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Abstract

We prove that Minimum Vertex Cover on 4-regular hyper-graphs (or
in other words, Minimum Hitting Set where all sets have size exactly 4),
is hard to approximate within 2 —e. We also prove that the maximization
version, in which we are allowed to pick B = pn elements in an n-vertex
hyper-graph, and are asked to cover as many edges as possible, is hard
to approximate within 1/(1 — (1 — p)*) — ¢ when p > 1/2 and within
(1=p)*+p*/(1 = (1 =p)*) — e when p < 1/2. From this follows that
the general problem when B is part of the input is hard to approximate
within 16/15 — e. These results also hold for k-regular hyper-graphs when
k> 4.

1 Introduction

Consider Minimum Vertex Cover, i.e, the problem in which we are given a graph
and are asked to find a minimum set of vertices S such that each edge has an
end-point in S.

It is well-known that this problem is NP-hard to solve exactly, and it was
proven by Hastad [9] that it is NP-hard to approximate within 7/6 — e. This
was recently improved to 10v/5 — 21 — € by Dinur and Safra [4]. The best known
algorithm approximates the problem within a factor 2 — o(1)

Now consider the generalization to k-regular hyper-graphs, or equivalently,
Minimum Hitting Set where all sets has size exactly k. We call this problem
Minimum Ek Hitting Set. Since the general Minimum Hitting Set problem
is equivalent to Minimum Set Cover, it follows by a result of Feige [5] that
Minimum Hitting Set is “almost” NP-hard to approximate within a factor (1 —
€)Inn for any € > 0. This result is essentially tight since there is an 1 + Inn-
approximation algorithm [10].

A less well studied case is what happens when k is a constant not equal
to 2 (i.e, Minimum Vertex Cover extended to k-uniform hyper-graphs). There
is a trivial approximation preserving reduction from Minimum Ek Hitting Set
to Minimum Ek + 1 Hitting Set (just add one unique element to each set), so
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the hardness result for Minimum Vertex Cover also applies to Minimum Ek
Hitting Set for £ > 2. The best known algorithm approximates Minimum Ek
Hitting Set within & — Lk;llnl:m [8], so this is even farther from tight than for
Minimum Vertex Cover. Since the general problem where the size of the sets is
unbounded is hard to approximate within a logarithmic factor, we would expect
Minimum Ek Hitting Set to get harder to approximate as k¥ grows. Indeed,
recently Trevisan [14] proved that asymtoptically Minimum Ek Hitting Set is
NP-hard to approximate within Q(k'/1?). For large values of k, this gives
a stronger inapproximability result than what we get from Minimum Vertex
Cover. In this paper we study the case k = 4, and we prove that this problem
is NP-hard to approximate within 2 — e. As mentioned above this bound also
applies to k > 4, but for large constants the bound of [14] dominates.

We also consider the maximization version in which the input is extended
with a number B and we are asked to find a subset of size B which intersects
as many S; as possible. A tight bound for the approximability of the general
problem is e/(e — 1) — € [5], and it is known that the version in which all sets has
size 2 is APX-hard [12]. Again we consider the version where all sets has size
exactly 4 and we prove an explicit bound of 16/15 — € for the approximability
of this problem.

The tool which we use is Probabilistically Checkable Proofs (PCPs). In
the PCP model, membership in a language is checked by a probabilistic verifier
which is given oracle access to the proof and which is allowed to accept incorrect
proofs with some probability. The connection between PCPs and approximabil-
ity was discovered by Feige et al [6] who proved that all languages in NP can be
checked by a verifier which uses very few random bits and queries very few bits
from the proof. They then used this result to prove inapproximability for Max-
imum Clique. Strengthening this result, the PCP theorem of Arora and Safra
and Arora et al [2, 1] says that it suffices if the verifier uses O(logn) random
bits and queries O(1) bits from the proof. The above mentioned papers derive
inapproximability results from PCPs by essentially using the PCP as a black
box. The idea is that we automatically get a hard approximation problem from
a PCP; namely the problem of computing a proof with maximum acceptance
probability. This problem can then be reduced to the problem at hand. By spe-
cially designing the PCPs to make this reduction more efficient for the specific
problem, Bellare et al [3] were able to get improved results for many problems,
and Hastad [9] improved previous techniques to get almost optimal bounds for
several problem.

In this paper we take a somewhat different approach. For some problems
the natural optimization problem associated with a PCP is not computing the
proof with maximum acceptance probability. For example, when studying graph
coloring, something called the covering complexity turns out to be the right thing
to study [7]. When considering Minimum E4 Hitting Set, we are interested in the
optimization problem of computing the proof which is accepted with probability
1 and which has a minimal number of 1-bits. In the proof systems mentioned
above no proof of an incorrect statement is accepted with probability 1 so this
for them this makes no sense, but our proof system will have the property that
the constant 1 proof is always accepted. Thus we are interested in the bounding
acceptance probability when the number of 1-bits in the proof is bounded. A
technical contribution of this paper is a tight analysis of this probability as



function of the proportion of 1-bits in the proof.

2 Preliminaries

2.1 Optimization and Approximation

In this paper, we study polynomial time approximation algorithms for some NP-
hard optimization problems. To measure the efficiency of such an algorithm,
we prove guarantees of the form that the algorithm always outputs a feasible
solution with weight at most some factor from the weight of the optimal solution.

Definition 1. Let P be a maximization problem. For an instance z of P let
opt(z) be the optimal value. A solution y, with weight w(z,y), is c-approzimate
if it is feasible and w(z,y) > opt(z)/c.

Definition 2. Let P be a minimization problem. For an instance x of P let
opt(z) be the optimal value. A solution y, with weight w(z,y), is c-approzimate
if it is feasible and w(z,y) < ¢ - opt(z).

Definition 3. A c-approzimation algorithm for an optimization problem is a
polynomial time algorithm that for any instance z of the problem and any
input y outputs a c-approximate solution.

We use the wording to approrimate within ¢ as a synonym for to compute a
c-approximate solution.
We now turn to the optimization problems we study in this paper.

Definition 4. Minimum Hitting Set is the following minimization problem:
Given a set X and m sets S1,...,Sn, where S; C X, find a set S C X of such
that S; NS # @ for all S; and |S| is minimized.

Definition 5. Minimum E& Hitting Set is the following minimization problem:
Given a set X and m sets Si,...,S,, where S; C X and |S;| = k, find a set
S C X such that S; NS # 0 for all S; and |S| is minimized.

Definition 6. Maximum Ek Set Hitting is the following maximization problem:
Given a set X and m sets Sy, ..., S, where S; C X and |S;| = k and a positive
integer B, find a set S C X such that [S| = B such that [{i|S; NS # 0}] is
maximized.

Definition 7. G-gap E3-Sat-5 is the following decision problem: We are given
a Boolean formula ¢ in conjunctive normal form, where each clause contains
exactly three literals and each literal occurs exactly five times. We know that
either ¢ is satisfiable or at most a fraction G of the clauses in ¢ are satisfiable
and are supposed to decide if the formula is satisfiable.

2.2 Probabilistic Proof Systems and Approximability

A language L is in the class NP if there exists a polynomial time Turing ma-
chine M, with the properties that

1. For z € L, there exists a proof 7, of size polynomial in |z|, such that
M accepts (z, 7).



2. For x ¢ L, M does not accept (z,n) for any proof m of size polynomial
in |z|.

Arora and Safra [2] used a generalization of the above definition of NP to de-
fine the class PCP[r,¢] (which was implicit in previous work), consisting of
languages which have membership proofs that can be checked by a probabilisti-
cally verifier which has oracle access to the membership proof, is allowed to use
r random bits, and allowed to query ¢ bits from the oracle.

Definition 8. A probabilistic polynomial time Turing machine V with oracle
access to 7 is an (r, q)-restricted verifier if it, for every oracle = and every input
of size n, uses at most r(n) random bits and queries at most ¢(n) bits from the
oracle. We denote by V™ the verifier V with the oracle 7 fixed.

Definition 9. A language L belongs to the class PCP,. ,[r, g] if there exists an
(r, q)-restricted verifier V' with the properties that

1. For z € L, Pr,[V™ accepts (z, p)] > ¢ for some oracle 7.
2. For x ¢ L, Pr,[V™ accepts (z, p)] < s for all oracles 7.
where p is the random string of length r.

We call ¢ and s the completeness and the soundness of the verifier, respec-
tively. When ¢ = 1, we say that the verifier has perfect completeness.

As a shorthand, we write PCP[q,r] for PCP; ; /5[q,7].

As mentioned in the introduction, the connection between PCPs and ap-
proximability was first discovered by Feige et al. [6], who showed that

NP C PCP[O(lognloglogn), O(log nloglogn)]

and used this characterization of NP and a reduction to show that unless
NP admits algorithms which run in slightly super-polynomial time, Maximum
Clique cannot be approximated within any constant in polynomial time.
Results giving stronger characterizations of NP in terms of PCPJr, q] were
proven by Arora and Safra [2] and Arora et al. [1]. The following result is by [1]:

Theorem 2.1 (The PCP theorem).
NP = PCP[O(logn),O(1)].

In other words, this remarkable theorem says that membership for NP-
languages can be probabilistically checked by a verifier which uses logarithmic
randomness, always accepts a correct proof, rejects incorrect proof with proba-
bility at least 1/2, and looks only at a constant number of bits of the proof.

There is an approximation preserving reduction from general E3-Sat formu-
las to formulas where each variable occurs in exactly five clauses [11]. Together
with this reduction, the PCP theorem implies the following theorem:

Theorem 2.2. There is a constant G such that G-gap E3-Sat-5 is NP-hard.

From this result it follows that there is some constant G such that it is
NP-hard to approximate 3-Sat within G.



2.3 The Long Code and Discrete Fourier Transforms

In the rest of the paper we will consider Z, to consist of the elements {1, —1}.
Addition thus becomes multiplication. Hence 1 takes the place of 0 and —1
takes the place of 1 in the definitions in Section 2.1.

Definition 10. If U is some set of variables taking values in {—1, 1}, we denote
by {—1,1}Y the set of all possible assignments to those variables. Define F; =

{f: {-1,1}YV - {-1,1}}.

Consider a set W of variables and a subset U of W. Then for any assignment
y to the variables in W, write y|y for the restriction of y to U. We define
projection on subsets of assignments:

Definition 11. Let W be a set of variables, let U be a subset of W, and let
B C {—1,1}". define the projection of 8 on U

7Y(B) = {x|B contains an y such that y|y = z}

We will use the long code, invented by Bellare et al [3]. We get the long
code of an assignment by simply writing down the value of all possible boolean
functions on the assignment. More formally,

Definition 12. The long code of an assignment x € {—1,1}V is a mapping
Az Fu — {—1,1} where A,(f) = f(z).

To use the analysis methods of [9], we also need the Fourier inversion theorem
on a function A: Fy — {—1,1}. The idea is that we view A as an element of
the vector space of functions from Fy to C and expand A in an orthogonal basis
for that vector space. Let

xa(f) =] f(=)

TEQ

Aa=22"" 3" A(N)xa(h)

feFu
Then we have:

Theorem 2.3 (Fourier inversion). A function A: Fy — {—1,1} can be
written as

~

A(f) = Z AaXa (f)

ag{—l,l}U

This theorem is an extremely useful tool since the basis functions y.(f) are
just products of long codes for different assignments to the variables in U. Thus
a coefficient A, is the correlation of A with a certain product of long codes.

We also need Parseval’s equality:

Theorem 2.4 (Parseval’s equality). Let A: Fy — {—1,1}. Then

> A=1

aC{-1,1}V



Typically we will give a verifier oracle access to a table A which is supposed
to be the long code of some string. It is sometimes useful to access A in certain
ways to ensure that A satisfy certain properties.

Sometimes we know that A is supposed to the the long code of an assignment
z satisfying that some function h, h(z) = —1 (e.g., = is a satisfying assignment
to some CNF-formula). Then we will use an invention of Hastad [9], called con-

ditioning upon h. First we will need to define pointwise logical and of functions.
Let

na={ ) 9=

Definition 13. Given a function A: Fyy — {—1,1} we define A, A conditioned
upon h, by for each pair of functions A (f) = A(f A h).

We have the following lemma from [9]

Lemma 2.5. Let B = Ay, where A: Fy — {—1,1}. Then for any o such that
there is x € o with h(z) =1, B, = 0.

This is an extremely useful property, since it means that Ay is not at all cor-
related with products of long codes of assignments where any of the assignments
do not satisfy h.

3 PCP for Hitting Set

We construct a specially tailored PCP. The (now) standard approach is to con-
struct a PCP such that the optimization problem of computing the proof which
has maximum acceptance probability is easy to reduce to the problem at hand.
In our case, we instead look at the optimization problem of the minimum num-
ber of —1 in the proof which makes the verifier accept with probability 1, and
we design our PCP so that this problem is almost trivial to reduce to Minimum
E4 Hitting Set. This means we want the test to be that not all bits are 1, and we
want the verifier to have perfect completeness. We consider elements to be the
positions in the proofs and we make a set for each random string consisting of
the positions in the proof queried for that random string. Thus a correct proof
will correspond to a hitting set of a size which are the number of occurrences of
—1 in the proof. We have the following definition:

Definition 14. For —1 < p < 1, a proof is p-balanced if a fraction %ﬁ of the
bits are 1. We say that a proof is balanced if it is O-balanced.

Our encoding of the proofs will be such that a correct proof is balanced, and
thus corresponds to a hitting set of 1/2 of all elements. We want the verifier
to have the property that if there is no correct proof, then no p-balanced proof
makes the verifier accept with probability 1, for p as close to —1 as possible.
This implies that when there is no correct proof, there is no hitting set of size a
fraction 12;” of all elements. Note that the perfect completeness is crucial. The
following lemma formalizes the above discussion.

Lemma 3.1. Let ¢ > 0 and suppose there is a (O(logn), O(1))-restricted verifier
for some NP-complete language L with the following properties:



1. The verifier V non-adaptively reads exactly k bits and accepts if not all
are 1.

2. If the input is in L, then there is a 0-balanced proof which V accepts with
probability 1.

3. If the input is not in L, then for p > —c, there is no p-balanced proof
which V' accepts with probability 1.

Then Minimum Ek Hitting Set is impossible to approximate within 1 4 ¢ in
polynomial time, unless P = NP.

Proof. On input z, create the following instance of Minimum Ek Hitting Set :
For each bit 7(i) in the proof we have an element z; € X. For each random
string of the verifier, we have a set S; containing the elements corresponding
to the bits the verifier reads. A proof « corresponds to a S C X by z; € S
iff the corresponding bit 7(¢) is —1. By the second property of V', if z € L is
satisfiable, then there is a hitting set S of size less than or equal to |X|/2. By
the third property of V, if £ ¢ L, no set of size smaller than |X|(1+¢)/2 is a
hitting set. Thus it is NP-hard to approximate Minimum Ek Hitting Set within
1+ec O

The construction of the PCP generally proceeds as in [9]. By Theorem 2.2,
any problem in NP can be reduced to G-gap E3-Sat-5. There is a well known
one-round two-prover interactive proof system for G-gap E3-Sat-5 which we
describe before proceeding.

3.1 An Interactive Proof System For G-gap E3-Sat-5

The two-prover one-round interactive proof system consists of two provers, Py
and P, and one verifier. Given an instance, i.e., an E3-Sat formula ¢, the
verifier behaves as follows:

1. Pick a clause C and variable z in C uniformly at random from the instance.

2. Send z to P; and C to P,. P, returns an assignment to z and P, returns
an assignment to the variables in C.

3. Accept if these assignments are consistent and satisfy C'.

When ¢ is satisfiable, the provers answers according to a satisfying assignment,
and thus the verifier accepts with probability 1. Moreover, the provers can fool
the verifier to accept an unsatisfiable instance of G-gap E3-Sat-5 with prob-
ability at most (2 + G)/3. To summarize this in the language of PCPs, the
abovementioned proof system has completeness 1 and soundness (2 + G)/3.
The soundness can be lowered to ((2+G)/3)* by repeating the protocol u times
independently in sequence, but it is also possible to construct a one-round proof
system with low soundness as follows: The verifier picks u clauses {C4, ..., Cy}
uniformly at random from the instance. For each Cj, it also picks a variable x;
from C; uniformly at random. The verifier then sends {z1, ..., 2, } to P; and the
clauses {C1,...,Cy} to Py. It receives an assignment to {z1,...,2,} from P;
and an assignment to the variables in {C1, ..., Cy} from P, and accepts if these
assignments are consistent and satisfy Cy A---ACy. As above, the completeness



of this proof system is 1, and it follows by a general result by Raz [13] that the
soundness is at most cf, where cg < 1 is some constant depending on G but
not on u or the size of the instance.

3.2 The PCP
The proof is a Standard Written Proof as defined in [9].

Definition 15. Let ¢ be a G-gap E3-Sat-5 formula with n variables z1,. .., 2,
and m = 5n/3 clauses Ci,...,Cp,. Define U to be the set of all sets U of
variables, where |U| = w. Similarly, define W to be the set of all sets W of
clauses where |[W| = w.

Definition 16. A written proof with parameter u contains for each set W of

u disjoint clauses a string of length 22" which is interpreted as the table of a
function Aw : Fw — {-1,1}.

Definition 17. A written proof with parameter u is a correct proof for a for-
mula ¢ of n variables if there is an assignment z, satisfying ¢, such that Ay is
the long code z|w.

Thus a correct proof is always balanced.

Lemma 3.2. For a p-balanced written proof,
E[Aw.q] = p.
W[ wol =p

where the expectation is over sets W of u disjoint clauses.

Proof. We have that

V]?,[Aw,m] [Aw(f)]l=»p

=E

W, f
This follows because since all tables have the same size, we have that Ay (f) is
an uniformly distributed bit in the proof. O

Our protocol will be almost identical to the one Hastad [9] uses to prove
inapproximability for Maximum E4 Set Splitting. The only thing we change is
the acceptance predicate. We will construct the verifier in two steps. The first
verifier is given in Figure 1. The final verifier will use this one as a subroutine.
The completeness of the test is straightforward:

Lemma 3.3. If ¢ is satisfiable, there is a balanced proof which Test HS-e accepts
with probability 1.

Turning to the soundness, first note that since the probability that the ver-
ifier accepts immediately in step 3 is o(1), this case adds at most o(1) to the
soundness. Thus it suffices to analyze the verifier in the case when we have
conditioned on that both W; and W5 are sets of u disjoint clauses.

Below, all expectations over W; are conditioned on that W; contains u dis-
joint clauses, but in order to simplify the notation we omit this. Let 41 = Ay,



Test HS-¢. Input: A G-gap E3-Sat-5 formula ¢ = C; A ... A C,, with n variables
and m clauses and a Standard Written Proof with parameter u with each table
Aw conditioned upon ¢y = /\C,- cw Ci-

1.
2.

A

Select uniformly at random a set U = {1, ..., 2, } of u variables.

Select two sets W1 and Ws in the following way: For each z; € U pick
uniformly at random a clause C; in which z; occurs. Let Wy = {C4,...,Cy}.
Repeat the process independently for Ws.

Accept if either Wy or W5 is not a set of u disjoint clauses.
Select uniformly at random f € Fy.
Select uniformly at random g; € Fy,.

Select h; € Fw,, by for each y, if f(yly) = —1 set h1(y) = —g1(y). If

flylu) = 1, set hi(y) = g1(y) with probability 1 — e and h;(y) = —g1(y)
with probability e.

. Select hy € Fw,, by for each y, if f(yly) = 1 set ha(y) = —g2(y). If

Ff(ylu) = =1, set ha(y) = g2(y) with probability 1 — € and ha(y) = —ga(y)
with probability e.

. Reject if

AW1 (gl) = AWI (hl) = AW2 (92) = AW2 (h2) =1

else accept.

Figure 1: Verifier for Hitting Set — first step




and let Ay = Aw,. Note that the acceptance probability of the verifier can be
written as

(1+Ai(g1))(A + A1 (h1))(A + A2(g2)) (1 + Az(h2))

E|1-
16 ’

1)

where the expectation is over U, Wy, Ws, f, 91,92, h1 and he. Now fix U and
consider the terms in (1). Using Fourier expansion (Theorem 2.3), we have the
following two lemmas (implicit in [9]):

Lemma 3.4.

E[A41(g1)A1(h)] = E[A2(g2) A2(h2)] = (2)
B (Y4, 1 (%((—1)8w+<1—2e)8m))]. 3
s zen?(B)

where s, is the number of y € B such that y|u = z, and the expectations is over
W17W27fagla927h1 and h2-

Lemma 3.5.

E[A1(g1)A1(h1)A2(g2) A2 (h2)] = (4)

E
W1, Wa

Y A4, H(%((—l)“(l —2€)" + (1 - 26)S“(—l)t”))] )

a’ﬁ

Where s, is the number of y € a such that y|ly = z, t, is the number of y €
such that y|y = x and the expectation is over W1, Wa, f, g1, 92, h1 and ha.

Let

and let
Ko 1) = 5 (-1 (1 =20 + (1~ 29°(-1)")

Let 0 < 6 < 1/2 be a constant, and

TU:VE Z A%ﬁ H v(sz)

|H|§5e_1 zenU(3)
all s, even

Let RU = E[A1 (gl)Al (hl)] — TU- Similarly, let

12 12
Fuo = W}?‘W2 Z Al oA H K(8z,tz)

la,|B|<be™?
all s, and t, even

and let Qu = E[A1(g1)A1(h1)A2(g2)A2(he)] — Fy.

10



Lemma 3.6. For any p, if the proof is p-balanced, then the acceptance proba-
bility of Test HS-€ is at most

. o
_ (4" —6By(|Ry|l + Ey[Qu] | 1 o oo A A3,

1 16 16
anp#0
el 8] <8e™
+o(1)
Proof. Consider
E[(1 + A1(g1))(1 + A1(h1))(1 + A2(g2)) (1 + A2 (h2))] (6)

where the expectation is over U, W1, Wa, f, 91,92, h1, ha. We compare (6) with
(1+ p)*. Fix U. Let py = Ew, 4,[A1(g1)]. Then Ey[py] = p We have that
the terms on the form Ew,[Aw,(9;)] and Ew,[Aw;, (h;)] contributes 4py. Since
g1 and g are uniformly and independently chosen, we have that h; and hs are
also uniformly and independently chosen. Since we also have that W; and Wy
are independent and have the same distribution when U is fixed, we have that

E[A1(h1)A2(h2)] = E[A1(g1)A2(g2)] = E[As(9:) A; (hy)] = piy

where i # j. And we have that these terms contribute 4pf,. Next consider the
two terms on the form E[A4;(g;)A;(h;)]. Let

qu = E[A1(g1)A1(h)] = E[A2(g2) A2(h2)].

Thus the terms contribute 2qy to the sum. Next consider the terms on the form
E[A;(9;)Ai(gi)Ai(h;)]. These contribute 4pygu to the sum. By Lemma 3.4 we
have that

A 1
w=E |8, T[ G +a-29%)
B zen(B)

Then Ry = qu — Ty and 2QUA+ dpvqu > Ty +4pvTy — 6|RU| Note that Ty is
positive and that since Ew, [Aw, ¢] = pu, and E[X?] > E[X]?, we have that

Ty > %[Aim] > pir
Finally we have the term

E[A1(91)A1(h1)A2(g2)A2(ha)],

which is Fy + Qu. Since when U is fixed, W7 and W, are independently and
uniformly chosen with the same distribution,

Tl%' = EW Z A%,aﬁg,ﬁ H v(sz)v(tz)
le],|8] <de™ zenV(B3)
all s, and t, even

11



When 8N a =0, then the corresponding terms in T3 and Fy are equal. Thus

FU Z TIQJ - W1EW2 Z Aia/igvﬁ
T | 7Y ()N (8)70
lal,|B|<de

To summarize the progress so far, we have that (6) is at least

1+ 4py + 4pf; + 2Ty + 4pTy + TE (7)
—6|Ry| - Qu —E > A2 A3 5] —o(1)
w7 (a)nx (8)70
al,||81<de

When py > 0 it is easily seen that (7) is at least (1 + py)*, since Tty > p?;. For
the case py < 0, consider 2z + 4pyx + 2. As a function of z, this is increasing
for z > p¥, and thus 2Ty + 4pTy + TE > 2p% + 4p3; + pf;, and we have proven
that when U is fixed (6) is at most

1+ pu)*—6lRy|—Qu | 1 2 7
1- ( ) 16' | + EEW1 Z A7 A3 5| +o(1)
w7 (@) (8)#0
o], |B]<Se?

Taking the expectation over U and noting that E[X*] > E[X]*, we are done. [

The rest of the analysis is very similar to the analysis of the protocol used to
prove hardness for set splitting in [9]. Before we can proceed to analyze the rest
of the terms we need a technical lemma from [9]. Fix W; and 8 and consider

T (0= +a-20%)
zen¥(B)

We want to prove that for large 3, this quantity is large with small probability
over U. To this end let

SY(B) =« Zmin(sw, ).

This can be seen as a generalization of |7V (8)|. We have from the proof of
Lemma 6.8 in [9] that

Sty I g0 +a-20m) <

zenV (B)
~ _qU
ZAiﬂe S.(B)/2 (8)

We want to prove that when |3] is large, then SY () is unlikely to be small.
This follows from a technical lemma of [9]. We will use a corollary, which is
Corollary 6.10 in [9]:

12



Lemma 3.7. Let W be a set of u disjoint clauses and let o« C {—1,1}V. There
is a constant ¢ such that if for a,b > 1, we have |a| = (ab)*/¢e=*. Then

Pr[SY(a) < b <a”l.
A possible value for ¢ =1/35.

The following Lemma bounds the terms in Ry where |3| < de~! and some
sz is odd.

Lemma 3.8. For any U and W1,

Z A%M,B H v(ss)| <6

|ﬁ\§66_1 zenV(B)
some s, odd

Proof. Since some s, is odd, we have for this s;, sze < (—1)%= + (1 —2¢)°= <0,
and thus the corresponding factor has absolute value at most sze < §. Since
the absolute values of the other factors are bounded by 1 and ) 3 Af 5 <1, the
lemma follows.

The next lemma helps bound the terms in Ey[Ryy] where |3 > de 1.

Lemma 3.9. There is a constant ¢ such that for any Wy,

E| Y Ay II v ©)
|B|>de—1 zemrV(p)
15 at most
26 + > AD 4 (10)

8
ST <|BI< (672 et

Proof. We have to bound the terms where |3] > (26=2)'/¢e~1. We have from (8)
that

~ ~ _ QU

E Z AT, H v(sg)|| < Z Al g E[e S/, (11)
zenV(B)

By Lemma 3.7, with a = 6! and b > 26!, the probability that SU(3) < 26~ is

at most 8. Thus the term corresponding to 3 in (11) is at most (§+e=% )Aiﬁ <

2521&,, (where we used that e~% < z~! for > 0), and hence the sum (11) is
at most 24. O

Lemma 3.10. There is a strategy for the two-prover one round protocol with
success probability at least

Y R
7Y (@)naY (8)#£0
lal,|8]<de™

U7 Wi 7W2

13



Proof On receiving U, the prover Py pleS an W1, and then « of size at most
de~! with probability proportional to A2 ..o Then P picks an y1 € a and
returns x = y1|U The prover P, on recelvmg W selects a @ with probability
proportional to AW 5 and returns a random y» € B. Then the probability of
picking « and with non- empty intersection is at least

> Ay, oAy, 5
7V (a)nnV (8)#0|al,|B|<se~!

and the probability of the provers picking the same element in the intersection
is at least 6~2€2. The lemma, follows. O

The following lemma bounds the terms in Ey[Qu] where both o and £ is of
size at most de~! and at least one s, or ¢, is odd.

Lemma 3.11. Let Acc be the acceptance probability of the modified two-prover
protocol. Then

A2 A2
U,W]?,Wz Z At a4z 1;[ k(52 tz)

a’ﬁ
al,|8]<de™!

some S, or ty odd

is at least
—6 — 8% 2 Acc

Proof. We analyze
[T #Gset2) = LG (1% (1 = 26" + (1= 26" (=1)*)) (12)

First consider the case when 7Y(3) N 7Y (a) = §. Then for each z at least one
of s, or t, is 0. We may assume that for some z, s, is odd and ¢, is 0. Then
the corresponding factor in (12) is (-1 4 (1 — 2¢)**) which is at least —es,.
Since we have that —§ < —es,; < 0, and the other factors in the product (12)

have absolute value at most 1 and A%afig 5 <1, we have that
Z Aiaflgﬁ H K(8g,tz) >
a’ﬁ z

- Y &L, (13)
U (a)N7U (B)#£0

when the sums are restricted to @ and 3 of size at most de~!. Furthermore, it
follows from Lemma, 3.10 that

(5_262EU,W17W2 Z Aiafigﬂ < Ace,
7V (a)NaV (B)#0
and thus (13) is at least —6 — 6%~ 2 Acc. O
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The following lemma bounds the terms of Ey[Qu] where at least one of «
or (3 has size greater de 1.

Lemma 3.12. There is a constant ¢ such that

12 12
U,W]?,Wz ZEAI’“AMIIH(SZ’%) =
a, z

45— E |2 A2
0 U, W, W Z LB

8
semt<|B|< (257 et

where the sum on the left-hand side is over a and 3 where at least one of a and
B has size greater than de!.

Proof. Below, sums over «, 3 are over a and 8 which where at least one of «
and 3 has size greater than de~!. First consider the terms where at least one
of & and f is of size at least (26-2)'/¢e~!. Without loss of generality we can
assume that

o > (2072) /e,

Then

H/@(sw,tw)

and by reasoning as in Lemma 3.9 we have

i2 A2
]54 ZﬁAl,aAZﬂHK(S”“tz) > —45
@,

T

when the sum is restricted to terms where at least one of a and f is of size at
least (20—2)/ce1,

Next consider the terms where at least one of a and 8 is in the interval
[6e71,(20-2)'/¢e~1]. We have that the terms where de~! < 8 < (206-2)'/¢e~! is

at least
- > A g
B
Set<|p< (287 e
and similarly for a. The lemma follows. (|

The following lemma summarizes the work done so far:

Lemma 3.13. Let Acc be the acceptance probability for the modified two-prover
protocol. Then Test HS-€ accepts a p-balanced proof with probability at most

(1+p)* 23 8 A2 3 0 o
11— 25 = A2 5+ 2822 Acc + o(1).
6 160 716 2 1g T ygle Acetoll)

det<[BI<(207%)  ee!
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Test FHS-6. Input: A G-gap E3-Sat-5 formula ¢ = C; A...AC,, with n variables
and m clauses and a Written Proof with parameters k& and u. with each table Ay
conditioned upon ¢w = A¢. ¢y Ci-

1. Set t = [§71], let €, = 6 and

€ = 6't2/egVeg (16)

2. Choose ¢ € {1,...t} with uniform probability. Run test HS-¢;.

Figure 2: Verifier for Hitting Set — the final step

Proof. Combining Lemma, 3.8 and Lemma 3.9 we get:

12
BlRu| <36+ B > Kt (14)

s
§em!<|B<(207%) e

Similarly, Lemma 3.11 and Lemma 3.12 gets us:

2 _—2 A2
BlQu] > —50 - 8¢ *Acc—2  E > A2

8
s <|BI< (267 e
(15)

Inserting these bounds and the bound on E [Zﬂu(a)m(](ﬁ) 40 Aiaﬁg, | from

laf,|8<de*
Lemma 3.10 in the expression in Lemma 3.6, the lemma follows. (|

Our final verifier is given in Figure 2.

Proposition 3.14. If ¢ is satisfiable, then for p < 0 there is a p-balanced proof
which Test FHS-0 accepts with probability 1. For p > 0, there is a proof which

Test FHS-6 accepts with probability at least 1 — Uﬂ%ﬂﬁ - 4.

Proof. The case when p < 0 follows from Lemma 3.3. For the case when p > 0,
we consider the proof where each table is as close to a correct proof as possible.
That is, the prover begins with a satisfying assignment x to ¢ and A is made
as close to A, as possible by changing a fraction p randomly chosen —1-bits
to get the correct balance. Note that in a correct proof with probability at
least 12;‘5 one bit is —1 in which case the probability that this bit has been
changed is p and with probability at least % three bits are —1 in which case
the probability that all these bits have been changed are at most p3. Thus the

verifier accepts with probability at least

_8p+8p3+45_1_ (1+p)* = (1-p)* s
16 B 16 '

1
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Proposition 3.15. For any dg > 0, there is a choice of the parameters §, k and
u such that, for large enough ¢, if ¢ is not satisfiable, then Test FHS-0 accepts
a p-balanced proof with probability at most

(1+p)?*

1—
16

+do

Proof. By Lemma 3.13 it follows that the verifier accepts with probability at
most

(1+p)* 23
1=t 42
6 160t
8 1
+167 2 > Al gt an)
i=1

g
de;1<|BI< (2672 et
i
31 Z 2 _—2
+1—6¥ (5 Ei ACC

i=1
Since the intervals in (17) are disjoint,

)DIEED DR FEED O P
i B

i=1

| =
| =
IA
(«%)

8
de; ' <|BI< (2672 et

So the probability that the verifier accepts is at most

A+p)* 81 35
11—+ =0+ — A
6 160 T1g0 @ A
Since 0%€¢;? is a constant which depends only on §, and Acc is bounded by et
when the formula is not satisfiable, we can choose u such that 36%¢; 2Acc < 4.

Thus the acceptance probability is at most

(1+p)?*
1———+26.
16 +
Since § was an arbitrary positive real constant, we are done. O

3.3 Hitting Set — Hardness of Approximation
We can now prove our main theorem:

Theorem 3.16. For any € > 0, Minimum FE4 Hitting Set is NP-hard to ap-
proximate within 2 — €.

Proof. By Proposition 3.14 and Proposition 3.15 for any € > 0 there is a choice
of the parameters for the verifier FHS-§ such that, for rho < 1 — ¢, if ¢ is satis-
fiable, there is a balanced proof which is is accepted with probability, and if ¢
is not satisfiable, no p-balanced proof is accepted with probability 1. There is a
technicality in that this holds for the proofs implicitly constructed by condition-
ing, and not for the original tables. However, note that, since the table Ay is
conditioned upon ¢w, the only functions the verifier actually queries from the

17



proof are functions on the form gA ¢y, Since the proof is conditioned upon ¢w
and W is a set of disjoint clauses the conditioned proof retains the same balance
when restricted to such functions. We can thus consider the proof presented to
the verifier to only consist of the positions the verifier actually queries. Thus we
have that the verifier FHS-6 fulfills the assumptions of Lemma 3.1 with ¢ = 1—¢,
and we are done. O

For Maximum E4 Set Hitting, we have the following;:

Theorem 3.17. For any € > 0, Mazimum FA Set Hitting is NP-hard to ap-
prozimate within 16/15 — €.

Proof. By Proposition 3.14 and Proposition 3.15 with p = 0 it is NP-hard
to distinguish between the case that a there is a set of size B = n/2 which
intersects all sets and the case that all sets of size n/2 intersects at most a
fraction 15/16 + ¢ of all sets. The theorem follows. O

The previous statement says that an algorithm which should work for any
size B can at best approximate Maximum E4 Set Hitting within 16/15 + e.
However, we can also say something about the lower bound as a function of B:

Theorem 3.18. Let B = pn where p is some constant. For any € > 0 when
B > n/2, it is NP-hard to approzimate Mazimum E4 Set Hitting within

-
1-(1-p)*

When B < n/2, Mazimum EA Set Hitting is NP-hard to approzimate within

+ €.

1-(1-p*+p
1-(1-p)*

Proof. Create the same instance of Maximum E4 Set Hitting as in Lemma 3.1.
When B > n/2 we have from Proposition 3.14 that if ¢ is satisfiable then
there is a set S of size B which intersects all sets. If ¢ is not satisfiable, then
by Proposition 3.15 there is no set S of size B which intersects more than a
fraction 1 — (1 — B/n)* + & of the sets. Since dp can be made arbitrarily small,
this proves the case when B > n/2.

For the case when B < n/2, we have that if ¢ is satisfiable then there is a set
S of size B which intersects a fraction 1 — (1 —p)* + p* + 6 of all sets. As before
if ¢ is not satisfiable, there is no set S of size B which intersects more than a
fraction 1 — (1 — B/n)* + &. From the proof of Proposition 3.15 we have § < o
and since dy can be made arbitrarily small, the case when B < n/2 follows. O

+ €

4 Open Problems

There are several intriguing open problems regarding Minimum Ek Hitting Set.
For instance, can we prove an Q(k) lower bound on the approximability of
Minimum Ek Hitting Set?

Can we find an approximation algorithm which does better than a factor k
for some k? As far as the author is aware, all current approximation algorithm
for Minimum Ek Hitting Set are straightforward generalizations of algorithms

18



for Minimum Vertex Cover. It might be that we can do better if we concentrate
on the case when k is a large constant.

Would, say, a lower bound of 4 for Minimum E4 Hitting Set imply a lower
bound of 2 for Minimum Vertex Cover? More generally, is there an approxima-
tion preserving reduction from Minimum E£ Hitting Set to Minimum Ek — 1
Hitting Set?

Can we get a better lower bound than the one we get for Minimum Vertex
Cover for k = 37
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