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Kolmogorov Complexity Conditional to Large
Integers

Nikolai K. Vereshchagin*

1 Introduction

Kolmogorov complexity of a string x is defined as the minimal length of a
program that prints x:

K(x) = min{l(p) | p(A) = o},

where A stands for the empty string. We assume that some optimal pro-
gramming language is fixed; formal definitions are presented in the next
section. In a more general framework, any “algorithmic problem” has its
Kolmogorov complexity, which is defined as the minimal length of a program
solving the problem. We will not discuss in this paper the general notion of
an algorithmic problem (see [7] for such discussion), as our paper is devoted
to very specific problems. The plain Kolmogorov complexity, K(z), is the
Kolmogorov complexity of the problem “print z”. Likewise the conditional
Kolmogorov complexity, defined as

K(zly) = min{l(p) | p(y) = =},

is the complexity of the problem “given y print =”.
The subject of this paper is the problem “print z given any sufficiently
large integer”. Its Kolmogorov complexity is denoted by Kiym(z):

Kim(z) = min{l(p) | p(n) = z for all but finitely many n}.
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We consider also a related problem “given any number greater than n print
x” whose complexity is denoted by K(z|grn). The problem which stands in
the condition of this formula, namely, the problem “print a number greater
than n” is interesting in its own right. Its complexity, min{K (i) | i > n},
which might be denoted by K(grn), was denoted by m(n) in [8] and by a(n)
in [2]; Li and Vitdnyi in [4] use the notation rn(n) too. We will also use the
notation m(n). The function rn(n) has a natural inverse function

B(k) = max{n | K(n) < k},

the maximum number with complexity k& or fewer. More precisely, the fol-

lowing holds:

m(n) < k< n < B(k)
m(B(k)) =k + O(1).

The first assertion is a direct corollary of the definitions: both inequalities
are equivalent to the existence of ¢ > n with K(¢) < k. To prove the second
one note that K(B(k)) < k. Since K(i) > k for any ¢ > B(k), we have
m(B(k)) = K(B(k)) < k. On the other hand, K(n 4+ 1) = K(n) + O(1) for
any n, hence k < K(B(k)+ 1) = K(B(k)) + O(1) = m(B(k)) + O(1).

Both functions m(n) and B(k) increase. The function B(k) is a version of
the well known Busy Beaver function due to Rado [6], the maximal number
of 1’s in the output of any Turing machine with k states and purely binary
tape alphabet (no blanks) when it is started on the empty input. Other
versions of inverse function to m(n) are presented in [2].

It is easy to see that Kjym(2) is equal to the limit of the increasing se-
quence { K (z|grn)},=o,2,.. It was noted by An. Muchnik and S. Positselskij
(personal communication) that Ky, () coincides with the plain Kolmogorov
complexity of z relativized with (/) the set of programs that halt on the
empty input:

I—\"lim(x) = [X’Ol(.I) + O(]),
this equality will be proven later.

In this paper we show that Kjm(z) coincides with its non-uniform version
Kiimsup(z) defined as follows. In the definition of Kjm(z) we require that
program p prints z given any sufficiently large n. Let us allow now the
program p to depend on n:

Kiimsup(z) = min{m | for all but finitely many n there is p such that
I(p) <m, p(n) =z}
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In other words, Kjimsup(z) = limsup,, K(z|rn). The main result of this paper
states that Kimsup(z) = Kim(z) + O(1) (thus we answer a question left
open in [1]). To prove this statement we define a two-players game which is
interesting in its own right and design a winning strategy in this game.

Acknowledgments. The author thanks B. Durand and A. Shen for
bringing his attention to the problem, An. Muchnik and S. Positselskij for
theorem 1, and M. Ushakow for finding an error in the previous proof of
theorem 2.

2 Preliminaries

Let {0, 1}* stand for the set of all strings over the alphabet {0,1}. The length
of a string z is denoted by [(z), A stands for the empty string.

A programming language is a partial computable function F' from {0, 1 }*x
{0,1}* to {0,1}*. The first argument of F is called a program, the second
argument is called the input, and F(p,z) is called the output of program p
on input z. A programming language [ is called universal if for any other
programming language G there exists a string cg such that F(cgp,z) =
G(p,z) for any p,z. By Solomonoff — Kolmogorov theorem (see e.g. [4])
universal programming languages exist. We fix any universal programming
language F' and write p(z) instead of F'(p,x).

The set of natural numbers is denoted by N. If a natural number is
considered as input to a program, it is represented in binary notation.

We shall use the following versions of Kolmogorov complexity:

K(z)
K(xly)
K(z|grn) = min{l
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p(A) = w},
p(y> - $}7
p(k) =z for all kK > n},

= min{/(p)
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Kim(z) = lmK(x
— winl(p) | (7 € M) pln) = 0}
Kiimsup(z) = limsup K(z|n)

= min{m | (V*n € N) Ip l(p) < m, p(n) =z},

where (V*n € N) stands for “for all but finitely many n € N”.
We shall use the following well known facts (see [4]):

o K(z)<l(zx)+ O(1);



e for any [ there is a string = of length I with K(z) > [;

e for any computable function f(z) there is a constant ¢ such that

K(f(z)) < K(z) + ¢ for all z in the domain of f;

e for any computable function f(z,y) there is a constant ¢ such that

K(f(z,y)) < K(z)+ 2K (y) + ¢ for all z,y in the domain of f.

Let 0" stand for the set {p | p halts on the empty input}. Instead of
computable functions consider functions that are computable by machines
having an oracle answering any questions of the type “z € 0'?”. The notion
of a programming language as well as other notions of this section obtained
by this replacement are called relativized by 0. The relativized Kolmogorov
complexity is denoted by KO’(:C).

3 Kjm(z) and the plain Kolmogorov complex-
ity

The difference between Kjjm(z) and K () may be illustrated by the following
example due to Kamae [3]. Let zj stand for the first string of length & and
of complexity at least k, with respect to the lexicographical order:

K(xk) 2 ]C, l(:ck) = k.

There is a constant ¢ such that for all but finitely many n we have K (zx|n) <
log, k 4 ¢. Indeed, let n be greater than the running time of any program of
length & or fewer, when it is started on A. Given k and n we can find z; by
simulating n steps of the run of all the programs of length at most £. Hence

[\"hm(xk) < 10g2 k+c

for all k. Actually we have K(zx|gr B(k + ¢')) < log, k + ¢ for some ¢, ¢
and all k. Indeed, let ¢(p) denote the running time of program p, and ¢(p) is
undefined if p does not halt. Then K(t(p)) < l(p) + ¢ for some ¢’ and all p.
Hence t(p) < B(l(p) + ¢).

The following theorem clarifies the notion of Kjim(z).

Theorem 1 (An. Muchnik, S. Positselskij). Kym(z) = KOI(;E) + O(1).



Proof. Let g be a shortest program that prints x, with respect to the universal
relativized programming language. In the run of this program only finitely
many questions were made to the oracle, let those questions be “p; € 077,

.y “pr € 07", Let n be the maximum running time of those programs
among pi, ..., pi that halt. Then given ¢ and any number ¢ greater than
n we can find z without querying oracle, as we can answer ourselves all
the questions by running the programs py, ..., pr within ¢ steps. Hence,
[Xflim<$) < [Xrol(.f) + O(l)

Conversely, let p(n) = =z for all sufficiently large n. Given p, for k =
0,1,2,... we ask the oracle whether there are ny,ny > k such that p(n;) and
p(nz) are defined and are different. This question may be reformulated as a
question whether a certain program halts. Once a k for which there are no
such ny, ny is found, we ask the oracle for n = k, k+1, k42, ... whether p(n) is
defined. When such n is found we print p(n). Thus we have defined a function
f(p) that is computable relative to 0" and such that f(p) = z provided
p(n) = x for all sufficiently large n. Hence, KOI(;C) < Kim(z) + O(1). 0

Remark. Similar theorem holds for prefix complexity. It easily follows
from the result of [5].

4 Khm(l‘) and Klimsup($>

Theorem 2. f\”limsup( ) = [\hm(

o(1).

)+
Proof. The inequality Kiimsup(7) < Kiim() is straightforward so we need to
prove that Kjim(z) < Kimsup(z) + O(1).

We want to show that

Kiimsup(2) <m = Kjim(z) <m +¢
for some constant ¢ not depending on m and z. In other words,
V*n K(zln) <m = 3p V*n (I(p) < m +e¢, p(n) = z).
Obviously, it suffices to construct a computable function F(p,n) such that
Vn K(z|n) <m = p V*n(l(p) = m,G(p,n) = z). (1)

Fix m. We shall view pairs (n, z), where z is a string and n a positive integer,
as cells of an infinite table (z indicates row, n column), strings of length m
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as colors and we shall say that a cell (n,z) has color p if G(p,n) = z. So to
define G we have to design a computable strategy of coloring certain cells of
the table. To this end let us start a program, call it Nature, that enumerates
cells (n, z) with K(z|n) < m by putting a certain mark on each enumerated
cell. Receiving marked cells we color some cells. Our goal is that after infinite
number of steps, when all cells with K(z|n) < m are marked, the following

holds for all z:

(W) if all but finitely cells in zth row, (n,z), (n + 1,z), ..., are marked
then there is a color p such that all but finitely many cells in that row,
(s,z), (s+ 1,z), ..., have color p; s may be greater than n.

So we obtain a game, called m-game, between two players, Nature and
Mathematician. On its moves Nature marks certain cells, without loss of
generality we may assume that it marks one cell per move. On her moves
Mathematician may color some cells, she has a set of [ = 2™ colors. In every
column, Nature is allowed to mark at most &k = 2™ cells. Mathematician is
not allowed to use any color twice in the same column; otherwise GG will not be
a function. The game is played infinite number of moves and Mathematician
wins if the above assertion (W) is true at the end of the game.

In the sequel we call any infinite continuous sequence of marked cells,
(n,z), (n+1,2), (n+2,2), ..., a path. Thus Mathematician wins if all but
finitely many cells of each path have the same color.

So we have to construct a computable winning strategy for Mathematician
in the m-game. Now we forget that we know Nature’s strategy—anyway we
are not able to use this knowledge. We shall design a strategy that wins
against any strategy of Nature. Also we may forget the specific values of &,
the maximum number of marked cells in each column, an [, the number of
colors, and ask for which &,/ Nature wins and for which Mathematician wins.

Note that if [ < k& then Nature wins. Indeed, in this case Nature just
marks all the cells in the first & rows thus making k& different paths. As
[ < k, for any n there is a path whose nth cell is not colored. Hence there is
a path having infinite number of uncolored cells.

Lemma 1. Mathematician has a winning strategy if | = k. This strateqy is
computable uniformly on k.

Assume the lemma is true. Then for & = [ = 2™ let Mathematician
use the computable winning strategy which exists by the above lemma. As
Nature’s strategy—recall that it marks the cell (n, z) when it discovers that
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K(z|n) < m—is also computable, we obtain a computable process of coloring
cells of the table, uniformly on m. As Mathematician wins, the function

G(p,n) = the cell in nth column which gets color p

satisfies condition (1). And it is computable: given p,n we find m as the
length of p and observe the play in the m-game until a cell in nth column
gets color p. O

Proof of the lemma. The main problem is that we do not know at any mo-
ment whether Nature has finished or not to mark cells of a given column.

Assume for a moment that for every n we get know on some move that
no more cells will be marked in nth column. Then our strategy could be
as follows. Find the greatest N such that no more cells will be marked in
columns 1,2,..., N. For all n < N define on marked cells of nth column a
linear order as follows. To compare (n,z1) and (n,z3) find the least t; < n
such that all the cells (1, 21), (t1 + 1,21),...,(n,z1) are marked, and find i,
defined in the similar way using (n, x2) instead of (n, z1). Let (n, 1) < (n,z2)
if t4 < ty or ty = 13 and x; precedes z; in the lexicographical order. Color
the 1th marked cell in nth column with respect to this order in color ¢ for
all 2 < k. Let us prove that this strategy wins. Assume that after infinite
number of moves, for all n > ng the cell (n,z) has been marked. Then,
starting from n = ng the ordinal number of (n, z) among the marked cells of
nth column does not increase. Therefore, it does not change starting from
some n = ny.

The winning strategy for Mathematician is as follows. Suppose we have

to make the sth move. Call a sequence of cells C; = (ny,z1), ..., C; =
(nj,z;) sound if they stay in different rows and the following holds. If; in
addition to cells marked so far, we mark all the cells in rows z,...,z; to
the right of (ny,z1),...,(n;,z;) respectively, where we assume that columns

are numbered from the left to the right, then all columns will have no more
than k& marked cells. The maximum length of a sound sequence is equal to k
and, moreover, for any 2 < k any sound sequence (1, ..., C; of length ¢ can
be extended to a sound sequence of length k. The latter is proved as follows:
take as (11 any cell that stands in a row different from those occupied by
Ci, ..., C; to the right of all marked cells, then take as C;yo any cell that
stands in a row different from those occupied by Cy, ..., C;y1 to the right of
all marked cells, and so on. The resulting sequence is sound.



Fix any one-to-one correspondence between cells and natural numbers.
This correspondence induces a well order on cells. Then define a sequence of
kcells, C7,...,C} by induction: C} is the least cell (' such that the sequence
Cy, ..., 07, Cis sound. In other words, C7,... ,C} is the lexicographically
least sound sequence of length k. This follows immediately from the fact
that any sound sequence can be extended to a sound sequence of length £.
We shall call C? the ith distinguished cell on move s and the row where it
stands the ith distinguished row on move s.

Figure 1: The cells number 1, 9 and 26 are distinguished; we assume that

k=3.

v oV Y Y v
1 3 6 10| 15| 21| 28

v vV v

2 5 9 14| 20| 21
VoV v

4 8 13] 19| 26

v
7 12| 18| 25
v
1| 17| 24
16| 23

Thus, we find distinguished rows and color the cell standing in :th distin-
guished row and in sth column in color z; recall that s is the number of the
current move.

Mathematician’s strategy is described. Let us prove that it wins. First
note that if the first 7 — 1 distinguished cells do not change on the move s+1,
compared with sth move, then the ith distinguished cell does not decrease on
the move s + 1, compared with sth move: C¢f < Cf*'. Indeed, the sequence
of distinguished cells on move s + 1 is sound also on move s, and therefore
is lexicographically greater than the distinguished sequence no move s. As
these sequences have the same prefix of length s, we get C'# < CF1'.

Assume that all but finitely many cells in zth row, C' = (n,z), (n+1, z),

.., are marked at the end of the game. To show that the strategy wins
it suffices to prove that there is ¢+ < k such that on all but finitely many
moves the xth row is the ith distinguished row. We know that the sequence



consisting of the first distinguished cells C},C},C?,... does not decrease.
We shall prove that it is bounded from above by the cell C' = (n,z). Hence
this sequence has a limit and it reaches its limit on some move ¢. If the limit
cell C7 stands in xth row, we are done. Otherwise, we will show that starting
from tth move the sequence of the second distinguished cells is also bounded
by C'. As it does not decrease starting from move ¢ it also has a limit and
it reaches its limit on some step r > t. Repeating this argument at most k
times we will find 7 < k& such that zth row is the ith distinguished row on all
but finitely many moves.

Thus we need to prove the following facts.

1) Assume that starting from some move ¢ the following two assertions
hold: (1) the jth distinguished cell does not change for all j < i and (2) zth
row is not among ¢ — 1 first distinguished rows. Then starting from move ¢
the ith distinguished cell is less than or equal to C.

Proof. Assume that s > ¢. It suffices to prove that the cell C' is an eligible
candidate for the sth distinguished cell on move s. To prove this we need to
verify that if we append C' to the sequence of the first + — 1 distinguished
cells we get a sound sequence. By assumption ' does not stand in any of
the of the first + — 1 distinguished rows. Let us prove that if we mark all
cells in ¢ — 1 first distinguished rows to the right of distinguished cells and
all cells in zth row to the right of C' then no column will have k£ + 1 marked
cells. Suppose the contrary: a column number n’ has &+ 1 marked cells after
we have marked cells as described. One of those £ + 1 cells must stand in
xzth row; otherwise the sequence of the first © — 1 distinguished cells is not
sound on move s. Assume that that cell, (n', x), is marked on step r. Then
on the move number max{r, s} it is already marked, hence on that move the
sequence of the first ¢ — 1 distinguished cells is not sound. The contradiction
shows that ' is an eligible candidate for the ¢th distinguished cell on move
s, hence €7 < C.

2) Assume that starting from some move ¢ all the distinguished cells do
not change. Then xth row is distinguished starting from some move.

Proof. Let n’ be the number of any column to the right of all columns
in which distinguished cells stand on tth move (and later) and to the right
of nth column. Let the cell (r’, z) be marked on step r. As the sequence of
distinguished cells is sound on move number max{t¢,r}, we conclude that the
cell (n', z) stands in one of the distinguished rows on this move. O



5 Conclusion

We have not considered an interesting question, how large is the least n for
which K(z|grn) = Kim(z)? In the example from the beginning of section 3
we have shown that K(xx|gr B(k + ¢)) < log, k + ¢. However, even in this
case it is not clear whether n = B(k + ¢) is enough to reach the lower
limit of K(z|grn) (note that Kim(zz) = Kim(k) + O(1)). Is it true that
K(zx|lgr B(k + ¢)) < Kim(k) + ¢? What we are able to prove is the lower
bound n > B(K(z) — Kym(z)). Indeed, if Ky,(z) = K(z|grn), then

K(z) < m(n)+ K(z|grn) = m(n) + Kim(z).

Hence K(z) — Kjim(z) < m(n) and B(K(z) — Kim(z)) < n, as B(k) is an
inverse function to m(n). Of course this argument is not rigorous, as we
omitted some logarithmic terms.
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