Electronic Collogquium on Computational Complexity, Report No. 97 (2001) b rar

Improved Approximations for General
Minimum Cost Scheduling

Piotr Berman * Marek Karpinski f

Abstract. We give improved trade-off results on approximating general
minimum cost scheduling problems.

1 Introduction

There exists a number of natural optimization problems related to scheduling
that are difficult to approximate.

In recent years, two techniques offered polynomial time algorithms with
improved approximation ratios. For some problems these were the first con-
stant factor aproximations. The first technique was introduced by Bar-Noy
el al. [BGNS99]; the problem is first described as an integer program, then
one gets a fractional solution to linear relaxation of this program, and after-
wards the results are converted to integers using a new method. One problem
with this approach is that it the running time, while polynomial, is rather
large. The second technique was simultaneously presented by Bar-Noy et al.
[BBFNS00] Berman and DasGupta [BD00] . The latter technique is combi-
natorial and besides being more efficient, it handles well the case when time
moments (release times, deadlines) are expressed with large numbers.

Phillips et al. [PUWO00] presented an extension of the technique of
[BGNS99] to two scheduling problems, and one of them was to find a trade-off

between the cost and the completion rate in a variety of scheduling problems

*Dept. of Computer Science and Engineering, The Pennsylvania State University,
University Park, PA 16802. Partially supported by NSF grant CCR-9700053. Email:
berman@cse.psu.edu.

'Dept. of Computer Science, University of Bonn, 53117 Bonn. Supported
in part by DFG grants, DIMACS, and IST grant 14036 (RAND-APX). Email:

marek@cs.uni-bonn.de.

ISSN 1433-8092

where the cost has to be minimized. This problem encapsulates many mini-
mization problems for non-preemptive scheduling, for one or more machines,
like minimization of the flow time, average completion time, total tardiness,
etc.

Because a solution of our paper does not require the cost function to
be increasing (in the sense that the later we schedule a particular job, the
larger the cost), we can handle the case when many unrelated machines are
available. Asa result, we can handle some industrial engineering applications,
where “machines” are either various machines in single factory or different
factories, and where the cost function can be quite arbitrary.

To summarize, our improvements are the following: the new algorithm
is an adaptation of the combinatorial approach of [BD00], and thus it is
faster and can be adapted to handle time expressed with large numbers (i.e.
it offers a polynomial time algorithm rather than pseudo-polynomial); the
trade-off obtained is more favorable; limitations on the cost function are
removed, which, among others, generalizes the technique to the cases with
many machines.

2 Trade-Off for the General Minimum Cost
Scheduling

We discuss here the general problem of minimum cost scheduling. This prob-
lem encapsulates many minimization problems for non-preemptive schedul-
ing, for one or more machines, like minimization of the flow time, average
completion time, total tardiness, etc. For the general background of this
problem, see, e.g., [PUW00]. Because a solution offered in this paper does
not require a cost function to be increasing (e.g., executing a particular job
later may cost less, we can extend our result to the case of many machines
(e.g., we can pretend that the job can be scheduled on one machine only, but
this machine will run on many days and the cost of executing a job depends
only on the hour, not on the day when it is performed).

To present the problem formally, our input describes a set of n jobs 7,
each job 7 € J has a set of intervals when it can be executed and the weight
w;. For simplicity, assume that) ;. ;w(z) = 1. An scheduling enlry a has
job j(a), start s(a) and finish f(a) where job j(a) can be executed in the
interval [s(a), f(a)). Moreover, the scheduling entry a has its unit cost ¢(a)

and weight w(a) = wj,). A schedule is a set S of scheduling entries such
that

e for each ¢ € J there exists at most one a € S such that j(a) = 1;
e for each ¢ there exists at most one a € S such that s(a) <t < f(a).

The weight of a schedule S is w(S) = 3 cgw(a) and the cost is cost(S) =
Y ues cla)w(a). We assume that there exists a schedule S* such that w(S*) =
1 and cost(S*) = C*. Intuitively, C* is the minimal cost of a complete
schedule.

The natural problem to consider in this context is to find a minimum
cost complete schedule. However, this problem is known to be NP-hard.
Moreover, if we insist on finding a complete schedule, no polynomial time
algorithm can approximate the minimal cost of a complete schedule with an
approximation factor o(y/n), as it was shown by Kellerer et al. [KTW95].
Phillips et al. [PUWO00] investigated the following trade-off: for a fraction
we want to find a schedule of weight at least ¢ with as low cost as possible.
The state of the art is such that for ¢ > 1 we cannot find any schedule of
weight ¢, and for ¢ = 1 we can barely manage to find a schedule, so we
would rather not think about minimizing its cost. Thus we consider only
p < % An algorithm for this problem can be characterized by its guarantee
function.

Formally, we say that the general minimum cost scheduling is solved with
a guarantee g(¢p), if a polynomial time algorithm finds, given an instance of
the problem and a fraction ¢ < 1, a schedule with weight at least and cost
at most C*g(y).

Phillips et al. [PUWO00] use linear relaxation of the problem to obtain
a guarantee function g(¢) = 1]__2“2. Their discussion explicitly handles the
case when all jobs have equal weights and it generalizes the method to the
arbitrarily weighted jobs.

We will describe a more direct approach that will yield a smaller guarantee
function. We run our algorithm with parameter C' that estimates C™*.

In our algorithm, we define for each scheduling entry a the unit profit
po(a) = C —c(a)(1—2p); the profit of this entry is po(a)w(a) so that we can
define profitc(S) = 3, cgpe(a)w(a) = Cw(S) = cost(S)(1 = 2p). Clearly,
profitc(S*) = C — C*(1 — 2¢p).

Bar-Noy et al. [BBFNS00] as well as Berman and DasGupta [BD00] de-

scribed efficient algorithms that guarantee to find an approximation S of S*

such that profitc(S) > %profitg(S*). We use S¢ to denote the outcome of
such an algorithm. We consider two cases.

Case 1: profitc(Sc) < Cyp. Then

profitc(S™) <2Cp=C —C*(1 —2¢) <2Cp =
C(1—2p) <C(1 —2p)

C <

Case 2: profilc(Sc) > Cp. Then Cw(Se) — cost(Sc)(1 —2¢) > Cy which

implies

1-2
w(Sc) > ¢+ sOcost(Sc) and (1)
wiSe)=¢ _ o 1=¢
< < .
cost(Se) < C =9, = Cl “ g (2)

In this case we know that the weight of S¢ is large enough. Moreover, if

C < C*(1+e¢), then
cost(So) < C*Z2(1 4 ¢)

1-2¢

This case analysis shows that if C = Cy/(1 + ¢) satisfies Case 1 and
C = C, satisfies Case 2, then w(S¢,) is large enough and cost(Se,) ex-
ceeds the guarantee of Phillips et al. [PUWO00] by a factor not larger than
1 + e. Clearly, for any ¢ we can find an appropriate Cy using Newton it-
eration. We start from a low estimate for C' being 0 and a high estimate
being ZZ-EJ MaXg:j(a)=i c(a)w(a). If the average of the two estimates satisfies
Case 1, it becomes the new low estimate, if it satisfies Case 2, it becomes
the new high estimate. We stop when the difference between the estimates
drops below ¢.

While we already obtained a solution that satisfies the guarantee of
Phillips et al., we can observe that our actual guarantee is a bit stronger.
To simplify the reasoning, assume that ¢ = 0 and thus ¢ = C*. We will
describe two algorithms, with smaller guarantee functions.

We will use § to denote the maximum job weight. If § > ¢, both of our
algorithm return schedule {a} where a is a scheduling entry with w(a) = &
and the minimum cost. Clearly, cost({a}) < C*.

The design of our first algorithm starts with the observation that in (2) the
cost of S¢ is equal to Cll__—;; only if S¢ includes all the jobs, i.e. w(S¢) = 1.

4

On the other hand, if w(S¢) is just as we promised, i.e. equal to ¢, then
cost(Sc) = 0. In the latter case we are clearly obtaining a lower cost than we
initially wanted to guarantee. If w(Se¢) > ¢, we will try to compute another
solution S. We start with S = S¢. Then we can pick an entry a € S with
the maximum unit cost and remove it. As a result, the average unit cost will
not go up. We can repeat this until w(S) —w(a) < ¢, clearly we end up with
w(S) <@+ 4.

The above reasoning shows that we start with the cost of C%
we decrease it by the factor of (¢ + §)/w(S¢) to obtain

pt+d L w(So)—¢ L (p+)1 —p/w(Sc)) _ (e+6)(1-¢)
wse) o, ¢ =20 SO

and

Thus we have proven the following theorem.

Theorem 1. We can solve in polynomial time the general minimum cost
scheduling problem with the performance guarantee W if 6 <@ andl

if 6 > .

Using a slower algorithm, we can provide a performance guarantee that
does not depend on §, more precisely, the guarantee of max(w(l,_j), 1). Note

1-2
that £152 > 1if > 545,

We conmder only the case when § < ¢; we will assume that § = w;.

Our new algorithm will consider every possible scheduling entry a for job

1. For a given a, we remove from consideration all scheduling entries that
are in conflict (schedule job i or have interval that overlaps the interval of

a). We find the schedule that consists of a and the solution of the following
residual problem:

all weights are divided by 1 — ¢ so they add to 1,
the target fraction of weight is (¢ — 48)/(1 — 9),
the optimum cost is C* — ¢, where ¢ = ¢(a)d,
the maximum job weight is §/(1 — §).

By Theorem 1, the resulting schedule has the cost at most

(S +15) (1-25)
(1-2%=¢

(C"—c)—c+t (1 — o) (€ —c) =

°f (1—2¢+8)(1=9)

99(1 _99) (C

p(1—¢)
1= 20+ 6(2p — 9) c)se+ (" =)<

©f 1— 20

, el=9)

max(1, 19, 1 M)(C*

Pl =0\
)c—l—max(\ = 1)C

—¢) = max(1, 2,
This entails the following theorem.

Theorem 2. We can solve in polynomial time the general minimum cost
w(l—vﬂ))

7 1-2¢p

scheduling problem with the performance guarantee max(1

References

[BGNS99] A. Bar-Noy, S. Guha, J. Naor and B. Schieber, Approzimating
the Throughput of Real-Time Multiple Machine Scheduling, 31st STOC,
1999.

[BBFNS00] A.Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor and B. Schieber,
A Unified Approach to Approzimating Resource Allocation and Schedul-
ing, 32nd STOC, 2000.

[BD00] P. Berman and B. DasGupta, Improvements in Throughput Maxi-
mization for Real-Time Scheduling, 32nd STOC, 2000.

[KTWO95] H. Kellerer, T. Tautenhahn and G.J. Woeginger, Approzimability
and Nonapprozimability Results for Minimizing Total Flow Time on a
Single Machine, 28th STOC, 1995.

[PUWO00] C. Phillips, R.N. Uma and J. Wein, Off-Line Admission Control
for General Scheduling Problems, 11th SODA, ACM and STAM, 2000.

ftp://ftp.eccc.uni-trier.de/publ/eccc

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

