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Abstract

The boolean circuit complexity classes AC0 ⊆ AC0[m] ⊆ TC0 ⊆ NC1 have been studied in-
tensely. Other than NC1, they are defined by constant-depth circuits of polynomial size and unbounded
fan-in over some set of allowed gates. One reason for interest in these classes is that they contain the
boundary marking the limits of current lower bound technology: such technology exists for AC 0 and
some of the classes AC0[m], while the other classes AC0[m] as well as TC0 lack such technology.

Continuing a line of research originating from Valiant’s work on the counting class ]P , the arithmetic
circuit complexity classes ]AC0 and ]NC1 have recently been studied. In this paper, we define and
investigate the classes ]AC0[m] and ]TC0. Just as the boolean classes AC0[m] and TC0 give a refined
view of NC1, our new arithmetic classes, which fall into the inclusion chain ]AC0 ⊆ ]AC0[m] ⊆
]TC0 ⊆ ]NC1, refine ]NC1. These new classes (along with ]AC0) are also defined by constant-depth
circuits, but the allowed gates compute arithmetic functions. We also introduce the classes DiffAC0[m]
(differences of two AC0[m] functions), which generalize the class DiffAC0 studied in previous work.

We study the structure of three hierarchies: the ]AC0[m] hierarchy, the DiffAC0[m] hierarchy,
and a hierarchy of language classes. We prove class separations and containments where possible, and
demonstrate relationships among the various hierarchies. For instance, we prove that the hierarchy of
classes ]AC0[m] has exactly the same structure as the hierarchy of classes AC0[m]:

AC0[m] ⊆ AC0[m′] iff ]AC0[m] ⊆ ]AC0[m′]

We also investigate closure properties of our new classes, which generalize those appearing in previ-
ous work on ]AC0 and DiffAC0.
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1 Introduction

The study of counting complexity was initiated by Valiant’s work on ]P , the class of functions mapping a
string x to the the number of accepting paths of a NP-machine on x [12]. The class ]L, defined similarly but
with NL-machines, has also been studied [14, 11, 6, 5]. Both ]P and ]L can be obtained by “arithmetizing”
the boolean circuit characterizations of NP and NL given in [13]. To arithmetize a boolean circuit, we
propagate all NOT gates to the input level, and convert OR gates to + gates and AND gates to ∗ gates.
Viewing the inputs to the circuit as taking on the values 0, 1 from the natural numbers, we obtain circuits
which map naturally from {0, 1}∗ to the natural numbers.

More recently, the arithmetic classes ]AC0, ]BP, ]NC1, and ]SAC1 have been defined and studied
[1, 7, 3, 8, 4, 14]. Other than ]BP , these classes are arithmetic versions of boolean classes typically defined
by circuits, and arise from arithmetizing the corresponding boolean circuits. These classes obey the inclusion
chain ]AC0 ( ]BP ⊆ ]NC1 ⊆ ]SAC1, which essentially mirrors the known relationships AC 0 ( BP =
NC1 ⊆ SAC1 of boolean classes. Lying inbetween the boolean classes AC 0 and NC1 are a hierarchy of
classes AC0[m] and the class TC0, which have been studied extensively. (For any m, we have the inclusions
AC0 ⊆ AC0[m] ⊆ TC0 ⊆ NC1.) Not only have these classes given insight into the structure of NC 1,
but the class TC0 captures the complexity of natural problems such as multiplication and division, while
the AC0[m] hierarchy is particularly interesting since it contains the boundary marking the limits of current
lower bounds technology.

In this paper, we introduce the classes ]AC0[m] and ]TC0, arithmetic versions of the boolean classes
AC0[m] and TC0. Just as AC0[m] and TC0 give a refined view of NC1, our new arithmetic classes
refine ]NC1. Shadowing their boolean counterparts, these classes fall into the inclusion chain ]AC 0 ⊆
]AC0[m] ⊆ ]TC0 ⊆ ]BP ⊆ ]NC1. Both the original boolean classes and the new arithmetic classes are
defined by constant-depth circuits, which in this paper are always of unbounded fan-in and polynomial size.
The class AC0[m] (respectively TC0) consists of those functions computable by constant-depth circuits
with AND, OR, and MOD m (respectively MAJORITY) gates. In order to define the classes ]AC0[m] and
]TC0, we introduce arithmetic extensions of the functions MOD m and MAJORITY. Then, we arithmetize
AC0[m] and TC0 as above, but in addition convert MOD m and MAJORITY gates into their arithmetic
extensions.

While ]TC0 is shown to be equal to its boolean analogue TC0, our definition of ]AC0[m] begets addi-
tional complexity classes. By defining Diff AC0[m] to consist of those functions equal to the difference of
two ]AC0[m] functions, we obtain another hierarchy of classes, which includes the already studied Diff AC 0

[1, 7, 3] at the bottom. Moreover, we define two generic operators on arithmetic function classes; acting on
the classes Diff AC0[m] and ]AC0[m] with these operators gives us new language classes.

This paper focuses on studying the structure of three hierarchies: the ]AC 0[m] hierarchy, the Diff AC0[m]
hierarchy, and a hierarchy of language classes. The hierarchy of language classes includes the classes
AC0[m] and the classes induced by applying the mentioned operators to the classes ]AC 0[m] and Diff AC0[m].
We prove class separations and containments where possible. Although making unconditional statements
about these classes would in many cases require new lower bounds, it is often possible to show that a question
in one hierarchy is equivalent to a question in another. For instance, we prove that the hierarchy of the classes
]AC0[m] has exactly the same structure as the hierarchy of the classes AC 0[m]: AC0[m] ⊆ AC0[m′] if
and only if ]AC0[m] ⊆ ]AC0[m′]. We also investigate closure properties of the classes ]AC 0[m] and
Diff AC0[m]. The closure properties proved here generalize those appearing in previous work [1, 7, 3].

One reason why this plethora of new classes is interesting is that it offers rephrasings of open questions.
Not only does the ]AC0[m] hierarchy have the same structure as the AC 0[m] hierarchy, but the classes
]AC0[m] give an alternate decomposition1 of TC0. As a result, any question regarding the structure of the

1Note that by Theorem 12, FAC0[m] is properly contained in ]AC0[m], assuming that AC0[m] 6= TC0.
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boolean AC0[m] hierarchy can be rephrased as a question concerning arithmetic classes, offering a new
line of attack on such questions. As mentioned, the AC 0[m] hierarchy is particularly important because it
contains both classes for which we have lower bounds technology, and classes for which we do not: such
technology exists for the class AC0[m] when m is a prime power, but not when m is a composite with two
or more distinct prime factors [10]. Note that ours are not the first results providing an interface between
boolean and arithmetic circuit complexity: an intriguing result obtained by Agrawal et al. is that deciding
whether or not two ]AC0 circuits are equal characterizes exactly TC0 [1].

Another reason to be interested in the classes introduced here is that they provide refinements of open
questions, which may be more tractable than the original questions. For instance, for any odd positive
integer m, new language classes sitting inbetween AC 0[m] and AC0[2m] are induced by our arithmetic
classes. These new classes offer us the ability to “interpolate” between existing classes. In particular,
when m is an odd prime, our new classes sit inbetween a class (AC 0[m]) for which we have lower bound
technology, and a class (AC0[2m]) for which we do not. Thus, there is the natural question of whether or
not one can prove lower bounds using one of these new classes. Establishing lower bounds technology for
one of these new classes is necessarily no more difficult than doing so for AC0[2m], since the new classes
are contained in AC0[2m]. Studying these “refined” questions is not only independently interesting, but
may give insight into the original questions.

The contents of this paper are as follows. In Section 2, we define the complexity classes to be studied,
as well as the operators on arithmetic classes. In Section 3, we study the language classes induced by the
arithmetic classes. Section 4 contains a normal form theorem, which essentially states that our arithmetic
circuits need only use the arithmetic MOD and MAJORITY gates on 0-1 valued inputs. This theorem in
turn allows us to show that the ]AC0[m] hierarchy is isomorphic to the AC0[m] hierarchy. Section 5 studies
the classes Diff AC0[m]; focus is given to the question of whether or not Diff AC 0[m] = Diff AC0[2m].
(This equality is unconditionally true when m = 1.) Aided by the notion of normal form, we derive a
number of closure properties in Section 6.

For more background on circuit complexity, we refer the reader to the book [15], which contains a
chapter on arithmetic circuit complexity; the survey [2] is also a good source of information on arithmetic
circuit complexity.

2 Preliminaries

We let N denote the set of natural numbers, {0, 1, 2, . . .}; and, we let N+ denote the set of positive integers,
{1, 2, 3, . . .}. The complexity classes that we study in this paper are defined by constant depth circuits; what
varies among the definitions of the classes are the types of gates allowed. We will instantiate the following
definition with different bases of gates to define our classes.

Definition 1 We say that a function is computable by AC 0 circuits over the basis B if the function can be
computed by a family of constant depth, polynomial size circuits of unbounded fan-in with gates from B and
inputs from {0, 1, xi, xi}. (By the size of a circuit, we mean the number of gates plus the number of wires.)

2.1 Boolean Classes

The boolean functions and classes in the next two definitions have been studied in past work.

Definition 2 We define the following boolean functions:

• MOD m on inputs x1, . . . , xk takes on the value 1 if the number of xi’s that are nonzero is a multiple
of m; and the value 0 otherwise.

2



• MAJORITY on inputs x1, . . . , xk takes on the value 1 if the number of xi’s that are nonzero is strictly
greater than k/2; and the value 0 otherwise.

Definition 3 We define the following classes of boolean functions2:

• AC0 (FAC0) is the class of functions computable by AC0 circuits over the basis of boolean functions
{ AND , OR } with exactly one output gate (one or more output gates).

• AC0[m1, . . . ,ml] (FAC0[m1, . . . ,ml] ) is the class of functions computable by AC0 circuits over
the basis of boolean functions { AND , OR , MOD m1, . . . , MOD ml} with exactly one output gate
(one or more output gates). (This definition is for all {m1, . . . ,ml} ⊆ N+.)

• TC0 (FTC0) is the class of functions computable by AC0 circuits over the basis of boolean functions
{ AND , OR , MAJORITY} with exactly one output gate (one or more output gates).

We note a lower bound due to Smolensky.

Theorem 1 [10] If p and q are distinct primes, then MOD q /∈ AC 0[p].

This separates the classes AC0[q] and AC0[p] (for p, q distinct primes), and will allow us to derive
separations of some of the classes which we introduce.

2.2 Arithmetic Classes

We give arithmetic versions of the definitions of the functions MOD m and MAJORITY.

Definition 4 Define η : N → N so that η(x) is 1 if x = 0, and equal to x otherwise.
We define the following arithmetic functions:

• AMOD m on inputs x1, . . . , xk takes on the value
∏k

i=1 η(xi) if the number of xi’s that are nonzero
is a multiple of m; and the value 0 otherwise.

• AMAJORITY on inputs x1, . . . , xk takes on the value
∏k

i=1 η(xi) if the number of xi’s that are nonzero
is strictly greater than k/2; and the value 0 otherwise.

Notice that these arithmetic functions coincide with their boolean counterparts on 0-1 valued inputs,
typing issues aside.3 With these new functions in hand, we can now define the arithmetic complexity classes
to be studied in this paper. The definition is parallel to Definition 3.

Definition 5 We define the following classes of functions from {0, 1}∗ to N; the functions +, ∗ denote the
usual arithmetic sum and product in N, and the input gates are interpreted as the values 0, 1 in N.

• ]AC0 is the class of functions computable by AC0 circuits over the basis {+, ∗}.

• ]AC0[m1, . . . ,ml] is the class of functions computable by AC0 circuits over the basis
{+, ∗, AMOD m1, . . . , AMOD ml}. (This definition is for all {m1, . . . ,ml} ⊆ N+.)

• ]TC0 is the class of functions computable by AC0 circuits over the basis {+, ∗, AMAJORITY}.

2Although these classes are often defined so that NOT gates are allowed anywhere in the corresponding circuits, it is an easy
exercise to show that such definitions are equivalent to ours. Our definitions will make proving various properties more convenient.

3In this paper, we will generally ignore such typing issues, and associate the boolean values 0, 1 with the natural numbers 0, 1.
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2.3 Operators on Arithmetic Classes

By way of some generic operators defined on arithmetic classes, we will obtain yet more complexity classes.
The class Diff AC0 was studied in [1, 7, 3]; we generalize it here.

Definition 6 We define the following classes of functions from {0, 1}∗ to Z:

• DiffAC0 is the class of functions expressible as the difference of two ]AC 0 functions. (That is,
DiffAC0 = {f − g : f, g ∈ ]AC0}.)

• DiffAC0[m1, . . . ,ml] is the class of functions expressible as the difference of two ]AC 0[m1, . . . ,ml]
functions.

The following two operators allow us to obtain language classes from arithmetic classes.

Definition 7 Suppose that C is a class of functions from {0, 1}∗ to Z.
Define χC to be the class of languages with characteristic function in C.
Define LowOrdC to be the class of languages with characteristic function equal to the low order bit of a

function in C (i.e., the value of a function in C modulo two).

2.4 Unambiguous circuits

We now observe a basic fact: that our arithmetic classes are at least as powerful as their boolean analogues.4

This is done by showing that a boolean circuit can be converted into an arithmetic circuit computing the
same values. The conversion roughly involves replacing each boolean gate by its corresponding arithmetic
gate. However, an OR gate cannot simply be replaced by a + gate, but must be “disambiguated” to ensure
that the output is not strictly greater than one. We also observe that ]TC 0 has no additional power over its
corresponding boolean class: ]TC0 is equal to FTC0. The proof of the following lemma is given in the
appendix.

Lemma 2 FAC0 ⊆ ]AC0, FAC0[m1, . . . ,ml] ⊆ ]AC0[m1, . . . ,ml] (for all m1, . . . ,ml ∈ N), and
FTC0 = ]TC0.

3 Language Classes

In this section, we study the language classes which result by allowing the operators χ and LowOrd to act
on the arithmetic classes. We first show that the characteristic functions in each of the function classes
]AC0, ]AC0[m1, . . . ,ml], ]TC0, are exactly the corresponding boolean language classes.5

Lemma 3 AC0 = χ]AC0, AC0[m1, . . . ,ml] = χ]AC0[m1, . . . ,ml], and TC0 = χ]TC0.

Proof. The ⊆ direction follows from Lemma 2, in all three cases. The ⊇ direction follows, again in all
three cases, by converting arithmetic circuits to boolean ones: + gates are changed to OR gates, ∗ gates are
changed to AND gates, AMOD gates are changed to MOD gates, and AMAJORITY gates are changed to
MAJORITY gates. It is easy to verify that (on any input) a gate in the new circuit has value true if and only
if the corresponding gate in the old circuit had a non-zero value.

�

This immediately allows us to derive separations of the arithmetic classes.
4Note that we view the classes FAC0, FAC0[m1, . . . , ml], and FTC0 as classes of functions from {0, 1}∗ to � , in order to

compare them with the corresponding arithmetic classes. To do this, we view a string of bits as a natural number in the usual way:
the string yn . . . y0 represents the natural number � n

i=0
2iyi.

5By associating languages with their characteristic functions, we view the classes AC0, AC0[m1, . . . , ml], and TC0 as lan-
guage classes.
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Theorem 4 For all primes p, ]AC0 ( ]AC0[p]. For all distinct primes p, q, ]AC0[p]\]AC0[q] is nonempty.

Proof. We prove the second statement, which implies the first, since for any prime q, ]AC0 ⊆ ]AC0[q]. By
Theorem 1, MOD p ∈ AC0[p] \ AC0[q]; thus, by Lemma 3, MOD p ∈ χ]AC0[p] \ χ]AC0[q], from which
it follows that MOD p ∈ ]AC0[p] and MOD p /∈ ]AC0[q].

�

The other language classes we get by operating on AC 0[m] and Diff AC0[m] fall into a chain of inclu-
sions bounded below and above by AC0[m] and AC0[2,m], respectively.

Theorem 5 For all odd positive integers m, we have AC 0[m] ⊆ χDiffAC0[m] ⊆ LowOrdDiffAC0[m] =
LowOrd]AC0[m] ⊆ AC0[2,m]. If m is an even positive integer, all of the classes coincide.

Proof. If m is even, then AC0[m] = AC0[2,m] (see the proof of Theorem 9), so we prove the containments.
By Lemma 2, AC0[m] ⊆ ]AC0[m], and ]AC0[m] ⊆ Diff AC0[m] by definition; thus AC0[m] ⊆

χDiff AC0[m].
The containment of χDiffAC0[m] in LowOrdDiff AC0[m] follows from the general fact that, for any

class of functions C, χC ⊆ LowOrdC.
If h ∈ LowOrdDiff AC0[m], then h is the low order bit of f − g for some ]AC 0[m] functions f and g.

The function f + g is in ]AC0[m] and has the same low order bit as f − g, so h ∈ LowOrd]AC 0[m].
The containment LowOrd]AC0[m] ⊆ LowOrdDiff AC0[m] is immediate from the containment ]AC0[m] ⊆

Diff AC0[m].
It remains to show that LowOrd]AC0[m] ⊆ AC0[2,m]. Suppose that h is the low order bit of f for

some ]AC0[m] function f ; using a circuit family for f , we create a new AC 0[2,m] circuit family computing
h to show that h ∈ AC0[2,m]. This is done by induction on the depth of each circuit for f ; for each gate g,
our new circuit has gates l(g) and a(g) such that the low order bit of g is equal to l(g), and g is nonzero if
and only if a(g) is true.

• For input gates and constants g, we let l(g) and a(g) be equal to g.

• If g =
∏k

i=1 gi, then l(g) =
∧k

i=1 l(gi) and a(g) =
∧k

i=1 a(gi).

• If g =
∑k

i=1 gi, then l(g) is the NOT of the MOD 2 of l(g1), . . . , l(gk), and a(g) =
∨k

i=1 a(gi).

• If g is the AMOD m of g1, . . . , gk, then a(g) is the MOD m of a(g1), . . . , a(gk), and
l(g) = a(g) ∧ (

∧k
i=1(l(gi) ∨ ¬a(gi))).

Let the output gate of the new circuit be l(go), where go is the output gate of the original circuit. It
is straightforward to verify by induction that for all gates g in the original circuit, l(g) and a(g) behave as
described.

�

If m is odd, it can be verified that there is another complexity class sandwiched inbetween the first two:
the class of languages computable by “stratified” AC0 circuits, circuits with MOD 2 and MOD m gates
where from any path from an input gate to the output gate, no MOD 2 gate comes before a MOD m gate.
When m is an odd prime, this stratified class (and hence χDiff AC0[m]) properly contains both AC0[2] and
AC0[m]: containment is clear from the definition, and propriety follows from Theorem 1.

4 Arithmetic Classes

We now study the relationships of the arithmetic classes to each other, and to the boolean classes. We begin
by proving that every function from an arithmetic class can be computed by circuits in normal form: circuits
where the inputs (and hence outputs) of the AMOD (or AMAJORITY) gates always have 0-1 values. This
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notion of normal form will allow us to derive many facts concerning the structure of the classes ]AC 0[m],
and will also aid us in proving closure properties.

Definition 8 Let us say that a ]AC0[m1, . . . ,ml] (]TC0) circuit is in normal form if on all inputs x, all
AMOD (AMAJORITY) gates appearing in the circuit receive as inputs only the values 0 and 1. We say that
a ]AC0[m1, . . . ,ml] (]TC0) circuit family is in normal form if all of its circuits are in normal form.

Theorem 6 For every function f in ]AC0[m1, . . . ,ml] (]TC0), there is a ]AC0[m1, . . . ,ml] (]TC0) circuit
family in normal form computing f .

In some sense, what we are showing is that only the boolean function MOD (MAJORITY) is required
in arithmetic circuits, to capture the full power of ]AC 0[m1, . . . ,ml] (]TC0).
Proof. We prove this for ]AC0[m1, . . . ,ml]; the same proof with MAJORITY and AMAJORITY gates
in place of MOD and AMOD gates applies to ]TC0. Suppose we have a ]AC0[m1, . . . ,ml] circuit fam-
ily {Cn : n ≥ 1}. As in the proof of LowOrd]AC0[m] ⊆ AC0[2,m] (Theorem 5), we can create a
AC0[m1, . . . ,ml] circuit family {C ′

n : n ≥ 1} such that for each gate g in Cn, there is a corresponding gate
a′(g) in C ′

n such that a′(g) is 1 if and only if g is nonzero. We can add to C ′
n gates b′(g) such that b′(g)

computes ¬a′(g), without increasing the size of C ′
n by more than a constant factor and without increasing

the depth of C ′
n.

Now, apply Lemma 2 to {C ′
n} to obtain a circuit family {C ′′

n} in ]AC0[m1, . . . ,ml]; notice that the
resulting circuits {C ′′

n} are in normal form. For each gate g in one of the original circuits Cn, there are gates
a′′(g) and b′′(g) in C ′′

i taking on only 0−1 values such that g is nonzero if and only if a′′(g) = 1 if and only
if b′′(g) = 0. For each n, append the original circuit Cn to the bottom of the circuit C ′′

n, letting the output
gates of the copies of Cn be the output gates of our new circuit. Finally, we “normalize” these copies of Cn

by replacing every AMOD m gate (in a copy of Cn) with inputs g1, . . . , gk with a circuit computing

(AMOD m(a′′(g1), . . . , a
′′(gk))) ∗

k
∏

i=1

(b′′(gi) + gi).

This does not affect the output of the circuit, but does ensure that AMOD m gates receive only the values
0 and 1 as inputs.

�

In the previous section, classes of the form ]AC 0[m] were shown to be distinct by using known sepa-
rations in conjunction with the fact that AC0[m1] 6= AC0[m2] implies that ]AC0[m1] 6= ]AC0[m2]. The
converse of this fact is also true: AC0[m1] = AC0[m2] implies that ]AC0[m1] = ]AC0[m2]. We prove a
slightly stronger fact, that the structure of the classes ]AC 0[m] is isomorphic to the structure of the classes
AC0[m], with respect to the subset relation ⊆.

Theorem 7 For all positive integers m1,m2, AC0[m1] ⊆ AC0[m2] if and only if ]AC0[m1] ⊆ ]AC0[m2].

Proof. The ⇐ direction follows from Lemma 3, so we prove the ⇒ direction. Let f be a function in
]AC0[m1], and let {Cn : n ≥ 1} be a circuit family computing f . By Theorem 6, we can assume {Cn}
to be in normal form. Since AC0[m1] ⊆ AC0[m2], there exists a boolean circuit family in AC0[m2]
computing MOD m1. By Lemma 2, there is an arithmetic circuit family {Dj : j ≥ 1} in ]AC0[m2]
computing AMOD m1 on 0 − 1 values. We replace each AMOD m1 gate in {Cn} with fan-in j with the
circuit Dj , obtaining a ]AC0[m2] circuit family for f .

�

Corollary 8 For all positive integers m1,m2, AC0[m1] = AC0[m2] if and only if ]AC0[m1] = ]AC0[m2].

Thus far, we have sometimes restricted our attention to the classes ]AC 0[m]; the next theorem justifies
this restriction, showing that any class ]AC0[m1, . . . ,ml] is equivalent to some class ]AC0[m].
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Theorem 9 For every subset {m1, . . . ,ml} ⊆ N+, we have ]AC0[m1, . . . ,ml] = ]AC0[
∏l

i=1 mi] =

]AC0[p1, . . . , pk] where p1, . . . , pk are the primes dividing
∏l

i=1 mi.

Proof. It is easily verified that Corollary 8 is true in the case of multiple AMOD gates: AC0[a1, . . . , ar] =
AC0[b1, . . . , bs] if and only if ]AC0[a1, . . . , ar] = ]AC0[b1, . . . , bs] (for all subsets {a1, . . . , ar}, {b1, . . . , bs} ⊆
N+). This theorem then follows immediately from the folklore theorem giving the same result in the
boolean case (see for example [9, Proposition 1]), which states that AC 0[m1, . . . ,ml] = AC0[

∏l
i=1 mi] =

AC0[p1, . . . , pk].
�

The following two corollaries can be derived by making simple modifications to the proof of Theorem
7, along with the fact that AC0[m] ⊆ TC0.

Corollary 10 For all positive integers m, ]AC0[m] ⊆ ]TC0.

Note that Corollary 10 can also be proved directly by using the same “padding” technique used to show
that AC0[m] ⊆ TC0.

Corollary 11 For all positive integers m, AC0[m] = TC0 if and only if ]AC0[m] = ]TC0.

The next theorem demonstrates that for a particular m, the AC 0[m] versus TC0 question is equivalent
to the FAC0[m] versus ]AC0[m] question.

Theorem 12 Let m be a positive integer. Either FAC 0[m] = ]AC0[m] = FTC0, or FAC0[m] (

]AC0[m] ( FTC0.

Proof. The containments FAC0[m] ⊆ ]AC0[m] ⊆ FTC0 follow from Lemma 2 and Corollary 10. If
AC0[m] = TC0, then FAC0[m] = FTC0, so assume AC0[m] 6= TC0.

By Corollary 11, ]AC0[m] ( FTC0. If FAC0[m] = ]AC0[m], then 2 � n
i=1

xi =
∏n

i=1(1 + xi) can
be computed in ]AC0[m] and hence FAC0[m]. The expression 2 � n

i=1
xi is strictly greater than 2n/2 if and

only if the MAJORITY of x1, . . . , xn is true. But, checking whether or not a string is is strictly greater than
2n/2 is easily done in AC0[m], so we have TC0 ⊆ AC0[m], contradicting our assumption.

�

5 Difference Classes

We now focus on the difference classes Diff AC0[m]. First, we observe a separation.

Theorem 13 For all odd primes p, DiffAC0 ( DiffAC0[p].

Proof. The function MOD p is not in AC0[2] by Theorem 1. By Theorem 5 with m = 1, χDiff AC 0 ⊆
AC0[2] and hence MOD p /∈ χDiff AC0, implying that MOD p /∈ Diff AC0.

�

In the case of Diff AC0[2], we have class equality with Diff AC0. Roughly, this is because the boolean
function MOD 2 is contained in Diff AC0.

Theorem 14 DiffAC0 = DiffAC0[2].

Proof. The ⊆ direction is trivial, so we prove Diff AC 0[2] ⊆ Diff AC0. It is shown in [7] that Diff AC0 =
GapAC0, where GapAC0 is defined as the class of functions computable by ]AC0 circuits with −1 allowed
as a constant. Since GapAC0 is closed under subtraction, it suffices to show that ]AC0[2] ⊆ GapAC0.

Suppose f is in ]AC0[2]. Let {Cn : n ≥ 1} be a ]AC0[2] circuit family computing f , assumed to be in
normal form by Theorem 6. Replace every MOD 2 gate in {Cn} with input gates g1, . . . , gk by a GapAC0
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circuit computing the expression
∑k

i=1(
∏

1≤j<i(1−2gj))gi, which is equal to the MOD 2 function on 0−1

inputs. The new circuit family is in GapAC0 and computes f .
�

There is the more general question of whether or not Diff AC 0[m] = Diff AC0[2m] for m > 1. We
are not able to answer this question unconditionally, but can connect it to a question concerning language
classes: equality holds if and only if AC0[2m] ⊆ χDiff AC0[m].

Theorem 15 Let m be a positive integer. The following are equivalent:

1. ]AC0[2m] ⊆ DiffAC0[m]

2. DiffAC0[2m] = DiffAC0[m]

3. AC0[2m] ⊆ χDiffAC0[m]

The proof of this theorem is given in the appendix.

6 Closure Properties

6.1 Maximum and Minimum

Theorem 16 Let m be a positive integer. Neither ]AC 0[m] nor DiffAC0[m] is closed under MAX, unless
AC0[2m] = TC0.

The proof is essentially identical to the that of [3, Theorem 1]6. We include a proof in the appendix for
completeness. A symmetric argument applies to MIN.

Theorem 17 Let m be a positive integer. Neither ]AC 0[m] nor DiffAC0[m] is closed under MIN, unless
AC0[2m] = TC0.

6.2 Division by a constant

For a positive integer c, we say that a function class C is closed under division by c if f ∈ C implies that
bf

c c ∈ C.

Theorem 18 Let m be a positive integer and let p be a prime. The class ]AC 0[p, (p−1),m] is closed under
division by p.

Corollary 19 Let m be a positive integer and let p be a prime. The class DiffAC 0[p, (p − 1),m] is closed
under division by p.

Both Theorem 18 and Corollary 19 are proved in the appendix7 . The idea behind the proofs is to modify
]AC0[p, (p − 1),m] circuits inductively so that for each gate g in the original circuit, both the remainder of
g (modulo p) and b g

pc are computed in the modified circuit. The MOD p − 1 gates are used to compute the
remainder of g from the remainders of its inputs gi, when g is a multiplication gate (i.e., g =

∏

gi).
In the direction of proving converses of Theorem 18 and Corollary 19, we have the following theorem

and corollary, also proved in the appendix. Some new terminology is required for their statement.

6[3, Theorem 1] is our theorem in the case m = 1 (without the “unless” clause: by Theorem 1, AC 0[2] 6= TC0).
7In light of the equalities GapAC0 = DiffAC0 = DiffAC0[2], Corollary 19, when instantiated with p = 2 and m = 1, gives

[3, Theorem 8].
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We call a function f non-trivial if it is not constant. We say that a function f is symmetric if it
is non-trivial and for any x1, . . . , xn ∈ {0, 1} and x′

1, . . . , x
′
n′ ∈ {0, 1},

∑n
i=1 xi =

∑n′

i=1 x′
i implies

f(x1, . . . , xn) = f(x′
1, . . . , x

′
n′). We say that a symmetric function f has period k if k ≥ 1, and for

any x1, . . . , xn ∈ {0, 1} and x′
1, . . . , x

′
n′ ∈ {0, 1},

∑n
i=1 xi = k +

∑n′

i=1 x′
i implies f(x1, . . . , xn) =

f(x′
1, . . . , x

′
n′).

Theorem 20 Let m be a positive integer. If ]AC0[m] is closed under division by p, then there exist sym-
metric functions with periods p and p − 1 in DiffAC 0[m].

Corollary 21 Let m be a positive integer. If ]AC 0[m] is closed under division by p, then MOD p ∈
AC0[2m], and there exists a divisor q > 1 of p − 1 such that MOD q ∈ AC 0[2m].

6.3 Choose

We say that a function class C is closed under the choose operation if f ∈ C implies that
(

f
k

)

∈ C for every
positive integer k.

Theorem 22 Let m be a positive integer. The classes ]AC 0[m] and DiffAC0[m] are closed under the
choose operation.

The proof is similar to the proof of [1, Theorem 9], which shows that ]AC 0 and Diff AC0 are closed
under the choose operation. Their proof demonstrates that

( � n
i=1

fi(x)
k

)

and
( � n

i=1
fi(x)

k

)

can be computed in

]AC0 from the values {
(

fi(x)
j

)

: 0 ≤ j ≤ k, i = 1, . . . , n}. (The result then follows by induction on the
depth of the circuit.) It is easy to see that this proof applies after noting that for circuits in normal form,
(AMOD m(f1(x),...,fn(x))

k

)

is equal to 1 when k = 0, AMOD m(f1(x), . . . , fn(x)) when k = 1, and 0 when
k ≥ 2. We refer the reader to their proof for details.

6.4 Weak Product

We say that a function class C is closed under weak product if for every k ≥ 1, f ∈ C implies that
∏nk

i=1 f(x, i) = g(x) ∈ C. The following is proved in [7].

Theorem 23 [7] There exists a pair of ]AC0 circuits f, g on inputs {x1, . . . , xn} ∪ {y1, . . . , yn} such that
for all N-assignments to the 2n input variables,

∏n
i=1(xi − yi) = f − g.

From this, closure under weak product of the classes Diff AC 0[m] follows immediately.

Theorem 24 Let m be a positive integer. The class DiffAC 0[m] is closed under weak product.

7 Future Work

We identify some open issues as possible avenues for future work.

• Are there combinatorial problems complete for the classes ]AC 0[m]? A characterization of ]AC0 by
the problem of counting paths in a certain class of graphs is given in [3].

• Can Corollary 21 be improved to show that under the hypotheses, MOD p − 1 is in AC 0[2m] (as
opposed to just MOD q for a non-trivial divisor q of p − 1)?

9



• Can one generalize the characterization of Diff AC 0 = Diff AC0[2] as GapAC0 (given in [7])?

If we leave the definition of AMOD m untouched, allowing the constant −1 in ]AC0[m] circuits,
rather uninterestingly, gives us the class FTC 0. This follows from the characterization of TC 0 given
in [1]; if f and g are ]AC0 functions, we can check if they are equal (using such augmented ]AC 0[m]
circuits) by taking the AMOD m of m 1’s and f − g, which is 0 if f − g is nonzero, and 1 otherwise.

Access to the complex second roots of unity {1,−1} seems to be what gives GapAC 0 the ability to
compute MOD 2. If we allow ]AC0 the third roots of unity as constants, we obtain circuits that can
compute both MOD 2 and MOD 3. What languages can be computed by ]AC 0 circuits when the pth
roots of unity (for a prime p) are allowed as constants? Can give a general characterization of such
circuits which includes the result of [7] as a particular case?

• Another possibility is to study the power of arithmetic circuits when the underlying algebraic structure
is a group ring, such as NG for some finite group G. If the constants {1g : g ∈ G} are allowed in
circuits over NG that can multiply, then for all m dividing |G|, MOD m is computable. It is curious
to note that multiplying elements from the group ring NG amounts to counting accepting paths of
a deterministic automaton solving the word problem for G. That is, the coefficient of the identity
element of G in the product r1 · · · rk is the number of strings accepted by the mentioned automaton,
when the frequency of a string g1 . . . gk ∈ Gk is specified by the product of coefficients of the gi in
ri. Perhaps there is some connection to the class ]BP , studied in [8].

• Suppose that C1, C2 are classes from {AC0[m] : m ≥ 2} ∪ {TC0}. It was demonstrated that C1 = C2

if and only if ]C1 = ]C2 (Corollaries 8 and 11). It is the case that ]TC0 = ]NC1 implies TC0 = NC1

(since χ]TC0 = TC0, and χ]NC1 = NC1). Does the converse hold?

• Of course, this list would not be complete without a request for new lower bounds. We conjecture
that for odd primes p, χDiff AC0[p] is properly contained in AC0[2p] (and hence that Diff AC0[p] 6=
Diff AC0[2p]). Can this be proved? More generally, can one prove any lower bounds using the classes
χDiff AC0[p]?

Acknowledgements. The author would like to thank Eric Allender for many interesting discussions. Ric-
cardo Pucella deserves thanks for comments on a draft of this paper.
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A Proofs

A.1 Proof of Lemma 2

Proof. The containment ]TC0 ⊆ FTC0 follows from the fact that iterated sum and iterated product are in
TC0 [15].

The containment FAC0 ⊆ ]AC0 was proved in [1]; the proofs of the containments
FAC0[m1, . . . ,ml] ⊆ ]AC0[m1, . . . ,ml] and FTC0 ⊆ ]TC0 are essentially the same, and are given here
for completeness. For i ≥ 1, let Ci be a depth two circuit computing

∏i
j=1(1 + 1), which takes on the

value 2i. Suppose each bit of a function f in one of these boolean circuit classes can be computed in the
corresponding arithmetic class; then, f is contained in the arithmetic class by computing

∑|f |−1
i=0 (Ci ∗ fi).

Thus, it suffices to show that each of the boolean circuit classes AC0, AC0[m1, . . . ,ml], and TC0 are
contained in their arithmetic counterparts.

To prove this, we show that a boolean circuit can be converted into an arithmetic circuit computing the
same function, as follows. First, modify the boolean circuit so that for each gate g, there is another gate com-
puting ¬g. This can be done without increasing the depth and by increasing the size by only a constant factor.
Then, replace all OR gates (assumed to have inputs g1, . . . , gk) with the circuit

∑k
i=1(gi∗(

∏i−1
j=1 ¬gj)); and,

change all AND gates to ∗ gates, MOD gates to AMOD gates, and MAJORITY gates to AMAJORITY
gates. It is easily verified by induction that for each gate in the original circuit, the corresponding gate in the
new circuit computes the same value.

�

A.2 Proof of Theorem 15

Proof. (1) ⇒ (2): obvious from closure of Diff AC 0[m] under subtraction.
(2) ⇒ (3): (2) immediately implies that χDiff AC 0[2m] ⊆ χDiff AC0[m], and we have AC0[2m] =

χ]AC0[2m] ⊆ χDiff AC0[2m] by Lemma 3.
(3) ⇒ (1): Let {Cn : n ≥ 1} be a ]AC0[2m] circuit family in normal form. As in the proof of

LowOrd]AC0[m] ⊆ AC0[2,m] (Theorem 5), we can create a AC0[2m] circuit family {C ′
n : n ≥ 1} such

that for each gate g in Cn, there is a corresponding gate a′(g) in C ′
n such that a′(g) is 1 if and only if g is

nonzero. For each circuit C ′
n, number the gates arbitrarily and define f(x, i) to be equal to the ith gate of

circuit C ′
|x| on inputs x. The function f is in AC0[2m]; by (3), there exist functions f1, f2 in ]AC0[m] with

f = f1 − f2.
We now modify each circuit Cn, replacing each gate g with a pair of gates X(g), Y (g) such that on all

inputs, the value of g is equal to the value of X(g) − Y (g). The modified circuit will be a ]AC0[m] circuit,
demonstrating that the function computed by Cn is in Diff AC0[m]. The modification is done by induction
on the depth of the circuit.

• For input gates and constants g, set X(g) = g and Y (g) = 0.

• If g =
∑k

i=1 gi, then X(g) =
∑k

i=1 X(gi) and Y (g) =
∑k

i=1 Y (gi).

• If g =
∏k

i=1 gi, then X(g) and Y (g) are computed from the values X(gi) and Y (gi) by exactly the
circuits of Theorem 23.

• If g = AMOD m(g1, . . . , gk), then let X(g) and Y (g) be circuits computing f1(x, i) and f2(x, i),
respectively, where i was the number given to the gate a′(g) (of C ′

n) corresponding to g.

�
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A.3 Proof of Theorem 16

Proof. Let f(x1, . . . , xn) =
∑n

i=1 xi, and let g(x1, . . . , xn) = bn
2 c. Let x′ denote the result of changing the

first 1 in x to a 0 (if such a bit exists). The number of 1’s in x = x1 . . . xn is less than or equal to bn
2 c if and

only if the low-order bits of MAX(f(x), g(x)) and MAX(f(x′), g(x′)) are equal. The low-order bits of a
]AC0[m] or Diff AC0[m] function are computable in AC0[2m] (Theorem 5). Thus, if either of these classes
are closed under MAX, we have MAJORITY ∈ AC0[2m], from which it follows that AC0[2m] = TC0.

�

A.4 Proof of Theorem 18

Proof. We denote the MOD a function by MODa, and let r : N → {0, . . . , p − 1} denote the mapping
taking an integer to its remainder when divided by p.

Let f be a function in ]AC0[p, (p − 1),m], and let {Cn : n ≥ 1} be a circuit family computing f ; by
Theorem 6, we assume {Cn} to be in normal form. For each n ≥ 1, we show by induction on the depth of
Cn that for every gate g of Cn, r(g) (represented in unary) and b g

pc can be computed in constant depth.

• For input gates and constants g, b g
pc = 0 and r(g) = g.

• If g =
∑k

i=1 gi, then b g
pc = b � k

i=1 � p−1

j=1
[r(gi)≥j]

p c +
∑k

i=1b
gi

p c. The left summand can be expanded

using the identity b � t
s=1

xs

p c =
∑t

s=p MODp(x1, . . . , xs)xs, which holds when the xs are 0−1 valued
variables. r(g) can be computed from r(g1), . . . , r(gk) using a MOD p gate.

• If g =
∏k

i=1 gi, then r(g) can be computed from r(g1), . . . , r(gk) using a MOD p−1 gate; recall that
the multiplicative group of the integers modulo p is isomorphic to the cyclic group of order p− 1 (for
p prime). Note also that r(gi · · · gk) can be computed similarly (for any 1 ≤ i ≤ k).

We have the identity

bg1···gk

p c = b g1

p cg2 · · · gk +
∑p−1

j=1[r(g1) = j]b jg2···gk

p c

= bg1

p cg2 · · · gk +
∑p−1

j=1[r(g1) = j](jb g2 ···gk

p c + b jr(g2···gk)
p c)

= bg1

p cg2 · · · gk + (
∑p−1

j=1[r(g1) = j]b jr(g2 ···gk)
p c) + (

∑p−1
j=1 j[r(g1) = j])b g2 ···gk

p c.

Applying this identity k − 1 times gives us an expression for b g
pc which can be evaluated in constant

depth and depends only on the values gi, b
gi

p c, r(gi), and r(gi · · · gk), for i = 1, . . . , k. (Note that

given j ∈ {1, . . . , p − 1} and r(g2, · · · gk), b
jr(g2···gk)

p c can be computed using a lookup table.)

• If g = MODa(g1, . . . , gk), then g takes on only the values 0 and 1, as we assumed {Cn} to be in
normal form. Thus, b g

pc = 0 and r(g) = g.

�

A.5 Proof of Corollary 19

Proof. Suppose h ∈ Diff AC0[p, (p − 1),m]. Let f and g be ]AC0[p, (p − 1),m] functions such that
h = f − g. Letting r denote the remainder upon division by p as in the previous proof, we observe the
identity

b
f − g

p
c = b

f

p
c − b

g

p
c + b

r(f) − r(g)

p
c = b

f

p
c − (b

g

p
c + [r(g) > r(h)]).

13



By the proof of Theorem 18, b f
p c, b g

pc, r(g), and r(h) are all in ]AC0[m, p, (p − 1)], so by the identity,

bh
p c is in Diff AC0[m, p, (p − 1)].

�

A.6 Proof of Theorem 20

Proof. Let b ∈ N+ be a generator for the multiplicative group of integers mod p, that is, a positive integer
such that no two of 1, b, b2, . . . , bp−2 are congruent mod p. Set b′ = b − 1. Let f =

∑n
i=1 xi, and let

g =
∏n

i=1(1+ b′xi). Observe that both f and g are in ]AC0, and that g = b � n
i=1

xi . The functions f −pb f
p c

and g − pb g
pc are symmetric with periods p and p − 1, respectively.

�

A.7 Proof of Corollary 21

Proof. Let f0, g0 be the functions in Diff AC0[m] in given by Theorem 20. Let f1 and g1 be equal to the
lowest order bits of f0 and g0, respectively. It is easily verified that f1 and g1 are symmetric. By Theorem
5, f1 and g1 are in AC0[2m].

Let us say that a symmetric function f with some period has minimum period k if there is no m < k
such that f has period m. (Note that the minimum period must be strictly greater than 1, since we assume
symmetric functions to be non-trivial.) In general, a function with period m has minimum period dividing
m. Thus, in particular, the functions f1 and g1 have minimum period p and q for some divisor q > 1 of
p − 1.

To check whether or not x1 . . . xn ∈ MOD q, we check whether or not g1(j +
∑n

i=1 xi) = g1(j) for all
j = 0, . . . , q − 1; this can be done in AC0[2m]. (When f is symmetric and s ∈ N+, we let f(s) denote the
value of f on any inputs x1, . . . , xn such that

∑n
i=1 xi = s.) The same idea applies to checking membership

in MOD p.
�
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