,...,n} such that the selected weight obeys the
weight bounds

o <V and dwp < W,
kEK keK

and such that the selected profit) ;. px is maximized. Similarly as in Lemma 9.2, one can
show that the existence of an FPTAS for the 2-dimensional knapsack problem would imply
P = N'P. Again, Theorem 3.5 cannot be applied.

10 Conclusion

As main contribution of this paper, we have introduced the concept of DP-benevolence of a
combinatorial optimization problem. We have shown that every DP-benevolent optimization
problem is fully polynomial time approximable. We have demonstrated the strength and the
generality of the concept of DP-benevolence by a sequence of illustrating examples: Many of
the fully polynomial time approximation schemes that were developed during the last 25 years
just are simple special cases of our main result in Theorem 3.5.

11 Acknowledgements

I acknowledge valuable discussions with Amos Fiat, Han Hoogeveen, Bettina Klinz, Glnter
Rote, Petra Schuurman, and Leen Stougie. Moreover, I thank Gunter Rote for correcting
several mistakes in one of the preliminary versions of this paper.

This work has been supported by the START program Y43-MAT of the Austrian Ministry
of Science. An extended abstract of this paper has appeared in the Proceedings of the tenth
Annual ACM-SIAM Symposium on Discrete Algorithms, January 1999.

A Appendix: Proofs of the technical lemmas

The proofs of Lemmas 5.1 and 7.1 are elementary. They are mainly based on simple algebraic
manipulations and on the rewriting of expressions.

Proof of Lemma 5.1(i). Let F : IN® x IN® — IN? be a function that fulfills the properties in
the statement of the lemma. Hence, F' can be represented as a vector [fi,..., fg] of functions
fo: Nt 5 IN with 1 < £ < 8. Every function f; in this vector is a polynomial in a + S
variables that may be written as

a B
fl(zla"'aa:aayla'“ayﬂ) = Z CE,K'H'TSZH:U]’]' (22)
=1 =1

K=(a1,...,Q0,b15...,03)

30

The summation is over all tuples K in IN®*t2_ All coefficients ¢,k are non-negative and only a
finite number of them is positive. Since deg(f,fD)) < dy, every tuple K = (a1,...,0q,b1,...,b3)
in the summation with positive coefficient c¢ x fulfills

> dib; < dp. (23)

Let A > 1 and let X € IN* with X = (z1,...,24). Let S,5" € IN? be two vectors with
S = [s1,...,s5] and §' = [s},...,s}] that are [D,A]-close to each other. Consider the ¢-th
coordinate, 1 < £ < 3, of F(X,S) and of F(X,S’). Consider some fixed monomial specified by

a tuple K = (a1,...,0q,b1,...,bg) with positive coefficient cy x in this coordinate. Then
o B
coe Tt TT8 % 0 < e ot TGP < e [Tt T[0%
j=1 =1 j=1 j=1

where we applied the definition of [D, A]-closeness in (1). Rewriting yields

4 - LA = d d;b; CE
e+ (& T [T [T % < cone- TTat T0% < cre - (A55%%) T a2 T] o,
=1 j=1 i=1 j=1 3

and applying (23) yields

a B a B a B
co i (A™%) H z; H sl;-j < ¢k - H z; H(s;-)bf < e - (A%) H ;" H s?ﬁ (24)
i=1 j=1 i=1 j=1 i=1 =1
Adding up (24) over all tuples K gives
A_de fZ(XaS) < fE(XaS,) < Adl f@(XaS) (25)

for every £ with 1 < £ < . In other words, F(X,S) is indeed [D, Al-close to F(X,S') and
Condition C.5 is fulfilled. This completes the proof of Lemma 5.1(i). [

Proof of Lemma 5.1(ii). Let G : IN® — IN be a polynomial function with non-negative
coefficients. Hence, G may be written as

B
b.
G(y1,---,yp) = > cax- [y (26)
j=1

K=(b1,.-,bg)

All coefficients ¢, x are non-negative and only a finite number of them is positive. Define

= max{ Zd b = (b1,...,bs) with cg,x > 0}. (27)

Note that the value of g only depends on function G and on the degree-vector D.

31

Let A > 1 and let S = [s1,...,s5] and S" = [s},...,sp] be two vectors in IN? that are
[D, Al-close to each other. Consider some fixed monomial specified by a tuple K = (b1,...,bg)
n (26). Then

B B B
cai - [[(A % -55)% < car- [[(5h)Y < car- [[(AY -s5)%
j=1 j=1 j=1
Rewriting and using the definition of g yields
. 5 .
ca,x - (AT9) H s/ < caK- H(s;-)bf < cqi - (A9) H s (28)
j=1 7j=1 7j=1

By adding up (28) over all tuples K, we get that Condition C.3(i) holds for G. This completes
the proof of Lemma 5.1(ii). [

Proof of Lemma 7.1. Consider statement (i). Let F' € F be a vector [fi,..., fg] of
polynomial functions IN**? — IN with non-negative coefficients. Moreover, let the value of
function f1(X,S) only depend on X, on the critical coordinate of S, and on those coordinates
¢ of S for which the entry d; in the degree-vector equals 0. Let X € IN®. Let §,5" € IN?
be two [D, A]-close vectors with S <., S’. Then by Lemma 5.1(i), F(X,S) is [D, Al-close to
F(X,S'). Since with the exception of the critical coordinate, the [D, A]-close vectors [X, S]
and [X, S'] agree in all coordinates that are relevant for the evaluation of f1, S <. S’ implies
fi(X,8") < fi(X,S). Consequently, F(X,S) <. F(X,S') holds and the function F fulfills
Condition C.1(i). This proves statement (i).

The proof of statement (ii) is similar to the proof of statement (i): Observe that the values
of H(X,S) and H(X,S’) only depend on coordinates in which [X, S] and [X, S] do agree and
on the critical coordinate. Furthermore, H(X,S) is non-decreasing in the critical coordinate.
Statement (iii) is identical to statement (ii) in Lemma 5.1, and the proof of statement (iv) is
straightforward. This completes the proof of Lemma 7.1.]

Proof of Lemma 9.1. Consider a degree-vector D = [d,dp] € IN? that fulfills Condi-
tion C.4(iv). If the cardinalities of V;(I) and of Va(I) are not polynomially bounded in n and
log Z, the statement in Condition C.4(iv) implies d; > 1 and dy > 1 for the entries in D.

Now consider an arbitrary A > 1. Let z; and 29 be positive integers with z; # 29 and

%21 < 29 < Az;. Then the vectors S = [21,21] and S' = [21, 22] are [D, A]-close to each other.
Since G(S) = 0 and G(S’) > 0, Condition C.3(i) is violated.]

Proof of Lemma 9.2. We use the following AN'P-hard variant of the partition problem (cf.
Garey & Johnson [13]): The input consists of 2m positive integers a1, ..., as, that sum up to
2A and that fulfill A/(m + 1) < a < A/(m — 1) for K =1,...,2m. The problem is to decide
whether there exists an index set K such that >, ar = A holds.

Consider the following instance of 2-weighted knapsack with n = 2m items: For k =
1,...,2m, item k has profit p;, = 1, weight vy = (m+1)A—may and weight wy, = (m—1)A+ma.
The weight bound is W = 2m*A2. Now suppose that the two-dimensional knapsack problem
does possess an FPTAS. Set € = ZL and call the FPTAS for the constructed instance.

m

32

First assume that the FPTAS returns a solution K with profit at least m; hence, |K| > m
holds. Denote Z =), - aj. Then the restriction imposed by the weight bound becomes

[(m +1)A|K| —mZP? + [(m — 1)A|K| +mZ]? < 2m*A% (29)

The left-hand side of (29) is a convex function in Z that takes its unique minimum at Z =
%A|K |. The corresponding minimum value is 2m?|K|?A2. Since |K| > m, the inequality in
(29) yields |K| = m and Z = A. Consequently, the index set K constitutes a solution to the
partition problem.

Next assume that the partition problem possesses a solution K with), ar = A. Since
A/(m +1) < a < A/(m — 1) holds for all k, this yields |[K| = m. Then the index set K
constitutes a feasible solution to the 2-weighted knapsack problem with total profit |K| > m.
By the choice of €, the approximate objective value that is computed by the FPTAS must be at
least (1 —¢)m > m — 1. Since the objective function only takes integer values, the approximate
objective value must be at least m.

Summarizing, the FPTAS would find in polynomial time a solution with profit at least m
for the 2-weighted knapsack problem if and only if the partition problem has a solution.]

References

[1] G. AusiELLO, P. CRESCENZI, AND M. PrROTASI, 1995. Approximate solution of NP opti-
mization problems, Theoretical Computer Science 150, 1-55.

[2] G. AusiELLO, A. D’ATRI, AND M. PROTASI, 1980. Structure preserving reductions among
convex optimization problems, Journal of Computer and Systems Sciences 21, 136-153.

[3] G. AUSIELLO, A. MARCHETTI-SPACCAMELA, AND M. PROTASI, 1980. Toward a unified
approach for the classification of NP-complete optimization problem, Theoretical Computer
Science 12, 83-96.

[4] R.E. BELLMAN AND S.E. DREYFUS, 1962. Applied Dynamic Programming, Princeton
University Press.

[6] S. BROWNE AND U. YECHIALIL 1990. Scheduling deteriorating jobs on a single processor,
Operations Research 38, 432-450.

[6) P. BRUCKER AND M.Y. KOVALYOV, 1996. Single machine batch scheduling to minimize
the weighted number of late jobs, ZOR - Mathematical Methods of Operations Research
438, 1-8.

[7] J.L. BrunNO, E.G. COFFMAN, JR., AND R. SETHI, 1974. Scheduling independent tasks
to reduce mean finishing time, Communications of the ACM 17, 382-387.

[8] X. CAI1, 1995. Minimization of agreeably weighted variance in single machine systems,
FEuropean Journal of Operational Research 85, 576-592.

33

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Z.-L. CHEN, 1996. Parallel machine scheduling with time dependent processing times,
Discrete Applied Mathematics 70, 81-9.

S. EiLoN AND I.G. CHOWDHURY, 1977. Minimizing waiting variance in the single machine
problem, Management Science 23, 567-575.

M. FroriaN, J.K. LENSTRA, AND A.H.G. RINNOOY KAN, 1980. Deterministic produc-
tion planning: algorithms and complexity, Management Science 26, 669-679.

M.R. GAREY AND D.S. JOHNSON, 1978. ‘Strong’ NP-completeness results: motivation,
examples, and implications, Journal of the ACM 25, 499-508.

M.R. GAREY AND D.S. JOHNSON, 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San Francisco.

G.V. GENs AND E.V. LEVNER, 1981. Fast approximation algorithms for job sequencing
with deadlines, Discrete Applied Mathematics 3, 313-318.

R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, AND A.H.G. RINNOOY KAN, 1979. Opti-
mization and approximation in deterministic sequencing and scheduling: a survey, Annals
of Discrete Mathematics 5, 287-326.

N.G. HALL AND M.E. POSNER, 1991. Earliness-tardiness scheduling problems, I: weighted
deviation of completion times about a common due date, Operations Research 39, 836—846.

A.M.A. HAriri, C.N. PorTs, AND L.N. VAN WASSENHOVE, 1995. Single machine
scheduling to minimize total weighted late work, ORSA Journal on Computing 7, 232—
242,

D.S. HocuBauM AND D. LANDY, 1994. Scheduling with batching: minimizing the
weighted number of tardy jobs, Operations Research Letters 16, 79-86.

E. HOrROWITZ AND S. SAHNI, 1974. Computing partitions with applications to the knap-
sack problem, Journal of the ACM 21, 277-292.

E. HOROWITZ AND S. SAHNI, 1976. Exact and approximate algorithms for scheduling
nonidentical processors, Journal of the ACM 23, 317-327.

O. IBARRA AND C.E. Kim, 1975. Fast approximation algorithms for the knapsack and
sum of subset problems, Journal of the ACM 22, 463—468.

B. JuriscH, W. KUBIAK, AND J. JOZEFOWSKA, 1997. Algorithms for minclique scheduling
problems, Discrete Applied Mathematics 72, 115-1309.

R.M. KARP, Reducibility among combinatorial problems, 1972. In R.E. Miller and J.W.
Thatcher, editors, Complezity of Computer Computations, Plenum Press, New York, 85—
104.

M.Y. Kovaryov AND W. KUBIAK, 1998. A fully polynomial time approximation scheme
for the weighted earliness-tardiness problem, to appear in Operations Research.

34

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

M.Y. KovaLyov AND W. KUBIAK, 1998. A fully polynomial time approximation scheme
for minimizing makespan of deteriorating jobs, Journal of Heuristics 3, 287-297.

M.Y. KovarLyov, C.N. PorTs, AND L.N. VAN WASSENHOVE, 1994. A fully polynomial
approximation scheme for scheduling a single machine to minimize total weighted late
work, Mathematics of Operations Research 19, 86-93.

W. KuBIAK, 1993. Completion time variance on a single machine is difficult, Operations
Research Letters 14, 49-59.

W. KuBIAK AND S.L. VAN DE VELDE, 1998. Scheduling deteriorating jobs to minimize
makespan, to appear in Naval Research Logistics.

E.L. LAWLER, 1997. A ‘pseudopolynomial’ algorithm for sequencing jobs to minimize total
tardiness, Annals of Discrete Mathematics 1, 331-342.

E.L. LAWLER, 1979. Fast approximation schemes for knapsack problems, Mathematics of
Operations Research 4, 339-356.

E.L. LAWLER, 1982. A fully polynomial approximation scheme for the total tardiness
problem, Operations Research Letters 1, 207-208.

E.L. LAWLER, J.K. LENSTRA, A.H.G. RiNNOOY KAN, AND D.B. SHMOYS, 1993. Se-
quencing and scheduling: Algorithms and complexity, in: S.C. Graves, A.H.G. Rinnooy
Kan, and P.H. Zipkin (eds.) Logistics of Production and Inventory, Handbooks in Opera-
tions Research and Management Science 4, North-Holland, Amsterdam, 445-522.

E.L. LAWLER AND J.M. MOORE, 1969. A functional equation and its application to
resource allocation and sequencing problems, Management Science 16, 77-84.

J.K. LENSTRA, 1977. Unpublished manuscript.

J.K. LENSTRA, A.H.G. RINNOOY KAN, AND P. BRUCKER, 1977. Complexity of machine
scheduling problems, Annals of Discrete Mathematics 1, 343-362.

A. PAzZ AND S. MORAN, 1981. Non deterministic polynomial optimization problems and
their approximations, Theoretical Computer Science 15, 251-277.

C.N. PorTs AND L.N. VAN WASSENHOVE, 1992. Single machine scheduling to minimize
total late work, Operations Research 40, 586—595.

C.N. PoTTs AND L.N. VAN WASSENHOVE, 1992. Approximation algorithms for scheduling
a single machine to minimize total late work, Operations Research Letters 11, 261-266.

S. SAHNI, 1976. Algorithms for scheduling independent tasks, Journal of the ACM 23,
116-127.

C.P.M. VAN HOESEL AND A.P.M. WAGELMANS, 1997. Fully polynomial approximation
schemes for single-item capacitated economic lot-sizing problems, Economic Institute Re-
port 9735/A, Erasmus University Rotterdam.

35

[41] G.J. WOEGINGER, 1998. An approximation scheme for minimizing agreeably weighted
variance on a single machine, Technical Report Woe-21, TU Graz, Austria.

36

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

