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Abstract

In parallel and distributed computing scheduling low level tasks on the available hardware is a
fundamental problem. Traditionally, one has assumed that the set of tasks to be executed is known
beforehand. Then the scheduling constraints are given by a precedence graph. Nodes represent the
elementary tasks and edges the dependencies among tasks. This static approach is not appropriate in
situations where the set of tasks is not known exactly in advance, for example, when different options
how to continue a program may be granted.

In this paper a new model for parallel and distributed programs, the dynamic process graph, will
be introduced, which represents all possible executions of a program in a compact way. The size
of this representation is small — in many cases only logarithmically with respect to the size of any
execution. An important feature of our model is that the encoded executions are directed acyclic
graphs having a ”regular” structure that is typical of parallel programs.

Dynamic process graphs embed constructors for parallel programs, synchronization mechanisms
as well as conditional branches. With respect to such a compact representation we investigate the
complexity of different aspects of the scheduling problem: the question whether a legal schedule exists
at all and how to find an optimal schedule. Our analysis takes into account communication delays
between processors exchanging data.

Precise characterization of the computational complexity of various variants of this compact
scheduling problem will be given in this paper. The results range from easy, that is /'L-complete, to
very hard, namely NEXPTZME-complete.

Keywords: scheduling, precedence graph, communication delay, succint graph representation,
program constructors

1 Introduction

Scheduling tasks efficiently is crucial for fast executions of parallel and distributed programs. An intensive
study of this scheduling problem has led to the development of a number of algorithms that cover a wide
spectrum of strategies: from fully static, where the compiler completely precomputes the schedule, i.e.
when and where each task will be executed, to fully dynamic, where tasks are scheduled at run-time only.
Changing from static to dynamic strategies one gets the potential of reducing the total execution time
of a program because the resources are better used, but in general there will be more effort necessary at
run-time. Therefore, existing parallel systems fix most details of the schedule already at compile time
(see e.g. [8]). For a more dynamic and also fault tolerant approach see for example the MAFT project
[13, 12].

In many cases, the set of tasks that have to be executed is not precisely known at compile time.
El-Rewini and Ali have introduced a parallel program model that allows a suitable data representation
for static scheduling algorithms [4]. The representation is based on two directed graphs: the branch graph
and the precedence graph. This approach models conditional branchings quite well, but it is unsuited
for parallel program constructors or synchronization mechanisms, for example the channel concept as
implemented in the parallel programming language OCCAM.
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1.1 Extension to a Dynamic Environment

In this paper we introduce a new model, the dynamic process graph, DPG, which allows a natural
representation for parallel and distributed programs. In particular, it gives a concise description of
static scheduling problems for highly concurrent programs. An important feature of DPGs is that they
resemble the characteristics of executing typical parallel or distributed programs, and this in a space-
efficient way. This representation can provide an exponential compaction compared to the length of
execution sequences.

Our main technical contribution is to analyze the complexity of finding optimal schedules with respect
to this compact program representation. We will concentrate on scheduling elementary tasks where each
task has unit execution time. No bound will be given on the number of processors available.

1.2 Communication Delays

Papadimitriou and Yannakakis have argued in [18] that scheduling policies should communication delays
take into account occurring when one processor sends a piece of data to another one. Thus, it will be
faster to schedule dependend tasks on the same processor. For further results concerning scheduling with
communication delays in the standard static setting see [11, 10, 19]. Here, we will extend the complexity
analysis to the dynamic case.

Communication delays will be specified by a function é§ : E — IN, which defines the time necessary
to send the data from one processor to another one. For simplification we assume that this delay is
independent of the particular pair of processors (alternatively that d(e) gives an upper bound on the
maximal delay). Scheduling with communication delays requires the following condition to be fulfilled:

e if a task v is executed on processor p at time t then for each direct predecessor u of v holds:
u has been finished either on p by time ¢ — 1, or on some other processor p' by time t — 1 — 6(u, v).

1.3 Dynamic Dependencies

In many systems, dependencies among particular task-instances are determined by a scheduling policy,
not by the program itself. Consider the following situation. A program contains a part P where several
processes concurrently generate data. The program can continue as soon as one of these results is
available. Such a situation can compactly be described using the ALT-constructor of OCCAM [2]. In the
piece of code given in the left part of Figure 1 one process sends data down channel C1, while a second
one behaves similarly using channel C2.

P C1 C2
ALT A
A
P1 alternativey alternatives
A
P2 P1 @ *p2

Figure 1: A dynamic precedence graph representing P: the output mode of P is ALT and
the input mode of alternative; and alternatives is PAR.

A scheduling policy has to select one (and only one) of the alternatives Pi. Hence, either P1 or P2
will be a successor of P.

If both channels Ci get ready at the same time then a scheduler can choose arbitrarily. However, to
minimize the total execution time it is helpful to know which process can be executed faster, P1 or P27
Even if the two channels do not get ready simultaneously executing a ready alternative immediately, may
overall lead to a longer schedule than waiting until the other channel is ready.

We will consider different degrees of concurrency expressed by the ALT and the PAR constructor
to create parallel processes, and analyze the complexity of the corresponding scheduling problems with
respect to the amount of concurrency.

To represent such parallel programs in a natural way, we introduce dynamic process graphs, which
are generalizations of standard precedence graphs. A dynamic process graph is an directed acyclic graph



G = (V,E) with two sets of labels I(v),O(v) € {PAR,ALT} attached to the nodes v € V. Nodes
represent tasks, edges dependencies between tasks. A complete formal definition will be given in the next
section.

The label I(v) describes the input mode of task v. If I(v) = ALT then to execute v one of the
predecessor tasks u with (u,v) € E has to be completed. I(v) = PAR requires that executions of all
predecessors of v have to be completed before v can start. If task v has been completed then according
to the output mode O(v) one of v’s successors in case O(v) = ALT (resp. all of them in case O(v) = PAR)
has to be initiated. Figure 1 gives an example of such a representation.

Dynamic process graphs are a compact way to illustrate data dependencies of parallel programs. In
particular, it will be easy for programs written in a parallel programming language like OCCAM or Ada.
Note that a standard precedence graph cannot represent such programs in a simple way. We should note
that dynamic process graphs can also be modeled by a certain class of Petri nets and their reachability
problem. However, this class does not seem to correspond to those subclasses that have been considered
in more detail in the literature. We will therefore stick to the DPG model.

1.4 New results

The scheduling problem for dynamic process graphs is a natural generalization of the static scheduling
problem. In particular, the delay scheduling for a precedence graph G is equivalent to the scheduling
problem for the dynamic process graph (G, I,0) with I,O = PAR. In the static case, the scheduling
problem with communication delays is already computationally difficult. In [18] it has been shown that
this problem is N"P-complete even if for each graph the communication delay takes only a single value,
but this value has to increase with the size of the graph. We have improved this result in [10] showing
that the problem remains NP-complete even if we restrict the class of precedence graphs to (1,2)-trees.
On the other hand, in [11] it has been shown that for fixed delay § = ¢ independent of the precedence
graphs the problem can be solved in polynomial time where the degree of the polynomial grows with c.

Due to the compact representation in our dynamic model it is no longer obvious that the dynamic
scheduling problem can be solved in NP at all. In fact, one of our main results is that even restricted
to constant communication delay the scheduling problem for dynamic process graphs is NEXPTIME-
complete. To prove this we construct a reduction of the SUCCINCT-3SAT problem. However, if we
restrict the input mode I to ALT then the problem becomes P-complete. Even more, also fixing the
output mode the problem becomes N L-complete. A similar complexity jump has been observed for
classical graph problems in [5, 17, 14].

There it is shown that simple graph properties become NP-complete when the graph is repre-
sented in a particular succinct way using generating circuits or a hierarchical decomposition. Under
the same representation graph properties that are ordinarily NP-complete, like HAMILTON CYCLE,
3-COLORABILITY, CLIQUE (of size |V|/2), etc., become NEXPTIZME-complete.

On the other hand, some restricted variants of this scheduling problem, which may seem to be easy at
first glance, remain hard, namely A"P-complete. Figure 2 summarizes our results about the complexity
of the dynamic delay scheduling problem with respect to the input and output modes that may occur
in the graphs. Below the arbitrary mode means that three cases can occur: either the mode is restricted
only to ALT or only to PAR or the mode is unrestricted, i.e. ALT and PAR may occur in the graphs.

| input mode | output mode | complexity |
ALT ALT N L-complete
ALT PAR N L-complete
ALT ALT, PAR P-complete
PAR arbitrary NP-complete
ALT,PAR ALT NP-complete
ALT,PAR PAR BHs-hard
unrestricted NEXPTIME-complete

Figure 2: The complexity of dynamic scheduling with communication delays with respect to input and
output modes.

We will also consider the question whether for a given dynamic process graph there exists a run for a



program represended by the graph at all. It will be shown that the problem is A/P-complete even if the
input mode is fixed to PAR and the output mode to ALT.

The remaining part of this paper is organized as follows. In Section 2 we give some examples and a
formal definition of DPGs and their scheduling problem. Section 3 studies the complexity of the existence
problem. The last section deals with the problem to find optimal schedules.

2 Dynamic Process Graphs and Runs

For illustration, consider the following parallel program P written in OCCAM (Fig. 3). This program
contains branches, but the situation is not as bad as it could be since the branching does not depend
on the current values of variables. Still there is the problem to determine the set of tasks that have to
be executed at run time. It will turn out that even for such restricted programs the scheduling problem
is quite hard. Depending on the ALT branches chosen the execution of this program is represented by
one of the four possible runs shown in Fig. 3. The following definition tries to capture this dichotomy
between parallel/distributed programs and their executions.
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Figure 3: OCCAM program P and its possible runs.

Definition 1 A dynamic process graph G = (V,E,I,0) is a directed acyclic graph (DAG) G =
(V, E), with node labellings I,0 : V — {ALT,PAR}. V = {vy,vs,... ,v,} represents a set of processes
and E dependencies among them. I and O describe input modes, (resp. output modes) of the

processes.
A finite DAG Hg = (W, F) is a tun of G iff the following conditions are fulfilled:

1. The set W is partitioned into subsets W(vi) U W(vy) U ... U W(v,). The nodes in W(v;) are
execution instances of the process v;, and will be called tasks.

2. Each source node of G, which represents a starting operation of the program modelled by G, has
ezactly one execution instance in Hg.

3. For a process v € V let pred(v) := {u1,u2,...,up} denote the set of all predecessors of v and
succ(v) = {w1,wa, ..., w,} its successors. For any execution instance x of v in W (v) it has to
hold

o if I(v) = ALT then = has a unique predecessor y belonging to W (u;) for some i € {1,... ,p};
o if I(v) = PAR then pred(z) = {y1,y2,... ,Yp} with y; € W(u;) for each i € {1,... ,p};

e if O(v) = ALT then x has a unique successor z belonging to W(w;) for some j € {1,...,r};
e if O(v) = PAR then succ(xz) = {z1,22,... , 27} with z; € W(w;) for each j € {1,...,r}.



For o DPG G with run Hg = (W, F) we extend the definition of W as follows. For ACV let W(A) :=
Uvea W) and for (v,v') € E let W(v,v') = {(y,2) €F |y € W(v) and z € W(v')}.

Q1 =ALT \ .. Q1 =PAR\ ---
Qs =ALT )E( Qs =ALT X
| = Q1 =PAR \;
Q> =PAR ﬁ Q> =PAR (

Figure 4: A node v with input label Q1 and output label Q2 and the schematic representation.

Fig. 4 shows a node v of a DPG with input mode @; and output mode Q3. Through the paper we will
illustrate the ALT-mode by a white box, the PAR-mode by a black box. For a source or a node with
indegree 1 the input mode is obviously inessential. Hence we will ignore such a label, and similarly the
output label in case of a sink or a node with outdegree 1. A dynamic process graph corresponding to the
program of Fig. 3 is shown in Fig. 5 (a).
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Figure 5: A dynamic process graph for program P (a) and a run
of this dynamic process graph (b).

Observe that a run can be smaller than its defining dynamic process graph, e.g. the graph in Fig. 5
(a) has 10 nodes while its run (b) only 8 since certain tasks are not executed at all. More typically,
however, a run will be larger than the dynamic process graph itself since the PAR-constructor allows
process duplications. If, for example, the output mode of vertex v, in Fig. 5 is changed from ALT into
PAR then both processes P, and P, have to be executed. Hence, process vy with input mode ALT has
to be duplicated in order to consume both processes. This in turn implies that P; and Py will have 2
execution instances each. Therefore, each run of the modified graph consists of 15 nodes. The following
lemma gives an upper bound on this blow-up, resp. the possible compaction ratio of dynamic process
graphs.

Lemma 1 Let G = (V,E,I,0) be a dynamic process graph and Hg = (W, F) be a corresponding run.
Then it holds |W| < 2IVI='. Moreover, this general bound is tight.

Proof. Call a node v of G = (V, E) to be in level £ if the length of the longest path between a source
and v is £ — 1, and let 7, denote the number of nodes on level £. Let Hg be any run of G and let R(¥)
denote the total number of execution instances in Hg for processes v € G in levels with index at most £.
We claim that

R(Z) S (T‘g + 1)(7‘[,1 + ].) PN (7‘2 + ].)7"1 - (].)



For £ =1 it holds R(1) = 7y since according to the definition of a run each source of G has exactly one
execution instance in Hg. Moreover, if we assume that the inequality (1) holds for £ < i then R(i) can
be bounded by

R(Z) < R(Z - 1) + Ev of level i EuEpred(v) |W(U)| < R(l - ]‘) +ri- R(Z - ]‘) )

since each node v in level 7 has its predecessors in levels 1 — 1,...,2,1 (in the worst case, all nodes from
this levels can be predecessors of v). Hence, the total number of execution instances of v does not exceed
R(i —1).

It is easy to check that among all sequences of positive integers r1,72,... ,r¢, fulfiling the condition
ri +ry+...+7r¢ = |V| the value (ry + 1)(ry—1 +1)...(r2 + 1)y in inequality (1) is maximal when all
numbers r; are equal to 1, which gives |W| < 2lVI-1,

To see that the bound is tight consider the complete DAG on n nodes v1,... ,v, with edges (v;,v;)
for all 1 < i < j < n. All input labels are ALT, while all output labels are PAR. It is easy to see that this
dynamic process graph has only one run, and this has size 271 |

Hence, there are dynamic process graphs where processes have exponential many execution instances.
Note that a similar effect occurs by using the replicated PAR- and ALT-constructor of OCCAM, which
allows an exponential blow up of the number of active tasks.

Lemma 2 Any dynamic process graph G has at most double exponential many different runs and this
bound can actually occur.

Proof: To give the upper bound we consider the maximal length of a run (Lemma 1). Let G = (V, E, I, O)
be a dynamic process graph and Hg = (W, F) be a corresponding run. Then it holds [W| < 2/VI=1.
Furthermore, we can bound the degree of Hg by |V|. Note that each graph with n nodes with maximum
degree d can be represented by an binary string of length O(d-n-logn). Since there are at most 29(@71ogn)

20(|V‘22\VI) — 22\VI+O(los v

binary strings of such length G has at most different runs.

For the lower bound we consider the following DPG with vertex set V = {v1,... ,vn_3,u1,u2,0},
where
e the nodes vy, ... ,v,_3,u1,us have input mode ALT and output mode PAR and

e v has input mode PAR and output mode ALT.

We connect the nodes by

E = {(vvy)[1<i<ji<n—=3} U { (vp-3,u1),(Vn_3,u2),(us,v),(u2,v)} .

Figure 6: A dynamic process graph with double exponential different runs.

It follows from the Proof of Lemma 1 that for any run Hg = (W, F) holds:

[W (v,_3)| =274 and therefore [W (uy)| = |W (u2)| = |[W(v)| = 2"~*.



Note that there are 27~*! different ways to compute the 2"~* execution instances of v. Hence, for a
constant ¢ there are 2¢72" = 22" 775™ Jifferent runs for G. |

Definition 2 Let G = (V, E,I,0) be a dynamic process graph with communication delay § : E — IN
between its processes. A schedule for G,d is a schedule of a run H = (W, F), where the communication
delay between each execution instance x € W (u) and y € W (v) is given by 6(u,v).

If S is a schedule of G, then let T'(S) denote the duration of S, i.e. the amount of time necessary to
complete all tasks in S. Define Topt(G,0) := ming s, g5 T(S).

This leads to the following decision problem:

Definition 3 DYNAMIC PROCESS GRAPH SCHEDULE (DPGS)
Given a DPG G = (V, E, I,0), a communication delay 6, and a deadline T*, does Topi(G,0) < T* hold?

Let DPGS[IN | OUT] denote the DPGS Problem for the class of DPGs with input and output modes
restricted to IN, resp. OUT, where IN, OUT C {ALT,PAR}.

For short, we will write ”-” if the mode is {ALT, PAR}. Hence, e.g. DPGS][ - | ALT] will denote DPGS
Problem for DPGs with unrestricted input mode and output mode restricted to ALT.

3 The Execution Problem

3.1 General Properties

The number of different runs of a DPG can be huge according to Lemma, 2. On the other hand, it is not
obvious that for any DPG an appropriate run exists at all. It is easy to see that dynamic process graphs
with either only PAR labels, or with all input labels equal to ALT can always be executed. The first case
corresponds to standard static precedence graphs. However, this is no longer true for arbitrary DPGs.
For a simple example of a graph which has no run see Figure 7. In this case the input mode of all nodes
is PAR and their output mode ALT. This section studies the problem whether a given dynamic process
graph has a legal run. Obviously, a schedule for a given DPG can only be constructed if an appropriate
run exists.

a)

Figure 7: Example of a dynamic process graphs with O = ALT and I = PAR that has no run.

Definition 4 Execution Problem for DPGs (ExDPG): Given a DPG G, decide whether it can be
executed, that means whether it has run.

ExDPG[IN | OUT] denotes the ExDPG Problem for the class of DPGs with input and output modes
restricted to IN, resp. OUT, where IN, OUT C {ALT,PAR}.

Similarly as for DPGS Problem we will write ”-” if the mode is {ALT, PAR}.

As we have seen above for some restricted DPGs this question has a trivial answer. In general, a
decision procedure may be complex. Of course, if a DPG has a run then it has also a schedule, and since
we have a bound on the size of the run, one can also compute an upper bound on the maximal schedule
length given the maximal communication delay. Thus, the execution problem for DPGs could be solved
by a reduction to the scheduling problem with a huge enough deadline. However, we want to capture the
complexity of the execution problem more precisely and thus will investigate it directly.



In this section we show that for graphs with arbitrary input and output modes the execution problem
is N'P-complete. Then we will prove that the problem becames feasible for graphs with the output labels
restricted to PAR but it remains NP-complete even if one restricts the input mode to PAR and the output
modes to ALT. We will investigate the feasible case first. Figure 8 below summarizes our results about
the complexity of ExDPG Problem with respect to the input and output modes that may occur in the
graphs, where arbitrary means that three cases can occur: either the mode is restricted only to ALT or
only to PAR or the mode is unrestricted, i.e. ALT and PAR may occur in the graphs.

| input mode | output mode | complexity |
ALT arbitrary trivial
PAR PAR trivial
ALT,PAR PAR C=/L-complete
PAR ALT NP-complete
ALT,PAR ALT NP-complete
unrestricted NP-complete

Figure 8: The complexity of Execution Problem for DPGs with respect to input and output modes.

Definition 5 Assume that Hg = (W, F) is a run of a DPG G with processes V. = {vy,...,v,}. The
sequence (|W(vy)|,|W (vs)], .. ,|W(vy)|) will be called the characteristic vector of Hg.

Lemma 3 If G is a DPG with output mode restricted to PAR then all runs have exactly the same char-
acteristic vector.

Proof: Assume that G can be executed, that means it has at least one run. Then the restriction on the
output mode implies that each process of G has to be executed at lest once because it is either a source
or a successor of a process with output mode PAR.

The lemma follows by induction on the depth of G. Assume first that the claim holds for the subgraph
G' of G obtained by removing all nodes of maximal depth. By definition, for all runs Hg = (W, F') and
for all nodes v of maximal depth in G it holds: if w is a predecessor of v and ¢, € W (u) is an execution
instance of u then there exists a unique task ¢, € W(v) such that (t,,t,) € F. If I(v) = ALT then the
in-degree of t, is 1, thus there are as many execution instances of v as executions of nodes u € pred(v).
Since, by inductive assumption, the size of the W (u) does not depend on the particular run the same
holds for the size of W (v), too.

On the other hand, if I(v) = PAR then the in-degree of each execution instance of v is equal to the
number of predecessors of v. Hence, in this case there can only be a run for G if each predecessor u of v
has the same number of execution instances. |

3.2 The Complexity of Restricted Versions

The proof of Lemma 3 suggests the following procedure which computes the characteristic vector of a
DPG G if the graph can be executed at all; otherwise the procedure returns false. Therefore, it solves
problem ExDPGJ - | PAR].

procedure characteristic-vector (G)

1 compute a topological ordering (vi,vs,...,v,) of G

2 fori:=1tondo

3 if v; is a source then A(v;) :=1

4 elseif I(v;) = ALT then A(v;) := Zv,-epred(w) A(vj)

5 elseif A(u) = A(w) for every u,w € pred(v;) then A(v;):= A(u)

6 else return false and halt

7 return A

Fact 1 For a given dynamic process graph (V,E,I,O) the problem ExDPGJ - | PAR] can be solved in
time O(|V| + |E|) assuming uniform time measure.



Hence we obtain: ExDPG[ - | PAR] € P. Further we will show that the problem can be solved
efficiently in parallel, too, namely we will construct an N'C? algorithm for ExXDPG[ - | PAR] what implies
the inclusion above. The algorithm works in two stages. In the first stage, a given DPG G is reduced
to an instance G* of a ExXDPGJ[ALT, 1-PAR | PAR] problem, where the prefix 1 denotes that we consider
the common Execution Problem ExDPG]J - | PAR] restricted to such graphs where nodes with PAR input
mode occur only as sinks. In the second stage, decide whether G* can be executed. The lemma below
shows that the reduction of the first stage can be done efficiently.

Lemma 4 ExDPG] - | PAR] <j,; ExDPG[ALT,1-PAR | PAR].

Proof: Let G = (V,E,I,0) be a given input of ExDPG] - | PAR]-problem. Denote by V, the nodes of V'
which cause that G is not an instace of ExXDPG[ALT, 1-PAR | PAR], i.e. let V, be the set of all non-sink
nodes v € V with I(v) = PAR. Furthermore, let pred(v) := (u1,...,uq) be the ordered sequence of
predecessors of v € V and let pred(v, i) := u;.

We construct G* = (V*, E*, I*,0*) as follows. Let I*(v) = I(v) for any v € V \'V, and I*(v) = ALT
for v € V,. Moreover let E* contain at the beginning the edges: E \ {(pred(v,i),v) |v €V, and i > 1}.

Figure 9: Construction of an instance of the ExXDPG[ALT, 1-PAR | PAR]-problem.

Next, for any node v € V, we add one additional node v' to G* . Define for these new nodes
I*(v") = O*(v") = PAR and additionally we add (u,v') to E* if and only if (u,v) € E. Note that there
exists a run Hg- for G* iff for any sink-node v € V* and any pair ui,us of predecessors of v the equality
W (u1)| = |[W(uz2)| holds. Hence, there exists a run for G* if and only if there exists a run for G. The
construction of G* is illustrated in Figure 9. |

To complete the algorithm it is sufficient to give an N C? procedure which solves an appropriate
ExDPG-problem. Below we will show even more. Namely, we describe how to compute in N'C? the
characteristic vector C for a given instance graph of ExXDPG[ALT, 1-PAR | PAR] if such a vector exists. To
present the computation more intuitively we will express the executions for nodes of G in terms of paths
connecting G’s vertices.

Definition 6 Let G = (V, E) be a directed acyclic graph and let u,v € V. Then define #Path[u — v]
as the number of different paths from node u to v.

Below we give a relationship between the number of paths and executions. The result can be shown
easily by induction hence we omit a proof here.

Lemma 5 Let G be an instance of the ExXDPG[ALT,1-PAR | PAR]-problem. Then for any run Hg =
(F,W) of G and for all non-sink nodes v it holds that

W (v)| = Z #Path[g — v] .

q - source of G

Assuming that ¢y, ..., g are the sources of a given graph G, a procedure which computes the charac-
teristic vector C of G have the following shape

1 for any non-sink node v let C(v):= Zle #Path[g; — v];

2 for any sink node v with I(v) = PAR do
if C(u) =C(w) for any wu,w € pred(v) then C(v):=C(u)
else return false.



Obviously, step 2 can be done in a straightforward way. To compute the number of paths in step 1, we
use a simple arithmetic A'C? algorithm described in [15]. Let us recall it below.

We say that a vertex v is at layer ¢ in G = (V, E) if the longest path from a source node to v is of
length i. Hence, e.g. any source node of G is at layer 0. Let (v,) denote a vertex v at layer i.

in parallel for each w,v,i with w,v€V, and 0<i<n-—1 do
if (u,v) € E and u is at layer ¢ and v is at layeri+1
then #Path[(u,i) = (v,i+1)]:=1 else #Path[(u,i) = (v,i+1)]:=0;
for k:=1 to logn do
in parallel for each w,v,i,{ where 2 1< (<2 and i+/¢<n do
#Path[(u,i) = (v,i +0)] :=
> #Path[(u,) = (w,i + £/2)] - #Path[(w,i + £/2) = (v,i+ £)];

U W N

Hence, we conclude

Theorem 1 The characteristic vector of a DPG with O = PAR can be computed in NC?.

Furthermore, we can prove that ExDPGJ - | PAR] is complete for C=L.

For a nondeterministic Turing machine M and an input string x define #acc,,(z) as the number of
accepting computations of M on input z. #L£ denotes the class of functions f with f = #acc,, for a
nondeterministic logarithmic space bounded machine M. Let GapL be the class of functions that are the
difference of two #L-functions and

C_L = {A|3feGaplVz[zeA & f(zg)=0]}.
A canonical complete problem for C—L£ is the ENoP-problem [1]:

Definition 7 Equal Number of Paths Problem [ENoP]
Given two DAGs G1 = (V1,E1),Gy = (Va,Es) and four nodes a1,b1 € Vi and as,ba € V. Decide,
whether the number of path from a, to by in G1 is equal to the number of path from as to by in Gs.

In the following we will consider the following variant of the ENoP-problem:

Given two DAGs Gh = V4, E1), G2 = (Va, E») and two sinks by € V7 and bs € Vs. Decide,
whether the total number of paths from a source of G; to b; in G is equal to the total number
of paths from a source of G5 to bs in G2. We will denote this problem by ENoP*.

Lemma 6 ENoP <, ENoP* <o, ENoP.

Proof: Let Gy = (V4,E1),G2 = (Va, E2), a1,b1 € V1 and aa, ba € V3 be an instance of the ENoP-probelm.
We construct an instance of the ENoP*-probelm ((G],z1), (G5, z2)) as follows: each graph G} consist of
two copies of each of the graphs G1,Gs.

Let us first consider the graph G (see Figure 10). To distinguish between the copies of G; and G
we will index the copies of G; by G;.1,G; 2 and the copies of a;,b; by a;.1,a:2,bi1, b;,2. Furthermore, we
add 8 new nodes to each graph Gi: af,a},b},b),c1,c2,d1,d2 and draw edges from a} to all sources of
Gi1,G;2 and from the sinks of G;; and G, 2 to b;. Finally we add the edges

(allaal2)7( I2>bll)7 (Cl,al,l), (bl,l,dl), (c2aa2,1)7 (b2725d2)7 (allacl)a (dla bll)a (0/2502)3 (d23 bIZ)

Let x; := b}. Note that the number of paths from the unique source aj of G to b} is:

#Path[a! - b}] = 2- > #Pathfu - v] + 2- > #Path[u — v]
u€source(G1), vEsink(G1) u€source(Gz2), vEsink(Gz)
+ > #Pathu—b] + > #Pathla -]
u€source(G1) vEsink(G1)
+ > #Pathlu—b] + > #Pathlay »v] + #Pathla; — bi] .
u€source(G2) v€Esink(Ga)
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The construction of G4 is similar to the construction of G{. We change the last 8 edges as follows:
(alQa a’i)a (b;_) bl2): (cla al,l); (b1,27 dl): (62; 0/2’1), (b2,17 d2): (alla Cl); (dla bll)) (0/2; 02)7 (d27 blz) Finally; let T2 =
b,. Note that the number of paths from the unique source a} of G4 to b} is:

#Pathla), > by] = 2- Z #Pathju > v] + 2- Z #Path[u — v]
u€source(G1), vEsink(G1) u€source(G2), vesink(Ga)
- > #Pathlu—b] + > #Pathla — 0]
u€source(G1) v€Esink(G1)
+ > #Pathlu—b)] + > #Pathlay »v] + #Pathlay — by .
u€source(G2) vEsink(Gz2)

Hence, ((GY, 1), (G4, 22)) € ENoP* iff ((G1,a1,b1), (G2,az,b2)) € ENoP. Therefore it follows that ENoP
<105 ENoP*.

sources of G sources of Gg

sinks of G sinks of G

Figure 10: Construction of an instance of the ENoP*-problem.

To show that ENoP* <, ENoP we simply add a new source u; to each of the graphs G, i € {1,2},
and connect these node to the sources of G;. Hence, u; is the unique source of G;. The claim follows
directly. |

Hence, ENoP* is C=L-complete. To prove that ExDPG[ - | PAR] is C=L-complete we will show that
ENoP* is log-space reducible ExDPG] - | PAR] and vice versa.

Lemma 7 ENoP* <,,, ExDPG] - | PAR].

Proof: Let Gy = V1, E1),Gy = (Va,Es), by € V1 and by € V3 be an instance of the ENoP*-problem.
Then we generate the DPG G = (V,E,I,0) with V :=V; UVa U{u} foru g ViUV, E := E; UE, U
{(b1,u), (b2,u)}, O = PAR, I(v) = ALT for v # wu, and I(u) = PAR. From Lemma 5 we can conclude,
that there exists a run for G iff the number of paths to b; equals the number of paths to b;. The claim
follows directly. |

Since ExDPGJ - | PAR] is log-space reducible to ExDPG[ALT, 1-PAR | PAR] hence to complete the
proof that ExDPG] - | PAR] is C—L-complete it is sufficient to show the following fact.

Lemma 8 ExDPG[ALT,1-PAR | PAR] <,,; ENoP*.

Proof: For the reduction we will use so called chain graphs D; which are defined as follows: A chain
graph D, of length ¢ for ¢t > 0, consists of 3- ¢+ 1 vertices pg, P1,--- ,Pt;l15--- 5 lnyT1,--- ,7¢, and edges
(i i), (Diy i), (Li, pi-1), (14, pi—1) for i = t,... ;1. Note, that for n = 0, the chain contains just one node.
A recursive construction of the chain DPG D; is shown in figure 11.

Given a value t a chain D, resp. D; can be generated in space O(log(t)).

Let us now consider an instance G := (V, E,I,0) of the ExXDPG[ALT,1-PAR | PAR]-problem. Let
Vsink denotes the set of sinks with input mode PAR, Eg;,x be the subset of edges EN(V X Vyipng) from V
t0 Vigink in G and Viource the set of sources of G. Note that all these sets can be enumerated in logarithmic
space in the size of G. Let Psink: {1,--. ,|Esink|} = Esink be such a function that enumerates Egjp .
Then define for i < |Esing|

o(i) = start(¢sink(min{ j | end(dsink (j)) = end(@sink(i))}))

11



Dy : © po D, : mt

Iy O\/O T¢
Q Pt—1
li Q ory
\/ © Ppo

Figure 11: The chain Dy.

where end((u,v)) := v and start((u,v)) := v. It is easy to see that o(i) is computable in space
O(log |V|). Furthermore, define Goit := (Vauir, Eart) with Vaie := V' \ Viink and Egpp := E N (Vaie X Vaie)-

We will now construct two graphs G; and G2 where each of these graphs G; := (V;, E;) contains a
copy of subgraph Gy and a chain graph Dys = (Vjy[3_chains E|V|3—chain):

Vi == Vg U Vv|V|37chain and E; == Eut U E|V|3fchain U Ej connect
with E1 connect = { (start(dsink (7)), pi~\V|) | piv| € V|V|3—chain and 1 <i < |Egingl }

Es connect = { (0(4), pi.jv)) | Piv| € Vv |3—chain and 1 <0 < |Esink| } -
The construction of both graphs is illustrated in figure 12.

Psink (1)

Figure 12: The resulting graphs Gy and G5 from the reduction ExXDPG[ALT, 1-PAR | PAR]
<1og ENOP*.

Let us now consider the number of paths from a source of G; and G2 to the sink pg of the chain
graph in both graphs. For a subset of nodes V' of a graph G let #Path,[V’ — v] denotes the number
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of paths from a node u € V to v in G. Then it holds:

#Pathg, [V{ = po] = #Pathp [pjvie = po]
|Esintl
+ Z #Pathg, [V] — start(¢sink (i))] - #PathD|V|3 [pi- v = po]

=1
g : ,
= 2" + Z 2001 - #Pathg, [V \ {pjvis} — start(dsink (0))]
=1

#Pathg,[V; = po] = #Pathp  [pjvie = po]
|Esink]
+ > #Pathg,[V; » o(i)] - #Pathp [piv| = po]
=1
. |Esink| )
— 2|V\ + Z 21|V| . #PathGl[‘/ll\{p|V|3} — U(’L)]
=1

where V' denotes the set of sources of G;. Since |Egini| < |[V[* and #Pathg, [V} \ {pjvs} = u] < 2IV1 for
all nodes u € V;, i € {1,2} (see Lemma 1) we can conclude that

#Pathg, [Vi' = po] = #Pathg,[V; = po]

= Vie{l,...,|Esnkl} : #Pathg [V] = start(dsink(i))] = #Pathg, [V = o(i)]
S Yu € Viink Yvi,vs € pred(u) @ |[W(vy)| = |[W(va)|

— there exists a run for G

Theorem 2 ExDPG[ - | PAR] is C_L-complete.

3.3 NP-Hard Execution Problems

We consider first DPGs with PAR input and ALT output modes. Note first that for their symmetrical
counterparts, the problem ExDPG[ALT | PAR] is trivial — any instance of the problem has a positive
answer. Below we show that the complexity of the [PAR | ALT] variant is huge. Namely, we prove

Theorem 3 ExDPG[PAR | ALT] is N'P-hard, even if the underlying DPG is planar and bipartite.
Proof: The hardness follows by an reduction of 3DM to SE-DPG[PAR | ALT].

Definition 8 3-Dimensional Matching [3DM)]
Let M CW x X XY where W, X, Y are disjoint sets of size q. Decide whether M contains a matching,
i.e., a subset M' C M such that |M'| = q and no two elements of M' agree in any coordinate.

Note that the 3DM problem is N"P-complete even in the case of the planar version (see [3]).
Let Vig :={vy |w € W}, Vx :=={vy |2z € X}, Vy :={vy |y € Y}, and Vs := {vp, | m € M}.
Further let
E = {(Uwavm)a ('Uz:")m)a ('Uyavm)lm = (wamay) € M}

and V := Viy U Vx UVy U V. The input and output modes are defined by I = PAR and O = ALT,
respectively. The claim follows directly from the fact that if Hg is a run of G then for any node v €
Vw U Vx U Vy, the set W (v) has exactly one elemnt. |

The hardness of ExXDPG][ - | ALT] and ExDPG follows directly by inclusion. The same proof works
also for the following restricted version of the executin problem: for a given DPGs G decide if there exists
arun Hg = (W, F) of G with [W(v)| <1 for any node v of G. Let EXDPGynique[IN | OUT] denote
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such a problem for DPGs with input and output mode functions described by IN, resp. OUT. Then we
have
ExDPGynique[PAR | ALT] remains N'P-hard.

Because the size of a run for a given dynamic process graph can be even exponentially larger than
the size of the graph (see Lemma 1) hence it is not obvious that the execution problem for unrestricted
DPGs can be solved in NP at all.

Considering the characteristic vector of a run and the number of edges between execution instances
of different processes a legal run can be characterized as follows:

Lemma 9 Let G be a DPG and let A(v;), A(vi,v;) € IN be values for all nodes v; and edges (v;,v;) of
G. Then there exists a run Hg for G with |W (v;)| = A(vi) and |W (v;,v;)| = A(vi,v;) if and only if

1. A(v;) =1 for all sources v;,

2. for all non-sources v; with I(v;) = ALT: A(v;) = Z(Uj,vi)eE Avj,v;),

3. for all non-sources v; with I(v;) = PAR: Y(vj,v;) € E : A(v;) = A(vj,v;),

4- for all non-sinks v; with O(v;) = ALT: A(vi) = >, . ep A3, v5),

5. for all non-sinks v; with O(v;) = PAR: V(v;,v;) € E : A(v;) = A(vi, v;).

Proof: The only if-case follows directly from the definition of the sets W (v;) and W (v;,v;).

For the ifcase we have to notice that we can easily construct the sets W(v;) and W (v;,v;) which
fulfill the properties of a run for given values A(v;) and A(v;,v;). |

This lemma provides the basis for the following nondeterministic procedure that solves the most
general problem ExDPG in polynomial time.

procedure solve-EzDPG(G)

1  for all sources v; of G set A(v;) :=1

2  for all non-sources v; of G choose nondeterministically A(v;) € {0,... ,2‘V|*1}

3  for all edges (v;,v;) of G choose nondeterministically A(v;,v;) € {0,...,2/VI=1}

4 for all non-sinks v; of G

5 if O(v;) = ALT then verify that A(v;) = Z(v,-,vj)eE A(v;,v;) and reject if not

6 else verify that A(v;) = A(v;,v;) for all edges (v;,v;) € F and reject if not
7 for all non-sources v; of G

8 if I(v;) = ALT then verify that A(v;) = Z('Uj,vi)eE A(v;,v;) and reject if not

9 else verify that A(v;) = A(v;,v;) for all edges (v;,v;) € F and reject if not
10 accept

The correctness of this procedure follows easily from Lemma 9: line 1 guarantees that condition (1)
of the lemma is fullfield and in lines from 4 to 10 the procedure verifies whether conditions (2)—(5) are
fullfield for values A guessed nondeterministically in line 1 and 2. Obviously, solve-ExzDPG works in
polynomial time. Then we obtain:

Theorem 4 ExDPG, ExDPGynigue € NP.

The inclusion for ExDPG follows strightforward. To show that ExXDPGypique problem lies in NP
one can change in line 2 of the procedure abowe inclusion A(v;) € {0,...,2!VI=1} to the following one:
A(UZ) € {0, 1}

It is easy to prove that ExDPGJ - | ALT] and ExXDPGynigue[ - | ALT] remain N'P-complete even for
DPGs with only one sink. On the other hand, these problems become easy if we consider DPGs with
only one source. In this case, ExXDPG with O = ALT is equivalent to the decision problem whether there
exists a path from the source to a sink where all nodes on the path with in-degree at least two have input
mode ALT. Hence, a run of ExXDPG[PAR | ALT] consists of chains only and is therefore solvable by a
finite automata. By a reduction of the DAG Graph Accessibility Problem [DAG-GAP] we can show that
the single source ExDPG] - | ALT]-problem is N £L-complete.

Theorem 5 Restricted to DPG with one source the ExXDPG[ - | ALT]-problem is N L-complete.
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Proof:  For proving the N L-hardness we will reduce the following variant of the GAP-problem to
ExDPG] - | ALT].

Definition 9 DAG Graph Accessibility Problem [DAG-GAP]
Given a DAG G and two nodes x,y of G. Decide: Is there a path from x to y?

It is well known that DAG-GAP is N L-complete.
Let G = (V,E) and z,y € V be an instance of the DAG-GAP problem. Further let v1,... ,v, be the
sources and wy, ... ,w,, be the sinks of G. W.l.o.g. assume that w; are not isolated and that m > 2.

Z1

Figure 13: A reduction of DAG Graph Accessibility Problem to ExDPG][ - | ALT] for DPGs
with one source.

The dynamic process graph is generated as follows: For each source v; generate a subgraph A; :=
(Vii, B¢ ) with Vi = {v;, v}, 02,03} and Ef = {(v},v:), (vF,0:), (v3,0}), (v3,v2)} . Let s, 1, and y; be

three additional nodes. Flnally let G' = (V’ E'") (see figure 13) with

V':i=VU{s,z1,y1} U U Vir

i=1

and E':=EU{(z1,2), yyl}UU U {(wiy8) | i€ {1,...,m}}uU{(21,v3) | i € {1,...,n}} and

I(v;) = PAR for all v; € {s,vy,... ’Un} and I(v;) = ALT elsewhere. It is easy to see that the dynamic
process graph (V', E',I,0) has a path from the source to a sink if and only if the sink of the path is y;
and the second node on the path is  and therefore there exists a path from z to y. Moreover the whole
construction is easy enough that it can be done in logaritmic space. |

4 Scheduling Dynamic Process Graphs

Let us now consider the problem to construct optimal schedules for dynamic process graphs. Since the
execution problem is already hard in the less restricted cases one has to expect similar negative results
for the scheduling problem. Our main result below, however, implies that the compaction provided
by dynamic process graphs is quite efficient. The complexity of scheduling general DPGs increases to
NEXPTIME-complete. The hardness proofs will be the topic of this section. First, however we will
analyze the complexity for restricted classes of DPGs.
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4.1 The Tractable Cases

One of the main problems of a parallel system is to distributie data to the processes of a program
efficiently. This concerns e.g. routing, broadcasting and scattering. Modeling such a job by a dynamic
process graph only a restricted kind of input respectively output modes are needed. For example the
routing problem needs only DPG with I = ALT and O = ALT whereas for the broadcasting O = PAR
is necessary. In the following we will investigate the complexity of the DPGS-problem where I = ALT.
Furthermore we will present efficient (i.e. polynomial time bounded) algorithms for these problems.

Theorem 6 DPGS[ALT | ALT] is N L-complete.

Proof: First note that any run of an instance of the DPGS[ALT | ALT] problem consists of a set of disjoint
chains. Let (G, I, O) be a dynamic process graph with O = I = ALT. Further let § be the communication
delay and T™* the deadline for (G, I,0). Then the DPGS[ALT | ALT]-problem can be solved as follows:

1. Let v1,...,vr be the ordered sequence of sources of G.

2. For all ¢ = 1,2,... ,k verify nondeterministically that there is a path from v; to a sink of G of
length smaller than 7.

Obviously the algorithm can be done in logarithmic space. To prove the hardness we will reduce the
DAG-GAP-problem to DPGS[ALT | ALT]. Let G = (V, E) and z,y € V be an instance of the DAG-GAP

problem. Further let vq,... ,v, be the sources and wy,... ,w,, be the sinks of G.
For £ := |V| + 2 the dynamic process graph G’ is constructed as follows: For each source v; generate
a chain A; == (Vii, Bf,) with Vi := {v;,0},... ,0f} and Bl = {(v],0]™") |1 <j < K}U{(vl,vz)}) :

Further define for each sink w; a chain B; := (V Ei ) Wlth Vi = {wi,wl, ... ,wt} and E, =

out> Wi, - out
{(w!, wit™) |1 <j <} U{(ws,w!)}) . Let 1 and y; be two additional nodes. Fmally let G' = (V',E")
(see figure 14) with
:VU{IEl,yl}U U U out
i=1
and

B' = BU{(a,2), (s} U | B U T Uf(@, o)) [1<i<n) .

1

Bvé Elvi

Figure 14: A reduction of DAG Graph Accessibility Problem to DPGS[ALT | ALT].
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Define the deadline T* := |V| + 2. It is easy to see that the dynamic process graph (G',I,0) with
I = O = ALT and an arbitrary positive communication delay function has only a schedule of length at
most 7™ iff there exists a path from z to y. |

Theorem 7 DPGS[ALT | PAR] is N L-complete.

Proof: Note that a run of an instance of the DPGS[ALT | PAR] problem is just a set of binary out-
trees. Let (G, I,0) be a dynamic process graph with I = ALT and O = PAR. Further let ¢ be a given
communication delay and T* a given deadline for (G, I,0). Then the DPGSJALT | PAR]-problem can be
solved as follows:

1. Let vy,... ,vr be the ordered sequence of sources of G.

2. For all i = 1,2,...,k verify universally (that means co-nondeterministically) that there is no path
from v; to a sink of G of length greater then 7.

Since co— N L = NL it remains to prove that the problem is hard for this class. To show this we will
reduce the co-DAG-GAP-problem to DPGS[ALT | PAR].

Let G = (V,E) and 2,y € V be an instance of the co-DAG-GAP problem. For ¢ := |V| + 2 define
the dynamic process graph G' as follows: For the nodes z and y generate the chains X := (V,, E,)
with V, := {z,z1,...,v} and E; := {(zs,2i41) | 1 < i < £} U {(x¢,2)}) resp. Y := (V,, Ey) with
Vy == A{y,y1,...,ye} and Ey := {(ys,¥i+1) | 1 < i < £}} U{(y,y1)}) . Finally let G' = (V', E') with
V.=V UV, UV, and E' := EUE, U E, (see figure 15).

w1;

Figure 15: A reduction of DAG Graph Accessibility Problem to DPGS[ALT | PAR].

Define the deadline T* := |V| 4 £. It is easy to see that the dynamic process graph (G',1,0) with
I = ALT and O = PAR and an arbitrary positive communication delay function has a schedule of length
at most 7™ iff there exists no path from z to y. Otherwise any strategy Hg for G contains a path from
71 to y, of length at least 2- £+ 1 > |V| + £ |

Theorem 8 DPGS[ALT | - ] is P-complete

Proof: Analogously to DPGS[ALT | PAR] a run for an instance of the DPGSJALT | - ] problem is a set
of out-trees. The only difference is that for nodes with ALT output mode, each appropriate execution
instance has exactly one predecessor and the problem arises to choose a predecessor that minimize the
time of the whole schedule. A schedule of the minimal length can be constructed by the following recursive
function: Let v be a node of a given dynamic process graph (G, I,0). Then define

1 vis asink in G = (V, E)
Tmin(v) = 1+ maX(y,u)eE Tmzn(u) O(U) = PAR
1+ min(v,u)EE Tmzn(u) O(U) =ALT .

It follows by an induction that for any communication delay §

max  {Tpin(v)}

v— source of G
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is the minimal length of schedule for the given Dynamic Process Graph. for short To prove the hardness
we will reduce a special version of the Circuit Value Problem to DPGS[ALT | - ].

Definition 10 Circuit Value Problem [CVP]
Given a Circuit C and an assignment a of the input variables of C. Decide whether C(a) = 1.

It is well known that the CVP-problem is P-complete even if we restrict the problem to circuits
(SAM2CVP see [7])

e which consists only of AND and OR gates and

e each path from an input to an output has the same length.

m1=0 Z3=0
:0420

Figure 16: A reduction of CVP to DPGS[ALT | - ].

Let G = (V,E), B:V = {A,V,21,%1,... ,Zn,Tn}, and a : {z1,... ,2,} — {0,1} be an instance of
the SAM2CVP-problem. Then define the dynamic process graph Gg g« := (G',I,0) with I = ALT as
follows: For each input gate x; of G generate a graph X; := (V;, E;) with

z; if a(z;) =1 ] if a(z;) =1
Vi m {zi} (zi) and B = (zi)
{zi,z}} if a(z;) =0 {(zi,z})} if a(x;) =0,
respectively for Z; generate X; := (V;, E;) with
_ T; if a(xz;) =0 _ 0 if a(z;) =0
Vi = (o} (=) and E;, = (=)
{z;, 2} if a(z;) =1 {(zs,25)} falz)=1.

Finally, let G' := (V', E') with V' :=V U U;_,(V;UV;) and E' := U,_,(E;UE;) U {(z,y) | (y,z) € E}.
For the output mode of the Dynamic Process Graph define

ALT if =
O(v) = { if B(v) =V
PAR else.

An example for such an instance of the SAM2CVP problem and the corresponding dynamic process graph
is given in figure 16.

Let depth(G) denotes the depth of G. By induction it can easily be seen that a dynamic process
graph Gg g, as described above has a schedule of length depth(G) + 1 if and only if « is an satisfying
assignment for the circuit (G, ).

4.2 The N'P-Hard Versions

Below we show that some specific variants of the DPGS problem are N"P-complete. If we restrict our at-
tention to problems for the dynamic process graph (V, E, I, 0) with I = PAR and arbitrary output modes
O the N'P-hardness follows directly from the hardness of the scheduling problem with communication
delay for in-trees (see [10]).
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Theorem 9 The DPGS problem is N'P-hard. This even holds if I = PAR.

To give an AP algorithm for the DPGS problem restricted to dynamic process graphs (V, E, I, O) with
I = PAR and arbitrary output function O we will use the following basic lemma:

Lemma 10 Let G = (V,E,I,0) be a dynamic process graphs with I = PAR. Then it holds for all runs
Hg and all nodes v € V that |W(v)| < 1.

Proof: Assume that there exists a run Hg and a node v € G with |W(v)| > 1. By definition it holds
that |W(u)| = 1 for all sources u. Hence there exists a node vy of G with |W(vg)| > 1 and |W(u)| <1
for all predecessors of vg.

Let G = (V, E,I,0) be a dynamic process graphs with I = PAR then it follows from the definition of
a run that |W(vo)| < miny pred(vo) |W(u)]- So [W(vg)| <1 - a contradiction. |

It follows directly from Theorem 9 and Lemma 10 that the problems

DPGS[PAR | ALT], DPGS[PAR | PAR], and DPGS[PAR |- |

are N'P-complete.

A lower bound of [W(v)| for dynamic process graphs G = (V, E, I, O) with O = ALT can be shown as
follows:

Lemma 11 Let G = (V, E,I,0) be a dynamic process graphs with O = ALT. Then it holds for all runs
Hg and all nodes v € V that |W (v)| < |V].

Proof: Note that a run Hg is a forest where the leaves are given by the sources of G = (V,E).
Furthermore, it is easy to see that each source of G occurs exactly in one tree and each inner node in
each tree of Hg at most once. Hence |IW (v)| is bounded by the number of sources of G. |
An NP algorithm for this problem follows from the small size and from the tree-like shape of the run
Hg for a graph G with O = ALT.
Through the rest of this section we will focus on the DPGSproblem for dynamic process graphs with
O = PAR and arbitrary input mode.

Theorem 10 Restricted to dynamic process graphs with O = PAR the DPGSproblem is BHa-hard.

To prove this theorem we introduce first some specific DPGs that will be useful also in the next section
to prove our man result that the complexity of scheduling general dynamic graphs is NEXPTZME-hard.

Line L, of length £ > 1, consists of £ vertices v1,vs,...,v, and £ — 1 edges: (v1,v2) ... (ve—1,vp)-
Their input and output modes are inessential. However, for the completeness we set this modes as follows
I = O = PAR. The second DPG, called a chain D; of length ¢ for ¢ > 0, is an extension of chain for
common graph that we defined in section 3 (see also figure 11). We simply choose for this graph I = ALT
and O(z) := PAR for all its nodes.

Lemma 12 Let Dy be a chain, with t > 0. Then there exists exactly one run H; for Dy. Furthermore, it
holds that Topi(Ds, ) = 2t + 1 for any function § > 0.

Proof: From the construction of D; we can conclude that any run for Dy is a binary tree where any path
from a source s € W(p;) to a sink ¢t € W(po) has exactly length 2¢ + 1. Hence Topt(Dy, d) = 2¢ + 1 for all

functions § > 0. |
To define delayed chain DD,, , we modify the chain D; of length ¢ > 0, replacing every node [;,
respectively every node r;, by a line l;1,... ,l; ¢, resp. r;1,...,7;¢. The input connections of l;, resp. r;,

are driven now to the source of the line graph (i.e. to l; 1, resp. to r;1), and output connections run
from its sinks: l;; and r; ¢. Furthermore, for h,¢ > 1 we define the counting graph Cj , of height h
consisting of one delayed chain DDy, ¢ of length h, called the main chain and for every t € {h—1,...,0}
of pairs of chains, a left and a right one, each of length ¢. For every such ¢ we add one edge from lz;1 ¢
of the main chain to the source of the left chain of length ¢, and one edge from 7 ¢ of the main chain
to the source of the right chain of length ¢. An example of a counting graph is given in Fig. 17.

Lemma 13 Let Ch be a counting graph, with h,£ > 1. Then there exists exactly one run H for Cpq.

Furthermore, if a; and by, with t € [0..h — 1] denote the sink of the left, respectively the right chain Dy,
then it holds that
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Figure 17: A counting graph Cp, 4.

o [W(po)| = 2" and
o [W(ay)| =|W(b)| = 2", for any t € [0..h —1].

Proof: Note first that if we restrict our attention to the main chain of Cp ¢ then, similarly as in the proof
of Lemma 12 one can show that there exist a unique run H; of this subgraph and that for any node
Pt € {ph,--- ,po} of the main chain it holds |W (p;)| = 2"~t. Since the output mode of each p; is PAR it
implys that

(W (l,0)| = W (ree)| = [W(py)| = 2" .
Now using Lemma 12 we obtain that for each chain Dy, with ¢ € [0..h — 1], there exist a unique run. Next

we combine (in an obvious way) these runs together with #; to obtain a complete run H for Cp_ 4. From
Lemma 12 we conclude for any ¢ € [0..h — 1]:

(W (as)| = (W (liga,e)| - 28 = 20707120 = 201

Similarly one obtains [W (b;)| = 2"~!. |
Now we are ready to give the Proof of Theorem 10.
Proof: The hardness follows by a reduction of SAT-UNSAT to DPGSJ - | PAR].

Definition 11 SAT-UNSAT
Given two Boolean formulae Fy, Fy. Decide whether Fy is satisfiable whereas Fy is not?

It is shown in [16] that SAT-UNSAT is BHa-complete. It is easy to see that SAT-UNSAT is still BHo-
complete if we restrict the formulas Fi, F5 to Boolean formulas in 3-CNF.

Let Fi, F5 be an instance of the SAT-UNSAT problem. We construct first two DPGs G; and G5 such
that G, represents the formula F; and G- the formula F,. Then we combine these two graphs to form
the resulting DPG G and we give such values T* and § that F} is satisfiable and Fj is not if and only if
Topt(G,0) <T™.
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We construct DPG G as an in-tree and we define appropriate communication delay ¢ in a very similar
way as described in [10]. We can summarize the properties of this construction as follows.

Lemma 14 Let F; be a boolean formula in 3-CNF and o, 3 € IN. Then there exists a logarithmic space
bounded TM M, that generates on input Fy#1%#1° o dynamic process tree G; with I = O = PAR, a
constant delay function 0 (depending on the input length), and a deadline T} such that

1.d>aandTy >2-64 0,
2. Topt(G1,0) > Ty, and
3. Topt(G1,0) = T iff there exists a satisfying assignment for Fi.

The proof is analogous with the proof of Theorem 1 in [10] therefore we omit it here.
We choose the values a, 3 € IN depending on the complete DPG G and the formula F5 in the following
way a := |G| — |G1| and §:= 6 - n + 1 where n denotes be the number of variables of F;. Let

Fg(wl, . ,:En) = /\ (ym Vyi2V yi,3)

i=1,...,m

be an UNSAT formula, where y; ; € {z1,%1,... ,Zn,Tn} be the j-th literal of the i-th clause. To construct
the representation of an UNSAT-formula F, some additional structures will be needed. Note that the
problem to decide whether F5(z1,... , ;) is not satisfiable is equivalent to the problem to decide whether

Fy == | Yo ..¥2n : \/ i1 ATin ATig)

i=1,...,m

it true. In the following we will construct in fact a dynamic process graph G, that encodes this formula.
We start with U,, — a DPG that represents the quantifiers Vz; ...Vz, and then we introduce m DPGs
T: representing the conjunctions C; := (¥; 1 AY;2 A¥;3)-

Uy, will be constructed as follows. Let Cy, 6m+1 be a counting graph. Recall n is the number of variables
of Fj and m is the number of conjunctions of this formula. The source, respectively the sink of the main
chain of Cp, g1 will be denoted by ra, resp. w = pg. The sinks of the right chains D; we denote by
x;+1 and the sinks of the left ones by Z;11. To complete the construction of U, add n + 1 nodes to Uy,:
S1y--- 80, and s with I(s;) = ALT for all 4 € {1,... ,n} and I(s) = PAR. Furthermore draw the edges
(24, 8i), (Ti, 84), (si,8) for all ¢ € {1,... ,n} and finally the edge (po, s) (see Figure 18).

Now we introduce the DPGs 7; to represent conjunctions C; = (¥, ; AY; 2 AY; 3). Each T; consists of six
chains D,,_; and eight additional nodes f; 1, fi,2, fi,3,ti,1,ti,2, i3, f, and ¢; with I(f;) = I(t;) = ALT for
Jj €{1,2,3} and I(f) = I(c;) = PAR. The nodes of 7; are connected as shown in Figure 19. Furthermore
we combine thiese graphs with U, together connecting f; 1, fi2, fi3,%i,1,%:,2 and t; 3 with such nodes
of x1,%1,... ,%n,Tp which correspond to literals yi,1,9i,2,Yi3, Yi1,Y; 2, and y; 5 respectively. Speaking
more formally for i =1,2,... ,m and j = 1,2,3 we add 6 x m edges: (zi, fi ;) and (Ty, t; ;) if y; ; = z
and edges: (T, fi,;) and (2, t;;) if y;; = Tr. Through the rest of the proof we will identify y; ; and
¥;,; with the corresponding variable nodes. Finally, for each i we draw edge (c;,s). This completes the
construction of Gs.

Let us now investigate basic properties of runs for G,.

Lemma 15 Let Go be a DPG as defined above. Then there exists a run for Go. Further for any run H
of Go it holds that

o |W(ry)| =1 and |W(s)| =27,
o |W(zy)| = |W(z;)| =21, for any i € [1..n], and
o |W(c;)| =2", for any i € [1..m].

Proof: 'We constuct arun H for G as follows. Let us consider first the counting subgraph Cy, 6m+1 of graph
Uy From Lemma 13 it follows that there exiest a run H, for C,, 6yn+1. Furthermore, from the same lemma
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Pn =72

Uy, :

Figure 18: A subgraph of the DPG G5 which represents the quantifiersVx; ...V, of UNSAT.

we conclude that |[W (po)| = |W (s)| = 2" and that for any i € [1..n], |W(z;)| = |W (Z:)| = 2"~!. Since the
input mode of nodes f; ; and t; ; of T; graph is ALT hence we obtain additionally 2"~! execution nodes
for each f; ; and ¢; ;. These executions are connected with appropriate nodes in JI, W(z;) UW (Z;).

By Lemma 12 each chain D,,_; of 7; has a run and the number of execution nodes for the sink of
Dp_1 is 271, Hence we obtain 2"~ ! additional execution nodes for each fi,; and t; ;. In this case
each such execution node is connected with an appropriate sink of a run graph for D,,_;. Therefore
W (fi;)| = |W(ti;)| =2 for alli € [1.n] and j € [1,2,3].

To complete the construction of the resulting run H, for any i we add a set of nodes W(f;) and W(c¢;),
with [W(f;)| = |W(¢;)| = 2™ then we connect each node of W(f;) with one node in W(¢;) and finnaly we
connect these nodes with the rest in an obvious way.

Now we are ready to give the complete construction of our resulting DPG G. Let Lx be a line graph
of length

K = n6ém+2)+n*+n+5m+2-1.

Then connect the source r1 of G; with Lx and the sink 75 of Gy (see Figure 20) and define the commu-
nication delay and the deadline of G as follows

é = |G| - |G| T = T7 + K.

From Lemma 14 it follows directly that 7™ is a lower bound of the minimal schedule length of G.
More precisely, G has a schedule of length T only if G; has a schedule of length 77, i.e. Fj is satisfiable.
Now assume that Fj is satisfiable and that S is a schedule of length 7™ for G and communication delay
0. For a processor P let P(S) denote the set of tasks computed by P. Then a correctnes of our whole
construction follows from Lemma 16 and Lemma 17 presented below.
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Figure 19: A subgraph T; of the DPG G, which represents the i-th conjunction
Ci= (51,1 A yi,2 A yz’,3)'

g:

s B uk

Figure 20: The resulting DPG with K := n(6m +2) +n?> +n+5m +2—1
that represents an instance of the SAT-UNSAT problem.

Lemma 16 (Universal Quantifier Correctness) There are 2™ processors Py, ... , Pan computing tasks
of W(s) such that

(1) for any processor P; and any i € [1..n] P; computes either a task of x; or o task of T;, i.e. it holds
W(x;) N P;(S) # ) = W@E) n P;(S) = 0
and

(2) for any pair of processors P;, P;, with i # j, the sets of literals for tasks computed in P;, resp. P;
are disjunct, i.e. it holds:

{2z € {21, T, .. &m,Tn}| W(2) N PiS) £0} # {z€ {20, T, .., 20, Fn}| W(2) N Pi(S) #0}.

Lemma 17 (Satisfiability) Let P be a processor which computes a task ws € W (s). Then there ezists
i € [1..m] such that P computes three tasks wy,ws,ws, with

w1 € W(Y;,1), w2 € W(7;5), and wz € W(7; 3)-
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To prove that Fj is true when such a schedule S exists one can follow from Lemma 16 that there are
2™ processors Pp, ... , Po» computing tasks of W (s) which fulfil condition (1) and (2) of the Lemma. We
will interpret computations of processors P; as evaluations of the formula

V @i ATis ATi) (2)

i=1,...,m

of F; for specific values of variables z1,. .. ,z, as follows: if P; computes a task of z; we say P; evaluates
variable z; as true; if P; computes a task of ; then P; evaluates z; as false. Next, for any conjunction
Ci = (i1 NY;2 N, 3) we say that P; evaluates this conjunction as true if and only if P; computes three
tasks wy,wsq, w3, with

w1 € W(y,;,), wa € W(Y,,), and w3 € W(y; 3)-

Finally P; evaluates the formula (2) as true if and only if there exists i € [1..m], such that P; evaluates
conjunction C; as true. From Lemma 16(1) we have that P; evaluates each variable z; either as true
or false. Furthermore this condition implies also that for any ¢ € [1..m] P; evaluates the conjunction
Ci = (U;1 N2 NT; 3) as true if and only if for the evaluation of variables of P; the conjunction C; is
true. Hence our interpretation is correct.

Now from Lemma 16(2) it follows that the processors Pi,... , Ps» test all possible 2" evaluations for
variables z1, ... ,z, and by Lemma 17 follows that any processor P; evaluates formula (2) as true. Hence
F} is true.

On the other hand if one assumes that F is satisfiable and Fj is true then the following schedule
of G has the length T*. First let processor Py compute the sink node r; of G; and then the line Lk.
According to Lemma 14 P, coputes these tasks in time 77 + K = T™*. Next we construct a schedule for
2 - 2" processors which compute the tasks of Go. With each j € [1..2"] we associate two processors P;
and Pj . The first processor computes (in the same way as Fy) the sink node r; of G; and then tasks
of Un, fikstiks fi, and ¢;, with i € [L..m] and k = 1,2,3. Processors P] compute tasks of appropriate
Dy,—1 graphs and each P computes exactly one task of f;, for some i € [1..m]. Speaking more formally
we define schedule for these processors as follows. Let (a1,... ,a,), with a; € {true, false}, be the j-th
evaluation of variables 21, ... ,z, e.g. with respect to lexicographical order. Since F} is true, there exists
io € [1..m] such that for the evaluation (ay,... ,a,) the conjunction (¥, ;1 A¥; 2 AT, 3) is true.

schedule for P;

tasks time
1. compute the sink node r; of G; T
2. fori=nn—-1,...,1

compute p; and
if a; = true then

COMPULe 71,7525« - - » Ti,6m+15 n6m+2)+3" ,(2%-1)+1 =
2(i — 1) tasks of D;_;, and z;
if a; = false then n(6m+2) +n?+1
compute li71, li’g, .- 7li,6m+17
2(i — 1) tasks of D;_1, and Z;
compute pg
3. compute tasks of s1, 82,8, n

4. fori=1,... ,mand k=1,2,3
if y;.x = true then
Yi,k = true means that the literal y;
is true according to (a1,... ,an) 3m
compute a task of f;
if yi 1, = false then
compute a task of ¢;

5. fori € {1,2,...,n} \ {io} compute tasks of f; m—1
6. for i =1,... ,m compute tasks of ¢; m
7. compute a task of s 1
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schedule for PJf

tasks time
l.fori=1,...,mand k=1,2,3
if y; 1, = true then
compute 2(n — 1) + 1 tasks of D,,_1 and
a task of t; 3m-(2(n—1)+2)
if y; 1, = false then
compute 2(n — 1) + 1 tasks of D,,_; and
a task of f;
2. compute a task of f;, 1

It is obvious that P} can compute tasks (1.) in time 3m - (2(n — 1) +2) since they have no predecessors
neither in G nor in U,. Moreover Pj can compute task (2.) immediately after computing of tasks (1.)
because among these tasks P]f has computed tasks of f;; 1, fi,,2, and f;, 3 (recall that according to the
evaluation (a1,... ,an) the conjunction (;, 1 ATy, 2 ATj,,3) is true). Hence processor P works in time

3m-2n—-1)+2)+1 < |G| — |G| = 6.

Processor P; computes tasks (1..4) in time 77,4 = T} + n(6m + 2) + n? + n + 3m + 1. To compute tasks
(5..7) it needs the results of tasks computed by P}. Note that

Ty.a > TF > 25

and P finishes its computation in time < J. Therefore P; can use the results of P; in step T1..4 + 1 since
the communication delay is equal to 6. Then the total time of computation of P; is

Tia+2m = TF +n6m+2)+n’+n+5m+1 = T*

To complete the proof of Theorem 9 we have to prove Universal-Quantifier-Correctness-Lemma and
Satisfiability-Lemma.

Proof: [Lemma 16] Let H be a run of G for the schedule S. Furthermore let P be a processor computing
a task ws € W(s). We have that P has to compute r; and because the Lemma 14 this can be done in
time T7. From the construction of if,, and the restriction of the communication delay function it follows
directly that P has to compute also

e 3 set of tasks representing at least one path of the main chain of i,, from the source r» of U, to s,

o 3 set of tasks representing at least one path either from [; 41 to T; or from r; 41 to z; for each
ie{l,...,n} and

e a task for any node s; and ¢;.

Hence P has to compute at least

n—1
t = nbm+2)+1+> Qi+1)+n+4m+1
=0
= n6m+2)+n*+n+dm+2 = T*-TF —m+1

tasks of U, and the subgraphs 7;.

Assume that there exists a processors P computing tasks ws € W(s), w; € W(x;), and we € W(T;)
for at least one ¢ < n. From the choice of the delay function ¢ it follows that P has also to compute a set
of tasks representing the nodes l; 1,... ,li 6m+1 and a set of tasks representing r;1,...,7;6m+1. Hence,
P has to compute at least ¢t +m + 1 tasks within ¢ +m — 1 steps — a contradiction.
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From Lemma 15 follows we have at lest 2" such processors P because |W (s)| = 2™. Hence (1) follows.

To prove (2) we have to consider that each task of pg — and therefore of s — represents a unique path
of the main chain, that has to be computed by the processor computing the corresponding task of s.
Hence (2) follows analogously to (1). |
Proof: [Lemma 17] Note that for any schedule of length at most T* any processor P that computes a
task ws; € W(s) has also to compute all successors of wy corresponding to nodes of U, i.e.

t = n-6m+1)+1+ > (2-i+1)+n+1
i<n-—1
= n-(bm+1)+n*+n+2 = T =T —5m+1

tasks of U,. Furthermore, it follows from the choice of § that all tasks of the chain DPGs of 7; can be
compute by some separate processors.

From Lemma 16 we can conclude that no task of W(c;) depends on one task of W(T;) and one task
of W(z;). Now assume, that any task tc, of ;e[ ,n) W(ci) computed by P depends on at least one task
W (z;) where z; is a variable of clause C;. Then P has to compute at least 5 tasks of any subgraph 7; —
one task W(f;») UW (t:5) (b € {1,2,3}), one task of W(f;) and one of W(c;). Hence, P has to compute
5m tasks within T* — T} — ¢t = 5m — 1 steps — a contradiction.

Hence, there exists at least one node ¢; where P compute no task of W(y; 1) UW (y;.2) UW (y;,3), but
one task of any set W(y, 1), W (¥, ), and W (¥, 3).

|

4.3 The general case

Let G = (V,E,I,0) be a given DPG, § be a communication delay, and let T* be a deadline. Then to
solve the problem if T, (G,9) < T™ holds one can guess nondeterministically Hg — a run of G next to
guess a schedule S for Hg and finally to verify that T'(S) < T*. To check that Hg in fact is a run of G
we can use Lemma 9. Hence this tast can be done deterministically in polynomial time with respect to
the lenght of Hg. It is easy to see that the remaining tests can be done also in such time. Hence from
Lemma 1 one deduces that the whole procedure can be done nondeterministically in exponential time
with respect to the lenght of G. Note that because the bound of Lemma 1 is tight the above exponential
time is achieved in the worst case. This give

Lemma 18 DPGS problem can be solved in NEXPTIME.

Through the rest of this section we will prove that DPGS problem is hard for this class.

Theorem 11 Scheduling dynamic process graphs is NEXPTIME-complete, even in case of constant
communication delay.

Proof: From Lemma 18 we have that the problem is in NEXPTIME. To prove that it is hard we will
use the reduction to the following problem

Definition 12 SUCCINCT-3SAT: As input we are given a Boolean circuit over the standard AND,
OR, NOT-basis that succinctly codes a Boolean formula in conjunctive normal form with the additional
property that each clause has exactly three literals and each literal appears exactly three times. Suppose
that the encoded formula consists of n variables and m clauses. On input (0,4,k) withi € {0,... ,n—1}
and k € {1,2,3} (appropriately coded in binary), the coding circuit returns the index of the clause where
the literal —x; appears the k-th time. On input (1,4,k) it returns the index of the clause where x; appears
for the k-th time. On input (2,j,k) with j € {0,... ,m — 1} and k € {1,2,3}, it returns the k-th literal
of the j-th clause.

The problem is to decide whether the encoded formula is satisfiable.

The NEXPTIME-completeness for this problem has been proved by Papadimitriou and Yannakakis in
[17].

For the reduction of SUCCINCT-3SAT to the scheduling problem, the first crucial step is a transfor-
mation of a Boolean circuit B into a DPG.
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Each input gate = of B is encoded by two nodes zy and z; with output mode PAR. The meaning of
the indices here and later is as follows: z; codes the value false for z, while z; true . A NOT gate z is
encoded by a graph of four vertices x5, z;, vy, v, with two edges: (zf,v;) and (z¢,vs). The nodes g, x;
represent the input of this gate, while vy, v; the output.

Each AND , resp. OR gate is represented by a graph of ten vertices x¢, x+,y¢, y¢, P1, P2, P3, P4, Vg, Vs aS
follows. In both cases, there are edges (z7,p1), (s, 1), (%t,p1), (Ye, Pa), (T 5, D2), (yt, P2), (x4, p3), (Y7, P3)-
Furthermore, for an AND gate we add the edges (p1,vy), (p2,v¢), (ps,vy), (P4, v:), while for an OR gate
(p1,v5), (D2, ve), (P3,Vt), (Pa,ve). P1,P2,P3, s are internal nodes to establish the connection between the
x and y inputs to the v outputs.

The input and output modes of these subgraphs are defined as follows: For all sources z € {z¢,x¢,ys,ys }
choose I(z) = O(zx) := ALT; for all sinks v € {vf,v:} let I(v) := ALT and O(v) := PAR,; finally, for all
inner nodes p; define I(p;) := PAR and O(p;) := ALT.

X1 T2 I3
{ \ J RS

v

Figure 21: A Boolean circuit and its DPG with the auxiliary nodes z;.

To encode an arbitrary Boolean circuit B by a DPG G we code each gate of B separately as described
above and draw edges from the output nodes of each gate to the appropriate input nodes.

To understand the functionality assume that to the graph G additional temporary nodes z1,za, ... , 2,
are added, each with output mode ALT. z; will be connected to zf; and zy; via (s, z¢;) and (z;, ;). Our
encoding achieves the following property. Let x1,Zs,...,, be the input gates of B, and vy,vs,... v

its output gates. In the coding graph G there will be nodes zy;,x¢; for 1 < 4 < r, and sinks vy, vy,
for 1 < j < s. To simplify notation, let z;(false) := xy; and z;(true) := x4;, etc. Then the following

holds: for any input (by,bs, ... ,b,), B returns (c1,ca, ... ,¢s) iff there exists a run for G such that each
of the process nodes 1 (b1),-..,z.(b.) and vi(c1),-.. ,vs(cs) has one execution instance, and none of
the complementary nodes z1(—b1), ... ,2-(—b.), vi(—ec1),. .. ,vs(—cs) has any execution instance. As an

example see Figure 21.

Now assume that B is a given input circuit of the SUCCINCT-3SAT problem that codes a Boolean
3CNF formula F as specified above. We may assume that F has exactly m = 2¢ clauses. Then there will
be n = 27~ variables.

The first step of our reduction is to construct four circuits: A, Ay, Ao, and Az. The first circuit verifies
the syntax of the formula encoded by B. Speaking more formally, A with the input j returns 1 if and
only if the given circuit B returns j on exactly three inputs (k, B(2,4,k’), k") for all k € {0,1} and
k' k"{1,2,3}. Otherwise A returns 0.

For k = 1,2, 3, circuits Ay, with the input (j, %), are defined as follows. Ay, returns (1,1) if B(2,5,k) =
i, B(1,i,k") = j for some k', and B(0,%,k") # j for any k", with k', k" € {1,2,3}, that means z; (but
not —z;) is the k-th literal of the j-th clause. Ay returns (1,0) if B(2,j,k) =4, B(0,i,k") = j for some
k', and B(1,i,k") # j for any k", in other words —x; (but not x;) is the k-th literal of the j-th clause. If
both literals x; and —z; appear in the j-th clause, i.e. B(1,i,k') and B(0,4, k") are equal to j for some
k', k", then there are also at least two values ki, ks € {1,2,3} such that B(2,j,k1) = B(2,4,k2) = i. In
this case Ay returns (1,0) if £ = min{¢ € {1,2,3} | B(2,4,¢) = i} and A, returns (1,1) for all other
ke {te{1,2,3}| B(2,j,¢) =i}. Finally, in any other case, A, returns (0, 0). Obviously, these circuits
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can be easily constructed from given B. Let A, A1, As, A3 be the DPGs which denote the encode circuits
A A, Ay, As. We will call A the syntax-verifier, and A;, Az, A3 the index-verifier graphs.

According to our encoding method, A has 2d sources, and each graph Ay has 2d + 2(d — 1) sources,
that encode integers j and i, with 0 < 7 < m — 1 and 0 <4 < n — 1. Let us call the sources of A
Je1,Je1,dt2,d825 - - - »dtd,Jea- They encode integer j as follows: If the ¢-th digit of the binary representation
of j is 1 then in a run for A4 which represent j, the node ji, has exactly one execution instance, while jg,
has no execution at all. If the /-th digit of j is 0 then jg; has exactly one execution instance and ji¢ has
none. This unique instance of either ji¢ or jgo will be denoted by ¢(j, £).

Similarly, we denote the sources of Ay by jt1,Jf1,Jt2:J£2, - - - >dtd>Jed and g1, ie1, ... ,1gg—1,1f4—1, and
the executions of these nodes represent integers j and 4 as above with instances t(j, £), resp. t(i, £). Note
also, that according to the construction method, A has two sink nodes and each of A}, has four. Let the
number & := |A| + |Ai| + |Az| + | A3| count the number of nodes of these graphs.

To generate the representation of the input values i and j we will use the line DPG, the chain DPG,
and the counting graph as defined on page 19 to 19. For some technical reasons let O(pg) = ALT where
po denotes the since of the counting graph Cp . Furthermore, we address C ¢ by a parameter o :=¢—1
and its height h. An example of a counting graph with A = 2 and o = 2 is given in Fig. 22.

As special incarnation, define the clause-index graph as a counting graph of height d and the
variable-index graph as a counting graph of height d — 1 (recall that m = 2¢). For the clause-index
graph let us denote the sink of the main chain by C and the remaining sinks by jt¢,jee, with 1 < £ < d.
More precisely, let ji; denote the sink of the right chain and jg¢ the sink of the left chain of length ¢ — 1.
An execution instance of the sink of the main chain C of the clause-index graph represents the clause
index of which is represented by the execution pattern of the sinks of the other chains (for each £ only
one sink of the two chains of length £ will be executed, either the left or the right one). Similarly, we
denote by X the sink of the main chain of the variable-index graph, and for £ =1,... ,d — 1 by iy (resp.
igg) the sink of the right (resp. left) chain of length £ — 1.

Finally, we introduce the clause-index-duplicator graph and the variable-index-duplicator
graph that are slightly modified variants of the corresponding counting graphs. Let R be a DPG
consisting of nodes w,p1,...,pk,v and edges (u,p1),...,(u,pr) and (p1,v),...,(Pk,v). The output
mode of u is PAR, and the output modes of the nodes p1, ... , pg, v is ALT. Further we choose I(z) = ALT
for all nodes of Ry. The clause-index-duplicator graph is a clause-index graph in which 2d copies of R3

are added: each of jg1,jf1,--- ,Jeg,Jfg is connected to the source of its own copy of Rz. In this graph
rename the vertices by simply ”shifting down” the names ji¢ and jg¢ to the sinks of the copies of the R3
graph.

A variable-index-duplicator is obtained in a similar way by connecting each node it1, i1, - - ,1tg—1,ifd—1

to one copy of the Rg graph. In the graph obtained this way we also ”shift down” the names i1, if,-- -,
itg_1,1gq_1 of the old to the new sinks.

The total construction consists of two disjoint graphs made up of the subgraphs described above. The
first one Gy will be responsible for checking whether the input circuit B generates a Boolean formula
according to the syntax of SUCCINCT-3SAT. The second graph Gy checks whether the encoded formula
is satisfiable.

Part I. To construct a dynamic process graph Gy that verifies the syntax of SUCCINCT-3SAT we
will use a clause-index graph, a syntax-verifier A, and a line graph of length 3, where 8 > 1 is a
parameter of this part (which will be fixed later depending on the size of Gr; the graph of the second
part). Connecting these subgraphs we draw edges from the nodes ji1,jf1,- - - ,Jjtd,Jea Of the clause-index
graph to the corresponding sources in A. Recall that A4 has two sink nodes — call them bg and by — that
encode the output bit of the circuit A. This bit equals 1 for input j iff circuit B correctly encodes the
j-th clause.

To complete the construction of Gy we draw one edge from by to the source and one from C to the
sink of the line graph. The sink of the line graph will be denoted by r (see Fig. 23).

To guarantee a correct encoding of the integers j € {0,...,m — 1} we like all tasks which corre-
spond to this integer, i.e. t(j,£), to be executed by the same processor. These execution instances
Je1,Je1,- - - »Jtd>Jea can be forced appropriately by a suitable communication delay and deadline. Defining

d—1
D, := 1+d-(a+2)+» (20+1) and Ty (8) = D.+|Al+5.
=0
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Figure 22: The counting graph for h = 2 and Figure 23: DPG Gy that meets the deadline iff
a=2. B generates a correct encoding.

for any integer 8 we can prove the following relation.

Lemma 19 For 3 > 1 and any communication delay 61 > D. + |A|, G1 can be scheduled with deadline
T (B) iff B encodes a 3-CNF formula F, where each literal appears exactly three times.

Proof. Assume first that there exists a schedule S with communication delay ; and deadline T3 (5)
for G;. Let Hg, = (W, F) be a run for G; such that S schedules Hg,. Then we show that the structure
of Hg, enforces that for all j € {0,...,m — 1}, circuit A with input j returns 1. This means that B
encodes expression F as stated inthe Lemma.

Observe that the characteristic vector of Hg, has the following property: |W(C)| = |[W(bs)| =
|[W(r)| = m, W(bg) = 0 and for the sinks jgg, jre of the clause-index graph, |W (jee)| = |W (jee)| = m/2,
for any £ € {1,... ,d}. An interesting observation is that this property holds not only for the particular
run Hg, but also for any run of G;. Moreover, this property means that A returns 1 for any input from
a multiset of integers jp = jp.1Jp,2 - - - Jp,a in binary, where p=0,1,... ,m — 1 and for any £ € {1,... ,d}
the following holds: E;”:_Ol Jp.e = m/2. A peculiarity of Hg, causing that the multiset equals just to
{0,...,m — 1} is how the execution nodes for sinks je1,je1,-- - ,Jed,jta Of the clause-index graph are
connected to the executions for sources jg1,jt1,- - - »Jjfd,jea Of syntax-verifier A. Below we analyze these
connections in detail.

Denote the execution nodes for C and r by C(0),...,C(m—1), r(0),... ,r(m— 1), respectively. Now
let j be an integer, with 0 < 7 < m — 1. Then consider a subgraph of Hg, which is induced by r(j) and
all its predecessors. Partition the vertices of this subgraph into W (j) — a set of execution nodes for the
clause-index — and Ws(j) — executions for the line and syntax-verifier A.

Because of the value of communication delay 1, node r(j) and all its predecessors have to be executed
on the same processor. Hence the following condition must hold

W1()] + [W2()] < TY(B) = De+ Al +8 3)

Any set W1 (j) must contain an execution of C, let us say this is C(j), together with executions of its
predecessors. Denote the d - (a + 2) + 1 nodes as follows:

(a) ud,vd,l,... ,vd,a,wd,... ,Ul,’Ul,l,... ,Ul,a,wl,uo = C(j) ,

where u, is an execution for py, v, is an execution of the ¢-th node in the ¢-th line, and w, is the
execution either of Iy 11 or of 74 441. We can assume such an indexing of executions for C (and hence
also for r) that if the ¢-th bit of integer j is 0 then wy is the execution of l; 441 and otherwise wy is the
execution for ry q41. Next, Wi (j) must contain also executions for j nodes and their predecessors. From
the construction of A it follows that for any £ € {1,...,d} either an execution for node jg; or for jie
belongs to Wi (j). Now observe that W1 (j) has the minimal number of elements if and only if it contains
nodes (a) and for any £ € {1,... ,d} either:
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(b0) execution of je, and all its 2(£ — 1) predecessors from the left chain of the length £ — 1 if /-th bit of
7is 0, or

(b1) execution of ji; and all its 2(£ — 1) predecessors from the right chain of the length £ — 1 if £-th bit
of j is 1.

Obviously, the minimal value for |W;(j)| is D.. Hence for such Wi (j) and for any W5(j) condition (3)
holds since |Wa(j)| < |A| + 8. On the other hand, any W;(j) which differs from that one described
above has more nodes than D, + a > D, + | A| and for any Ws(j), condition (3) does not hold since
|[Wa(j)| > B+d+1. Therefore, if Gr can be scheduled with deadline T7*(8) then for any j € {0,... ,m—1},
the set W;(j) contains nodes defined in (a), and for £ € {1,... ,d} either nodes described in (b0) or in
(b1). This means however, that the executions for nodes j in Wi (j) encode integer j what implies that
for any j € {0,... ,m — 1} circuit A with input j returns 1 (remember that).

Assume now that B encodes expression F as stated in the Lemma. As we have claimed previously,
this means that for any j € {0,... ,m—1} we have A(j) =1, i.e. that for a run H 4 of A if the executions
of j encode integer j then H 4 has an execution for by, and hence for r. And this is crucial for a run of
Gr because then a run exists at all (any run of G; has exactly m executions for C and each execution of
C needs a separate execution for r). Now among all runs of the given graph Gr one should choose such
a graph where for any node r(j) the set W1(j) has D, elements. One can easy show that such a graph
exists. Obviously such graph can be scheduled with communication delay é; and deadline T} (8). This
completes the proof.

Part II. The construction of the essential DPG Gy is technically more involved than that for the
syntax checker. A clause-index-duplicator and a variable-index-duplicator graph will be used. Moreover,
we will add the DPGs A;, As, A3, and some auxiliary nodes.

The construction starts by drawing edges between the clause-index-duplicator and the Ay graphs in
a similar way as previously, i.e. connecting each of the nodes j¢1,Jje1,- - - »Jtd,Jea With its counterparts in
A1, A and A3z. We connect also each of the nodes i1, if1,... ,1tq—1,1ifg—1 of the variable-index-duplicator
with appropriate igg, iy nodes of Ay, As and A3z. Recall that A has four sink nodes:

e the first pair, call them ag and ag, encode the first output bit of the circuit Ay that equals to 1 if
for the input (j,4), x; or —z; is the k-th literal of the j-th clause;

e the second pair of Ay, let us call them bg and by, encode the second output bit of A that equals
to 1 if x; is the k-th literal of the j-th clause and 0 elsewhere.

The following fragment will be responsible for assigning true or false to the particular variable. Let us
introduce two new nodes T and F which are connected to X via (X, T) and (X,F). Remember that the
output mode of X is ALT which enforces that for each execution instance of X there exists exactly one
edge connecting this task of X either with an execution of T or with an execution of F. This guarantees
that to each variable x exactly one value — either true or false — is assigned. To transfer this value to all
literals  and —z that appear in the formula we define O(T) = O(F) := PAR and connect these nodes to
the sources of four copies of the R3 graph, two for each. One of the sinks of the two R3 graphs connected
with T will be called x¢, and the other one —x¢. Analogously call the sinks of the R3 graphs connected
with F —x¢ and x¢. The output mode of these four sinks is ALT.

Next, for each graph A, with 1 < k < 3, new nodes v, —v, v¢, ve, 7vy, Ve, T, s with input mode PAR
are introduced, and a node val with input mode ALT. The output mode of all these nodes is ALT. We
connect these nodes by the edges (a¢, =v), (at,v), (bg, =v), (bg,v) and (v,ve), (X¢,Ve), (V, V), (X¢, Vi)
and symmetrically (—v,—ve), (-xg, —ve), (-v,—ve), (-x¢, —ve). Finally, the following edges (—vy, val),
(v¢,val), (val,r), (val,s) are added. The whole construction gets completed by drawing edges from the
sink C of the clause-index graph (remember, the output mode of C is ALT) to the first, second and third
copy of the node r (see Fig. 24).

The communication delay and the deadline of the final graph are defined as

C— ! ! [ I—
d = Dc+Dv+1ré1]?,%(3{|Ak|} and T = 6+8,
where D!, := D.+2d, D, = 1+(d—-1)-(a+2)+ Z‘Z;g(% +1) and D, := D,+2(d-1).
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Figure 24: The construction of Gyj.

Lemma 20 Gyr can be scheduled by deadline T* with respect to communication delay § iff the formula
F encoded by B is satisfiable.

Proof. Assume that S is a schedule with parameters § and T* and let Hg,, = (W, F) be a run for
Grr which is scheduled by S. We will show that Hg,, enforces that for any j € {0,...,m — 1} there is
k; € {1,2,3} such that k;-th literal of the j-th clause is true.

Let us distinguish v nodes (respectively, —v,v¢, ve,...) for different index-verifiers by index k& €

{1,2,3}. Therefore, we will use v, =V, Vg, Vek, - . . to indicate that the vertices are successors of Ay.
Now consider the characteristic vector of Hg,,. Note first that |W(C)| = m and |W (X)| = n. Denote
the corresponding executions as follows: C(0),...,C(m — 1), and X(0),... ,X(n — 1). Execution node

C(j) is used to encode the j-th clause and X(7) the i-th variable. A next observation is that for the
sinks jes,jee of the clause-index duplicator the following holds W (je¢)| = |W (§ee)| = 3m/2, for any
¢ e {1,...,d}. The similar condition is true for the sinks of the variable-index duplicator, namely we
have |W (igg)| = |[W (ite)| = 6n/2 = 3m/2, for any £ € {1,...,d — 1}. The crucial point of the proof is
how these sinks are connected to the execution nodes of the corresponding sources of runs for Ay.

From the evaluation of the numbers of executions for sink nodes of the both duplicator graphs we
conclude that for any k € {1, 2,3} the number of different subgraphs of Hg,, which are runs for 4;, is m.
Hence for the sinks of Hg,, we have that

3
(W @R)l + W (se)l + [W(ver)| + W (ver)]) = 3m .
k=1

Because |W(C)| = m and the output mode of C is ALT it holds that |W(r1)| + |[W(x2)| + |[W(r3)| = m
for the sinks ry and the number of the rest of the sinks in Hg,, is 2m. Let us enumerate the executions
for rq,ry, and r3 by r(0),... ,r(m — 1) in such a way that r(j) is the node connected with C(j). We will
enumerate the executions of the other nodes in a similar way.

Let k; € {1,2,3} be an integer indicating which node is executed by r(j): ry,rs, or r3. We will show
that k; indicates also the literal in the j-th clause of the formula F which is true.

Consider now schedules for the sinks of Hg,, and their predecessors. The crucial ones are schedules
for nodes r(j) and their predecessor hence we will investigate them below in detail. Because of the value
of communication delay 4, each r(j) and all its predecessors have to be executed on the same processor.
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Therefore the following condition must hold

W) + W2 (3)| + [Ws()] < T* =Dy + Dy + max (A} +8, (4

where W1 (j) denotes a subset of r(j)’s predecessors which are executions for the clause-index duplicator,
Wa(j) denotes r(j)’s predecessors which are executions for the variable-index duplicator, and finally let
to W3(j) belong r(j) and its remaining predecessors.

Any set W1 (j) must contain C(j) together with its predecessors. Similarly as in the proof of Lemma 19
denote the nodes as follows:

(a) Ud,Vd,1y--- ,Vd,ayWdy---,U1,V1,15--- ,V1,a, W1, U0 = C(j) ;

where u, is an execution for p, ve,; is an execution of the t-th node in the ¢-th line, and wy is the execution
either of Iy q41 or of rgqy1. Also, assume such an indexing of executions for C that if the ¢-th bit of
integer j is 0 then wy is the execution of Iy 441 and otherwise wy is the execution for r¢ q41. Wi (j) must

contain also executions for j nodes and their predecessors. We know that for any £ € {1,...,d} either
an execution for node jg; or for ji, belongs to W1(j). Now observe that Wy (j) has the minimal number
of elements if and only if it contains nodes (a) and for any £ € {1,...,d} either:

(b0) execution of jg, and all its 2 + 2(¢£ — 1) predecessors from the graph Rz and the left chain of the
length £ — 1 if £-th bit of j is 0, or

(b1) execution of ji and all its 2 + 2(£ — 1) predecessors from the graph R3 and the right chain of the
length £ — 1 if ¢-th bit of j is 1.

The minimal value for [W;(j)| is D..
Similarly, we analyze the minimal value for |[W5(j)|. Obviously W (j) contains X(3), for some i €
{0,...,n — 1}, together with its predecessors. Let

? _ .
(a) Ud—1,Vd—1,15--- ,Vd—1,05Wd—1,5--- ,U1,V1,15--- ,V1,0,W1,U0 = X(Z) )

denote these nodes; the meaning for u, v, and w is analogous as in the case of Wy (j). As previously, we
can assume such indexing for executions of X that if the /-th bit of integer ¢ is 0 then wy is the execution
of ly,o+1 and otherwise wy is the execution for rgq41. Wa(j) contains also executions for i and their
predecessors. Wa(j) has the minimal number of elements if and only if it contains nodes (a’) and for any
Le{l,...,d— 1} either:

(b0”) execution of igy and all its 2 4+ 2(¢ — 1) predecessors from the graph Rg and the left chain of the
length ¢ — 1 if ¢-th bit of j is 0, or

(b1’) execution of jg¢ and all its 2 + 2(£ — 1) predecessors from the graph Rg and the right chain of the
length ¢ — 1 if ¢-th bit of j is 1.

The minimal value for |Ws(j)| is D;,.

Consider now the third set — W3(j). It contains r(j), an execution for val;,, and vertices of a
subgraph of Hg,, which is a run for A;;. Moreover it contains either executions for = v, , =vi;, =X, its
two predecessors from R3 and F or executions for v, , vi;, X¢, its two predecessors from R3 and T. In
both cases W3(j) has no more than max;<g<3{|Ax|} + 8 elements. Hence for such minimal W1 (j), W2 (j),
and W3(j) as described above condition (4) holds. On the other hand, any set W;(j) which differs from
that one described above has more than D+« > D, + max;<k<3{|Ar|} elements. Similarly, a set Wa(j)
which does not fulfills conditions as above has more than D] + a > D) + maxi<k<3{|Ar|} elements.
Therefore, condition (4) does not hold since |W3(5)| > 2d + 8.

We conclude, that Grr can be scheduled with deadline T* if and only if W1 (j), W2(4), and Ws3(j) are

minimal. This means that

e There exists a run such that for any j exists an index 7 such that r(j) € W3(j) and ¢ is represented
by Wa(j).

e This implies that there exists a run such that for any j exists an index i such that i is represented
by Wa(j) and F (i) € W3(j) = be(i) € Ws(j) as well as T (i) € W3(j) = b (i) € Ws3(j).-
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e Hence, there exists an assignment for zi,...,x, such that for any j exists an index ¢ with z; =
0=>fi€Cj andxizléxiECj.

We can summarize, that Gr; can be scheduled with deadline T if and only if there exists a satisfying
assignment, for the formula given by B, what completes the proof.

To complete the proof of Theorem 11 let §; := § and § := T™* — (D, + |A| — 1). Note that §; fulfills
the inequality as required by Lemma 19. Then Lemma 19 and 20 imply

Lemma 21 The union of Gr and Grr can be scheduled within the deadline T* given communication delay
6 iff the corresponding SUCCINCT-3SAT problem has a positive solution.

5 Conclusion

We have defined a dynamic model for scheduling process graphs. These dynamic process graphs allow
a compact representation of typical distributed programs written in OCCAM or Ada style. We are not
aware of another framework with a similar expressive power. Restricting the input and output mode of
nodes different degrees of concurrency can be modeled.

With respect to the degree of concurrency we have analyzed how difficult it is to decide whether a
dynamic process graph can be executed and to construct optimal schedules. An almost complete exact
characterization could be given. Only for the scheduling problem with output mode restricted to PAR
there remains a gap.

| input mode | output mode | complexity | problem for reduction |
ALT ALT N L-complete Directed Graph Reachability Problem
ALT PAR N L-complete complement of DGR Problem
ALT ALT,PAR ‘P-complete Circuit Value Problem
PAR arbitrary NP-complete Scheduling Problem with
ALT,PAR ALT NP-complete Communication Delay for in-Trees
ALT,PAR PAR BHa-hard SAT-UNSAT Problem
unrestricted NEXPTIME-complete SUCCINCT-3SAT

Figure 25: The different variants of scheduling DPGs

For the general case, we have shown an exponential complexity jump when scheduling process graphs
in the dynamic setting. This implies that our compact dynamic representation is quite effective.

Finally, note that although constructing optimal schedules of standard graphs cannot be done effi-
ciently, at least the problem can be approximated to a certain factor by simple algorithmic methods.
This even holds when one takes communication delays into account.
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