Electronic Colloquium on Computational Complexity, Report No. 85 (2001)

Resource augmentation for online
bounded space bin packing *

JANOs CSIRIK | GERHARD J. WOEGINGER

Abstract

We study online bounded space bin packing in the resource augmentation model of
competitive analysis. In this model, the online bounded space packing algorithm has to
pack a list L of items in (0,1] into a small number of bins of size b > 1. Its performance
is measured by comparing the produced packing against the optimal offline packing of the
list L into bins of size 1.

We present a complete solution to this problem: For every bin size b > 1, we design
online bounded space bin packing algorithms whose worst case ratio in this model comes
arbitrarily close to a certain bound p(b). Moreover, we prove that no online bounded space
algorithm can perform better than p(b) in the worst case.

Keywords. Online algorithm, competitive analysis, resource augmentation, approximation
algorithm, asymptotic worst case ratio, bin packing.

1 Introduction

Resource augmentation (or extra-resource analysis) is a technique for analyzing online algo-
rithms that was introduced in 1995 by Kalyanasundaram & Pruhs [4]. It is a relaxed notion of
competitive analysis in which the online algorithm is given better resources than the optimal
offline algorithm to which it is compared. This is e.g. the case, if the machines of the online
algorithm run at slightly higher speed than those of the offline algorithm, or if the online al-
gorithm has more machines than the offline algorithm, or if the production deadlines of the
online algorithm are less stringent than those of the offline algorithm. The main idea behind the
resource augmentation technique is to give the online algorithm a fairer chance in competing
against the omniscient and all-powerful offline algorithm from classical competitive analysis.
During the last few years the resource augmentation technique has become a very popular tool,
and it has been applied to many problems in scheduling (cf. e.g. Phillips, Stein, Torng & Wein

*A preliminary version of this paper appeared in the Proceedings of the 27th International Colloquium on
Automata, Languages and Programming,LNCS 1853, Springer Verlag, 2000, 296-304.

"E-mail csirik@inf.u-szeged.hu. Department of Computer Science, University of Szeged, Aradi vértanik
tere 1, H-6720 Szeged, Hungary.

YE-mail gwoegi@opt.math.tu-graz.ac.at. Institut fiir Mathematik, TU Graz, Steyrergasse 30, A-8010 Graz,
Austria. Supported by the START program Y43-MAT of the Austrian Ministry of Science.

ISSN 1433-8092

RESOURCE AUGMENTATION IN ONLINE BIN PACKING 2

[8] and Edmonds [3]), in paging (Albers, Arora & Khanna [1]), and in combinatorial optimiza-
tion (Kalyanasundaram & Pruhs [5]). In this paper we will study online bounded space bin
packing in this resource augmentation model.

In the classical bin packing problem, a list L = (aj,ag,...) of items a; € [0,1] has to
be packed into the minimum number of unit-size bins. The offfine optimum OPT;(L) is the
minimum number of unit-size bins into which the items in L can be fit. A bin packing algorithm
is called online if it packs all items a; solely on the basis of the sizes of the items a;, 1 < j <4,
and without any information on subsequent items. A bin packing algorithm uses k-bounded
space if for each item a;, the choice of bins to pack it into is restricted to a set of k or fewer active
bins. Each bin becomes active when it receives its first item, but once it is declared inactive (or
closed), it can never become active again. An online bounded space bin packing algorithm is
an online algorithm that uses k-bounded space for some fixed value £ > 1. The bounded space
restriction models situations in which bins are exported once they are packed (e.g., in packing
trucks at a loading dock that has positions for only k trucks, or in communication channels
with buffers of limited size in which information moves in large fixed-size blocks).

We investigate the behavior of online bounded space bin packing algorithms that pack the
list L into bins of size b > 1. This larger bin size b is the augmented resource of the online
algorithm; the offline algorithm has to work with bins of size 1. For an online algorithm A and
a bin size b, we denote by Ap(L) the number of bins of size b that algorithm A uses in packing
the items in L. The worst case performance of algorithm A for bin size b, denoted by Ry(A),
is defined as

Ry(4) = lim sup Au(L)/OPT(L).
Opty(L)—oo T,
A small worst case performance means a good quality of the online algorithm. Online bin
packing is a classical problem in optimization and theoretical computer science. We refer the
reader to Csirik & Woeginger [2] for an up-to-date survey of this area.

Our results and organization of the paper. In this paper we present a complete analysis
of online bounded space bin packing in the resource augmentation model: For every bin size
b > 1, we determine the best possible worst case performance p(b) over all online bounded
space bin packing algorithms. The precise values p(b) are defined in Section 2. In Section 3 we
state several auxiliary results. In Section 4 we discuss technical properties of the function p(b).
In Section 5 we design and analyze an online algorithm whose worst case performance comes
arbitrarily close to p(b). Finally, in Section 6 we prove that no online algorithm can beat the
bound p(b).

2 Statement of the main result

Throughout the paper, L = (a1, as,-..,a,) is a list of items in (0,1], and b > 1 is the bin size
for the online algorithm. We associate with b an infinite sequence T'(b) = (t1, o, ...) of positive
integers as follows:

(1)

Sl

1
t1=1[14b] and r = —
1

RESOURCE AUGMENTATION IN ONLINE BIN PACKING 3

1.8*:

1.6%\

141 N

1.2 \\
0.8-

0.6 \

0.4 [—

0.2

0112141618 2 22242628 3 32343638 4 42 4.4

Figure 1: The graph of the function p(b).

and for i =1,2,...
1
tiv1

tiv1=[1+ %J and rip1 =71 — (2)
7

An equivalent way for defining this sequence T'(b) is the following: Suppose that we want
to fill a bucket of size 1/b greedily with reciprocal values of positive integers. First, we pack
the largest possible reciprocal value that fits into the bucket, but without filling it completely.
Then we add the largest reciprocal value that fits without filling the rest capacity completely,
and then this process is repeated over and over again. In this ‘bucket’ interpretation, the value
r; represents the rest capacity after the reciprocal value of the positive integer ¢; has been put
into the bucket. Note that the smallest integer whose reciprocal would fit into a space of r < 1
is [1/r]. If 1/r happens to be an integer, we must not fill the bucket completely, and hence
we have to pack the reciprocal of [1/r] 4+ 1 instead. The reader may want to verify that the
recursive definitions in (1) and (2) exactly agree with these interpretations. Alltogether, this
discussion demonstrates that

1 > 1 1 1 1 1
- = - = —+—+—+—4--- 3
b i:zlti t1 to 13 14 ()

Finally, we define

RESOURCE AUGMENTATION IN ONLINE BIN PACKING 4

In Section 3 we will prove that the infinite sum in the righthand side of (4) converges for every
value of b. The following lemma provides the reader with some intuition on the (somewhat
irregular and somewhat messy) behaviour of the function p(b); see also the picture in Figure 1
for an illustration. The lemma, will be proved in Section 4.

Lemma 2.1 The function p(b) : [1,00) — IR has the following properties.
(i) p(1) =~ 1.69103 and p(2) ~ 0.69103.

(i) 1/m < p(m) < 1/(m — 1) for integers m > 2.

(i1i) p(b) is strictly decreasing on [1,00).

(iv) As b tends to 2 from below, p(b) tends to 1. As b tends to infinity, p(b) tends to 0.
(v) At every irrational value of b > 1, the function p(b) is continuous.

(vi) At every rational value of b > 1, the function p(b) is not continuous.

The following theorem summarizes the main result of this paper. Its proof is split into the
proof of the upper bound in Theorem 5.4 in Section 5, and into the proof of the lower bound
in Theorem 6.1 in Section 6.

Theorem 2.2 (Main result of the paper)

For every bin size b > 1, there exist online bounded space bin packing algorithms with worst
case performance arbitrarily close to p(b). For every bin size b > 1, the bound p(b) cannot be
beaten by an online bounded space bin packing algorithm.

Note that by setting b = 1 in Theorem 2.2 we get a worst case performance of p(1) = 1.69103.
Hence, this special case reproves the well-known result of Lee & Lee [6] on classical online
bounded space bin packing.

3 Some useful facts

In this section we collect several facts on the sequence T'(b) that will be used in the later sections.
First, we observe that for every b > 1 the corresponding sequence T'(b) = (t1, t2,...) is growing
rapidly: By the equations in (2), we have r;_1 < 1/(t; — 1) and 1/t;11 < 1 = 1i1 — 1/t
Consequently, 1/t;11 < 1/(t; — 1) — 1/t;. Rewriting this yields the inequality t; 11 > ¢;(¢; — 1),
which in turn is equivalent to

ti_|_1 -1 Z ti(ti — 1) for all ¢ Z 1. (5)

Next, consider some fixed index j > 1. A straightforward inductive argument based on (5)
yields that ¢; — 1 > (¢; — 1)¥*1 holds for all £ > 0. From this we get that
=1 > 1 > 1

Zti—l = Zt' Z(tj_l)_k_l = tj_2- (6)

i=j jo ti+k — 1 k=0

VAN

For j = 1 this inequality demonstrates that the infinite series in equation (4) indeed converges,
and that the function p(b) is well-defined.
The following result will be used in the proof of Lemma 5.3.

RESOURCE AUGMENTATION IN ONLINE BIN PACKING 5

Lemma 3.1 Let z > 1 be an integer. Then the sequence T'(b) fulfills the inequality

t,+1 X1 1
N2 < : 7
Lo S 2 g

Proof. By (1) and (2), the sum in the lefthand side of (7) is at most 1/t, +1/(t,41 — 1). On
the other hand, the sum in righthand side of (7) is at least 1/(¢, — 1) + 1/(¢,41 — 1). These
two bounds together with t,,1 > t,(t, — 1) + 1 from (5) imply the claimed inequality. |

4 Some properties of the function p(b)

This section is devoted to the proof of Lemma 2.1. Since by (5) the underlying series converges
fast, the values p(1) and p(2) in statement (i) of Lemma 2.1 are easy to approximate by a
computer program. For statement (ii), consider an integer m > 2. Since the sequence T'(m)
starts with t; = m + 1, the definition of p(b) in (4) immediately yields p(m) > 1/m. Moreover,
by setting j = 1 in inequality (6) we get that

X1 1 1 .
p(m) = ; P— < P— < — for all integers m > 2. (8)

This completes the proof of statement (ii). We turn to statement (iii). Let 1 < a < b, and let
T(a) = (t;) and T'(b) = (t;) denote the two infinite sequences associated with a and b. Define
J > 1 to be the smallest index with ¢; # t;-. Since a < b, this implies ¢; < tg- — 1. Then

<1 =1 1 1
pla)=p) = > -2 7 7>7 1 7 320 (9)
i=j i=j i J J

where we used (6) to derive the first inequality and ¢; < t;- — 1 in the second inequality. Hence
a < b indeed implies p(a) > p(b).

Next, we turn to statement (iv). Let m > 2 be an integer and consider the value b, =
2m/(m + 2). It can be verfied that the series T'(by,) starts with the term ¢; = 2, which is
followed by the all the terms of the sequence T'(m). Consequently, p(by,) = 1+ p(m) holds and
from (8) we get that 1+ 1/m < p(by,) <1+ 1/(m —1). As m goes to oo, by, tends to 2 from
below, and p(by;,) tends to 1 from above. Since p(b) is a decreasing function by statement (iii),
we have thus proved the first part of statement (iv). The second part of statement (iv) follows
by combining statements (ii) and (iii).

We turn to statement (v). Let b > 1 be an arbitrary irrational number, and let € > 0 be
an arbitrary real number. Consider the sequence T'(b) = (t;), and let j be the smallest index
with 1/(¢; — 2) < e. Since b is irrational and by the definition of T'(b),

1 =1y 1
- - . 10
b < (;ti)+tj—1 (10)

(For rational values b, besides the stated inequality also equality may hold true). Our goal is
to show that for every c sufficiently close to b, p(c) is at most ¢ away from p(b). We will deal

RESOURCE AUGMENTATION IN ONLINE BIN PACKING 6

separately with the two cases ¢ > b and ¢ < b. First consider an arbitrary ¢ > b such that
1/c> Ef;ll 1/t;. Then

R T | o 1
— <
lp(b) — p(c)| < ;ti_l Zt — gt, < e < e, (11)

where we used inequality (6). Next consider an arbitrary ¢ < b with 1/b < 1/e¢ < 1/(t; — 1) +

Zf;ll 1/t;. By (10), such values of ¢ indeed exist. Then the sequence T'(c) starts with the j
terms t1,...,%;_1,%;, and we have

ad 1 1
c) —p(b)] < < < e 12
o0 —pb] < 3 55 < oy (12)

The inequalities in (11) and (12) demonstrate that p(b) is continuous at b, exactly as we desired.
This completes the proof of statement (v).

Finally, we turn to statement (vi). Let b > 1 be an arbitrary rational number. We consider
the additive representation of 1/b as a finite sum of Egyptian fractions obtained by the greedy
algorithm (cf. e.g. Niven & Zuckerman [7] or pages 271-277 of Wagon [9]). An Egyptian
fraction simply is the reciprocal value of a positive integer. Every positive rational number can
be represented as the sum of a finite number of Egyptian fractions. One way of getting such a
finite representation of 1/b is by a greedy algorithm: Repeatedly subtract the largest possible
Egyptian fraction until you reach zero. It is known that this greedy algorithm terminates after
a finite number, say j, of steps. Comparing the outcome of this procedure to (1), (2), and (3),
we see that

1 1y 1
1_ L D 1
b (;ti>+tj—l’ (13)

where t1,...,t;_1,t; are just the first j terms of the sequence T'(b). Since b > 1, we have ¢; > 3.
Now consider an arbitrary real value ¢ < b just slightly smaller than b that fulfills

11 1 i1y 1
c S G- -2 (th)*tj—z' (14)

=1

By the choice of ¢, the sequence T'(c) starts with the j terms ¢1,...,t;_1,t; —1 that are followed
by the terms ¢, ;,%;,5,... Then

=1 =1 1

oo = 5 D D S 5)
it —1 t—2 H+1t;—1 -1 t;—2

and
jo1 j1
1 1 1 1
b) = 16
p(b) > P— t] (16)

+ + :
Pt ~ -1 =1 b1 —2

.

RESOURCE AUGMENTATION IN ONLINE BIN PACKING 7

Here we used (6). By applying t;4o —2 > t;(t; —1) — 1 from (5), the last two inequalities yield

1 1 1 S 1 1
tj—2 tj—l tj_|_1—2 - (tj—2)(tj—1) tj(tj—l)—l.

p(c) — p(b) > (17)
Since t; > 3, the value of the righthand side in (17) is strictly bounded away from 0. Hence,
the function p is not continuous in b, and this completes the proof of statement (vi).

5 Proof of the upper bound

In this section, we prove the upper bound stated in Theorem 2.2. As usual, let b > 1 denote
the bin size, and let T'(b) = (t1,19,...) be the integer sequence associated with b. Let £ > 3 be
an integer. We introduce ¢, intervals Z; with j = 1,...,%, that form a partition of the interval
(0,b]. For 1 < j <t;—1, we define the interval Z; = (J%, g] Moreover, we define the last
interval Z;, = (0,b/t].

Our online algorithm keeps one active bin B; for every interval Z; (j = 1,...,%,). All items
from the interval Z; N (0, 1] are packed into the corresponding active bin B;. If a newly arrived
item does not fit into B, this bin is closed, and a new corresponding bin for interval Z; is
opened. In other words, the items from interval Z; N (0,1] are packed into the active bins B,
according to the NEXT-FIT algorithm. This completes the description of the online algorithm.

To analyze this online algorithm, we define the following weight function w : (0,1] — IR.
For items z in Z; with 1 < j < ¢, — 1, we define w(z) = 1/j. For items z in the last interval
T;,, we define w(z) = (xtg)/(bt; — b). The weight of a packed bin equals the sum of the weights
of the items contained in this bin. The weight w(L) of an item list L equals the sum of the
weights of the items in L.

Lemma 5.1 FEvery bin of size b that has been closed by the online algorithm contains items of
total weight at least 1.

Proof. First assume that the closed bin belongs to an interval Z; with 1 < 5 <#,— 1. Then it
contains exactly j items, and each of these items has weight 1/j. Next assume that the closed
bin belongs to the interval Z;,. Then the bin has been closed, since a new item from 7;, did
not fit into it. Hence, the total size of its items is at least b — b/t,. Since on the interval Z;,
the weight function is linear with slope ty/(bt; — b), the weight of such a bin is at least 1. m

Lemma 5.2 Let 1 < z < £ —1 be an integer. Then for every positive real number z < b/t,,
we have w(z)/z < (t, +1)/(bt,).

Proof. First assume that = is from some interval Z; with ¢, < j <t,— 1. Thenz > b/(j + 1)
and w(z) = 1/j, and thus w(z)/z < (5 + 1)/(jb) holds. Since the expression (5 + 1)/(jb) is
decreasing in j and since j > t,, we get that w(z)/z < (¢, + 1)/(bt,) holds, exactly as we
desired. Next assume that z is in the interval Z;,. Then

w(z)/z = te/(bte—b) < (¢, +1)/(bt.),

where the final inequality follows from ¢, > ¢, + 1.]

RESOURCE AUGMENTATION IN ONLINE BIN PACKING 8

Lemma 5.3 In any packing of the list L into unit-size bins, every unit-size bin receives items
of total weight at most

l
o (18)

P T A

=1

Proof. Consider some fixed unit-size bin B that contains the items f; > fo > --- > f, with
total size at most 1. We distinguish three cases.

(Case 1) For i = 1,...,£ we have f; € (b/t;,b/(t; — 1)]. We denote by F the sum of the
sizes of the remaining items f; with 4 > £. By the definition of the values ¢; in (1) and (2), we
conclude that

F = ;< 1-— — =b-rp < ——. 19

2 fisim) S 1 (19)
1=4+1 i=1

Hence, all items fy1,..., fn are in the last interval Z;,. By the definition of the weight function,

the weight of the bin B then is upper bounded by

¢ 1 1

t; —1 + (tg—l)Z.

l
1 17 1 te
F <
Zti—1+btg—b - Zti—l—l_(tg—l)(t“_l—l)

=1 =1

M-~

i=1
Here we used (19) to derive the first inequality, and (5) to derive the second inequality. This
completes the analysis of the first case.

(Case 2) There exists an integer z with 1 < z < £ — 1 such that the following holds: For
i=1,...,z—1 wehave f; € (b/t;,b/(t;—1)]. Moreover, f, either does not exist (sincen = z—1
holds) or if it does exist then f, ¢ (b/t,,b/(t, —1)] holds. We denote by F' the sum of the sizes
of the remaining items f; with ¢ > z. Similarly as above, we observe that

n

z—1)
F:Zfigl—zgzzt—i. (20)

=z i=1 " i=z

By combining (20) with (6) we get that the total size F' of all items f,,. .., f, is at most b/ (¢, —
1). Since the largest one of all these items, f,, is not contained in the interval (b/t,,b/(t, —1)],
we conclude that the size of every item f,,..., f, is at most b/t,. Then by Lemma 5.2, their
overall weight is at most F'(t, + 1)/(bt,). The weight of the bin B is at most

z—1 z—1 o 0

1 F(t,+1 1 t,+1 1 1
I i T I D D) SERE R
-1 bt, -1 t, —t ti—1

1
tf—}—l - 2

< ! +
B t; —1

4
=1
Here we have first applied (20) to bound F' from above, then the statement in Lemma 3.1, then
the inequality in (6) to bound } 2,., 1/(¢; — 1) from above, and in the end the inequality (5)
together with ¢, > 2. This completes the analysis of the second case.

(Case 3) This case is essentially the second case with z = £, which needs special treatment

since the statement in Lemma, 5.2 does not carry over to z = £. Assume that for:=1,...,/—1

RESOURCE AUGMENTATION IN ONLINE BIN PACKING 9

we have f; € (b/t;,b/(t; — 1)], and that f; ¢ (b/ts,b/(t¢ — 1)]; the subcase where f;, does not
exist is trivial. We denote by F' the sum of the sizes of the items f; with 7 > £.

F = ; < 1-— — =b-rp1 < . 21
D i< 1-3 4 re1 < g (21)
=0 i=1
Consequently, all items f, ..., f, are contained in the last interval Z;,. Then the weight of the
bin B is at most
-1 -1 0
te 1 1
F < + .
= tZ btg —-b ; ti—1 (te — 1 ; tg —1)2
Here we used (21) to bound F. This completes the proof. [

Theorem 5.4 For any bin size b > 1 and for any real € > 0, there exist a sufficiently large k
and an online k-bounded space bin packing algorithm A with Ry(A) < p(b) + €.

Proof. Choose a sufficiently large integer £ > 3 such that 1/(t, — 1)? < ¢ is fulfilled. Then
we derive from Lemma 5.1 that Ay(L) < w(L), and we derive from Lemma 5.3 that w(L) <
(p(b) +¢€) - OPTy(L). [

6 Proof of the lower bound

In this section, we prove the lower bound stated in Theorem 2.2. Consider an arbitrary online
k-bounded space algorithm A for bin packing with bin size b. Let T'(b) = (¢1,t2,...) be the
integer sequence associated with b. Let £ be an integer, and let € > 0 be a small real number
such that € -t,,1 - £ < 1. Furthermore, let N > k3¢, be a huge integer. We confront the
online algorithm with several phases of ‘bad’ items, and we show that algorithm A eventually
must perform poorly.

Alltogether there are ¢ phases. In the jth phase (j = 1,...,£), exactly N items of size
b/te—;j+1+¢ arrive. The best that the bounded space algorithm A can do is to pack these items
together in groups of cardinality ¢, ;1 — 1 each. This consumes N/(t,_;41 — 1) bins. At the
beginning of a phase up to k£ used bins of the previous phase are active, and this may save
up to k bins. Summarizing, algorithm A uses at least N/(ts—j+1 — 1) — k bins for packing the
items of phase j. Adding this up over all j = 1,...,¢, we get that

LN |

12
R G R &

By (3) and by the choice of ¢, the £ items b/t,_; 11 + ¢ with 1 < j < £ together fit into a bin of
size 1. Consequently, we have OpT;(L) < N. By making N suﬂ‘i(:lently large, (22) yields that
the worst case performance Rj(A) of algorithm A is at least ZJ 151 . Since this statement

holds true for every value of £, we may make £ arbitrarily large and thus make this bound
arbitrarily close to p(b).

RESOURCE AUGMENTATION IN ONLINE BIN PACKING 10

Theorem 6.1 For any b > 1 and for any online k-bounded space bin packing algorithm A, we
have Ry(A) > p(b). [

Acknowledgement. We thank Clemens Heuberger for several discussions, and we thank
Bettina Klinz for helping us in generating the picture.

References

[1] S. ALBERS, S. ARORA, AND S. KHANNA [1999]. Page replacement for generalized caching
problems. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA’99), 31-40.

[2] J. Csirik AND G.J. WOEGINGER [1998]. Online packing and covering problems. In Online
Algorithms: The State of the Art, LNCS 1442, Springer Verlag, 147-178.

[3] J. EDMONDS [1999]. Scheduling in the dark. In Proceedings of the 31st Annual ACM
Symposium on the Theory of Computing (STOC’99), 179-188.

[4] B. KALYANASUNDARAM AND K. PRUHS [1995]. Speed is more powerful than clairvoy-
ance. In Proceedings of the 36th IEEE Symposium on Foundations of Computer Science
(FOCS95), 214-221.

[6] B. KALYANASUNDARAM AND K. PRUHS [1995]. The online transportation problem. In
Proceedings of the 3rd European Symposium on Algorithms (ESA’95), Springer LNCS
979, 484-493.

[6] C.C. LEE AND D.T. LEE [1985]. A simple online bin-packing algorithm. Journal of the
ACM 32, 562-572.

[7] .M. NIVEN AND H.S. ZUCKERMAN [1960]. An introduction to the theory of numbers.
John Wiley.

[8] C.A. PHiLLiPs, C. STEIN, E. TORNG, AND J. WEIN [1997]. Optimal time-critical schedul-
ing via resource augmentation. In Proceedings of the 29th ACM Symposium on Theory of
Computing (STOC’97), 140-149.

[9] S. WAGON [1991]. Mathematica in action. W.H. Freeman.

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject *help eccc’

