Electronic Colloquium on Computational Complexity, Report No. 98 (2001) e TaTs

On Learning Correlated Boolean Functions Using Statistical Query

Ke Yang
Computer Science Department,
Carnegie Mellon University,

5000 Forbes Ave., Pittsburgh, PA 15213, USA.

yangke@cs.cmu.edu *

November 19, 2001

Abstract

In this paper, we study the problem of using statistical query (SQ) to learn highly correlated boolean
functions, namely, a class of functions where any pair agree on significantly more than a fraction 1/2 of the
inputs. We give a limit on how well one can approximate all the functions without making any query, and
then we show that beyond this limit, the number of statistical queries the algorithm has to make increases
with the “extra” advantage the algorithm gains in learning the functions. Here the advantage is defined to
be the probability the algorithm agrees with the target function minus the probability the algorithm doesn’t
agree.

An interesting consequence of our results is that the class of booleanized linear functions over a finite
field (f(a(%) = 1 iff ¢(d@ -) = 1, where ¢ : GF, — {—1,1} is an arbitrary boolean function the maps any
elements in GF}, to £1). This result is useful since the hardness of learning booleanized linear functions over
a finite field is related to the security of certain cryptosystems ([B01]). In particular, we prove that the class
of linear threshold functions over a finite field (f(z,,(Z) = 1 iff @ - £ > b) cannot be learned efficiently using
statistical query. This contrasts with Blum et al.’s result [BFK496] that linear threshold functions over reals
(perceptrons) are learnable using SQ model.

Finally, we describe a PAC-learning algorithm that learns a class of linear threshold functions in time that
is provably impossible for statistical query algorithms to learn the class. With properly chosen parameters, this
class of linear threshold functions can become an example of PAC-learnable, but not SQ-learnable functions
that are not parity functions.

*An extended abstract to appear in the Proceedings of The Twelfth International Conference on Algorithmic Learning Theory

(ALT’01), LNAT 2225.

ISSN 1433-8092

1 Introduction

Pioneered by Valiant [V84], machine learning theory is concerned with problems like “What class of functions
can be efficiently learned under this learning model?”. Among different learning models there are the Probably
Approximately Correct model (PAC) by Valiant [V84] and the Statistical Query model (SQ) by Kearns [K98].

The SQ model is a restriction to the PAC model, where the learning algorithm doesn’t see the samples with
their labels, but only get the probabilities that a predicate is true: to be more precise, the learning algorithm
provides a predicate g(z,y) and a tolerance €, and an SQ oracle returns a real number v that is e-close to the
expected value of g(z, f(z)) according a distribution of z, where f is the target functions. While seemingly a
lot weaker than the PAC model, SQ model turns out to be very useful: in fact, a lot of known PAC learning
algorithms are actually SQ model algorithms, or can be converted to SQ model algorithms. The readers are
referred to [K98] for more comprehensive description.

One interesting feature for SQ model is that there are information-theoretical lower-bounds on the learn-
ability of certain classes of functions. Kearns [K98] proved that parity functions cannot be efficiently learned
in the SQ model. Blum et al. [BFJ+494] extended his result by showing that if a class of functions has
“SQ-dimension” (informally, the maximum number of “almost un-correlated” functions in the class, where
the correlation between two functions is the probability these two functions agree minus the probability they
disagree) d, then a SQ learning algorithm has to make Q(dl/s) queries, each of tolerance O(d_l/s) in order to
weakly learn F. In [J00], Jackson further strengthened this lower bound by proving that €(2") queries are
needed for an SQ-based algorithm to learn the class of parity functions over n bits. This result can be extended
to any class of completely uncorrelated functions: €(d) queries are needed for an SQ-based algorithm to learn
a class of functions if this class contains d functions that are completely “uncorrelated”. Notice that this upper
bound is optimal: [BFJ+494] proved that there are weak-learning algorithms for the class of functions using
O(d) queries.

In this paper, we study the problem of learning correlated functions. Suppose there is a class of boolean
functions F = {f1, f2, ..., fa}, where any pair of functions f;, f; are highly correlated, namely f; and f; agree on
a fraction (14 X)/2 of the inputs, where X can be significantly larger than 0 (say, A = 1/3). There are natural
classes of correlated functions. An example is the “booleanized linear functions” in a finite field GF}, defined in
this paper. Informally, these functions are of the form fz(Z) = ¢(@-Z), where ¢ (called a “booleanizer” function)
is an arbitrary function that maps an element in GFj, to a boolean value (+1 or —1), and both & and & are
vectors over GF},. Booleanized linear functions can be viewed as natural extensions to parity functions (which
are linear functions in GF3), and intuitively, should be hard to learn by statistical query (since parity functions
cannot be efficiently learned by statistical query). Actually they are (implicitly) conjectured to be hard to
learn in general, and there are cryptosystems whose security is based on the assumption that booleanized
linear functions are hard to learn. One example is the “blind encryption scheme” proposed by Baird [B01]:
Roughly speaking, this private-key crypto-scheme picks a random fz as the secret key, and encrypts a ‘0’
bit by a random # such that f;z(Z) = 1, and a ‘1’ bit by a random # such that fz(Z) = —1 Knowing the
secret key, decryption is just an invocation of the fz, which can be done very efficiently. Furthermore, it
is (implicitly in [BO1]) conjectured, that, by only inspecting random plaintext-ciphertext pairs (Z, fz(Z)), it
is hard to learn the function fz'. However, the results from [K98, BFJ+94, J00] don’t immediately apply
here since these booleanized linear functions are indeed correlated, and the correlation can be very large (in
particular, [BFJ494] requires the the correlation between any two functions to be O(1/d®), where for the
booleanized linear functions, the correlation is of order ©(1/d), and can even be constants).

Notice that in the case of correlated functions, the notion of “weak learning” can become trivial: if any
pair of functions f; and f; have correlation A, i.e., they agree on (1 + A)/2 fraction of the inputs, then by
always outputing fi(z) on every input z, an algorithm can approximate any function f; with advantage at
least A, (the advantage of an algorithm is defined as the probability the algorithm predicts a function correctly
minus the probability the algorithm predicts incorrectly). So if A is non-negligibly larger than 0, this algorithm
“weakly learns” the function class without even making any query to the target function.

In the first part of this paper, we prove that if there are d target functions fi, fa,...., fa, such that any pair

14(d—1)A
% advantage

fi and f; have almost the same correlation A, then an algorithm can have maximally
in approximating all the target functions, if no query is performed. Furthermore, we prove that in order to
have any “extra” advantage S in learning a target function, about v/d - S /2 queries are needed. The result
shows an advantage-query complexity trade-off: the more advantage one wants, the more queries one has to
make. One consequence of our result is that booleanized linear functions cannot be learned efficiently using
statistical query, and if the booleanizer is “almost biased” and the finite field G'F}, is large, one cannot even
weakly learn this class of functions. Our result provides some positive evidence towards the security of the
blind encryption scheme by Baird.

IThis is not exactly what the “blind encryption scheme” does, but is similar.

The technique we used in the proof, which could be of interest by itself, is to keep track of the “all-pair
statistical distance” between scenarios when the algorithm is given different target functions — we denote this
quantity by A We. prove that:

1. Before the algorithm makes queries, A = 0.
2. After the algorithm finishes all the queries, A is “large”.
3. Each query only increases A by a “small” amount.

And then we conclude that a lot of queries are needed in order to learn F well.

One interesting consequence from our result is that the class of linear threshold functions are not efficiently
learnable. A linear threshold function in a finite field is defined as fz,(£) =1 if G- Z > b, and —1 otherwise,
where @ € GF and b € GFy,. These linear threshold functions over G'F, are interesting, since their counter-
parts over reals are well-known as “perceptrons” and they learnability are well studied. Blum et al. [BFK+96]
proved that there are statistical query algorithms that learn linear threshold function over reals in polynomial
time, even in the presence of noise. It is interesting to see this stark contrast.

In the second part of this paper, We present a learning algorithm, BUILD-TREE , that learns a class of
linear threshold functions over finite fields where the threshold b is fixed to be (p + 1) /2. Our algorithm uses
a random example oracle, which produces a random pair (Z, fz(Z)) upon invocation. The algorithm’s running
time is p©(™/1°6™) while the brute force search algorithm takes time p™ and any statistical query learning
algorithm also has to take time pﬂ(") to even weakly learn the functions. If we “pad” the input properly, we
can make BUILD-TREE ’s running time polynomial in the input size, while still no SQ learning algorithms can
learn the class efficiently. This gives an example of PAC-learnable, but not SQ-learnable class of functions.
Previously, both [K98] and [BFJ+94] proved that the class of parity functions fits into this category, and later
[BKWOO] proved that a class of noisy parity functions also fits. Our example is the first class of functions in
this category that are not parity functions. This result provides some insights towards better understanding
of SQ-learning algorithms.

The rest of the paper is organizes as follow: section 2 gives some notations and definitions to be used
in this paper; section 3 proves a lower bound for SQ-learning algorithms; section 4 discusses the algorithm
BUILD-TREE and its analysis.

Due to space constraint, the proofs to most lemmas and theorems are moved into the appendix.

2 Notations and Definitions

We give the notations and definitions to be used in the paper.

2.1 Functions and Oracles

Throughout this paper we are interested in functions whose input domain is a finite set €2, where |Q| = M,
and whose outputs domain is {—1, +1}. An input z to a function f is called a positive ezample if f(z) = +1,
and negative ezample is f(z) = —1. Sometimes when the function f is clear from the context, we call the
value of f(z) the label of z. In a lot of cases, 2 takes a special form: Q = GF}', where p is a prime number
and n is a positive integer. In this case, we write an input in the vector form: #, we use z' to denote its i-th
entry, an element in GFj,.

We now define the notion of learning a function. The overall model is an algorithm A with oracle access
to a function f that A tries to learn (we call f the target function). A is given an input X and makes queries
to the oracle. Finally A outputs a bit as its prediction of A(X).

We use an “honest SQ-oracle” model, which is similar to the definition of “SQ-based algorithm” in [J00]:

Definition 1 An honest SQ-oracle for function f takes two parameters g and N as inputs, where g : GF}' x
{—1,+1} = {1, 41} is a function that takes an input in GF}' and a boolean input and outputs a binary value,
and M is a positive integer written inunary, called the “sample count”. The oracle returns % Zf\;l 9(Zi, f(£3))
where each x; is a random variable independently chosen according to a pre-determined distribution D. We

denote this oracle by HSQs

Notice that this definition of an honest SQ-oracle is different from the mostly-used definition of a “normal”
SQ-oracle (sometimes denoted as ST ATy) as in [AD98, BFJ+94, BFK+96, BKW00, K98]. Actually an honest
SQ-oracle is stronger than a “normal” SQ-oracle. Kearns [K98] proved that one can simulate a ST ATy oracle
efficiently in the PAC learning framework, and Decatur [D95] extensively studied the problem of efficiently
simulating a STAT} oracle. Both their results can be easily extended to show that an honest SQ-oracle can
be used to efficiently simulate a “normal” SQ-oracle. Therefore a lower bound with respect to an honest
SQ-oracle automatically translates to a lower bound with respect to a “normal” SQ-oracle.

2.2 Bias and Inner Products of Functions

We define the bias of a real function f over €2 to be the expected value of f under a distribution D, and we
denote that by {f)p:
()b =Ep[f(&] =) D(=)f(z)
zEN

We define the inner product of two real functions over €2 to be the ezpected value of f- g, denoted by (f,g)p:

(f.9)p = En[f(z)g(x)] = > _ D(z)- f(z)g(x)

zEN

In the rest of the paper, we often omit the letter D if the distribution is clear from the context.
We can also view the inner product as the “correlation” between f and g. It is easy to verify that the
definition of inner product is a proper one. Also it is important to observe that if f is a boolean functions,

ie, f(z) € {—1,41}, then (f, f) = 1.

2.3 Approximating and Learning Functions

Given a function f : @ — {—1,4+1} and an algorithm A which maps elements in € to —1 or +1, we can
measure how well A approximates f. The algorithm could be a randomized one and thus the output of A
on any input is a random variable. We define the characteristic function of algorithm A to be a real-valued
function over the same domain Q: ¥4 : @ — [—1,+1], such that

Ya(z)=2-Pr[Aoutputs 1 on z] — 1

where the probability is taken over the randomness A uses and, if A make oracle queries, the randomness from
the oracles.

It is easy to verify that ¢a(z) is always within the range [—1, 1]. Given a probabilistic distribution D over
Q, we define the advantage of algorithm A in approximating function f to be

{f,¥a) = Pr 4 p[A agrees with f on input z] — Pr 4,p[A disagrees with f on input z]

where the probability is taken over the randomness from A and the # that is randomly chosen from €2 according
to D.

It is not hard to see that if A always agrees with f, then ¢4 = f, and the advantage of A in approximating
f1s 1; if A randomly guesses a value for each input, then ¢4 = 0, and the advantage of A is 0.

For a class of functions F, and an oracle algorithm A, we say A approxzimates F with advantage o if for
every function f € F, the advantage of A in approximating f is at least . In the case A queries an honest
SQ-oracle HSQ@; in order to approximate the target function f, we say A learns F with advantage a with
respect to an honest SQ-oracle.

We note that the “advantage” measure for learning a function isn’t very different from the more commonly
used “accuracy/confidence” measure in PAC learning. Recall that an algorithm learns F with accuracy e and
confidence 4, if for any f € F, the algorithm A, using an oracle about f, with probability at least 1 —§, agrees
with f with probability at least 1 —e. It is easy to prove the following facts:

Lemma 1 Let F be a class of boolean functions over 1, and let A be an oracle algorithm. If A learns F
with accuracy ¢ and confidence &, then A learns F with advantage at least 1 — 2e¢ — 25. On the other hand,
if A learns F with advantage at least o, then A learns F with accuracy e and confidence & for any (e, 8) pair
satisfying

a>1-—2eb

Proof: First, if A learns F with accuracy e and confidence 4, then we know with probability 1 — 4, the
advantage of A is at least (1 —¢) — e = 1 — 2¢, and with probability 4, the advantage of A is at least —1. So
the overall advantage of A is at least

(1=6)(1—26)—8>1—2c—28

Second, if A learns F with advantage «, we translate that into the PAC language. We define A to be
“lucky”, if its advantage is at least 1 — 2e. We denote the probability that A is lucky by p, and then we have

a<p+(1—-p)(1-2e)

or
a<1-—2e+ 2ep

So if we have
a>1-—2eb

then we have 6 > 1 — p and A is lucky with probability at least 1 — 4. Therefore A learns F with accuracy €
and confidence 4. |

Therefore, roughly speaking: if an algorithm A learns F with high confidence and high accuracy (A
“strongly” learns F), then the advantage of A in learning F is close to 1; if A learns F weakly, then the
advantage of A is non-negligibly higher than 0. On the other hand, if the advantage A has in learning F is
close to 1, then A (strongly) learns F.

The reason that we use the advantage measure in this paper is that we want to show a continuous “trade-
off” result between how many queries are needed and how “well” an algorithm learns F, and using one single
parameter makes the discussion more convenient.

2.4 Booleanized Linear Functions and Linear Threshold Functions in Fi-
nite Fields

Suppose p is a prime number and n a positive integer. Given an arbitrary function that maps inputs from
GF}, to boolean values,

¢: GF, = {—1,+1}

we define a class Fy of booleanized linear functions as a collections of boolean functions:
Fo=A{faq(¥) :=0(d-¥)|d e GF},

and we call function ¢ the booleanizer.

Booleanized linear functions can be viewed as natural extensions of parity functions (which are linear
functions over GF3').

If the booleanizer function, ¢, is a threshold function:

1 , ifz>b

du(z) =
-1 , ifz<d

we call the corresponding class of booleanized linear functions linear threshold functions, and denote the
functions by fz 5. Here the comparison is performed by first mapping elements in GF}, to integers {0, 1, ...,p—1}
in the most straightforward way and then performing integer comparison.

2.5 The Tensor Product and Statistical Distance

Given two probabilistic distributions D and D’ over spaces A and A’, we define their tensor product D @ D’
to be a new distribution over A x A’:

Pr peoil(X, X') = (z,0")] = Pr p[X = a] - Pr p[X' =]

Given a finite space A and distributions D1, D2, ..., D over A, we define the all-pair Lo statistical distance

(abbreviated as SD) among D1, Ds, ..., Dy, to be

Wl

SD3(D1, Ds, ..., D) = [ZZ > (Prp[X =a]—Prp[X = z])z]

i=1 j=1 z€A
Under this definition, it is easy to see that

SD»(D, D) =0

1
m m 2
SDy (D, Da, ..., D) = [Z > SDa (D, DJ)Q]
i=1 j=1
One useful property of the all-pair L, statistical distance is the sub-additivity:
Lemma 2 Let Dy, Ds,..., Dy be distributions over A and Dy, D}, ..., DL, be distributions over A’. Then we

have

SD2(Dy @ D}, D2 @ Db, ..., Do @ D2) < SDa(Dy, Da, ..., D) + SDa(D}, D, ..., DL)

Proof: We define P;; = Pr p,[X = z] and Qi,y = Pr p/[Y = y]. Then we have
Pr Di®Di[(X7 Y) = (z,y)] =Pr p,[X =2]-Pr D:[Y =y|=PisQiy

We denote SD»(D1 ® D1, D> ® Db, ..., Dy ® D;,) by D. Then we have

1

2

D = ZZZZ P; Qi y _Pj,$Q1,y)2

1
2

= E Z E E (PioQiy — Pi2Qjy + Pi2Qyy — PJ@QLZU)2:|

l

< DD (PisQiy — PisQi)?| 4 ZZZZ(R@QM—Pj,ij,y)Q]
Li=1 j=1 =x y i=1 3=1 =z y

= (202D @iy = Qi) Y PlL| + ZZZ(H@—PN)”ZQL]
Li=1 7=1 y i=1 j3=1 =z y

=

NE
NE
7
O

Qj,y)

I
w
O
(]
S
o

g

D.) +SD2(Dy, D3, ..., Dy,

where the first inequality is by the triangle inequality and the second inequality is because

2
|

Since each random variable naturally induces a distribution, we can also define all-pair L. statistical
distance among random variables: For random variables X1, X3, ..., X, their all-pair Lo statistical distance
is defined to be the all-pair L. statistical distance among the the distributions induced by them. The sub-
additivity property remains true: suppose we have random variables X, X, ..., X,, and Y1, Yz, ..., Yy, such
that X; is independent to Y; for any 1,5 € {1,2,...,m}, we have

SD,(X1Yh, XaYa, .o, XonVin) < SD2(X1, Xa, ..., Xpn) + SDa (Y1, Ya, ..., Vin)

2.6 Chernoflf Bounds

We will be using Chernoff bounds in our paper, and our version if from [MR95].

Theorem 1 Let X1, Xo,..., X, be a sequence of n independent {0,1} random variables. Let S be the sum of
the random variables and p = E[S]. Then, for 0 < § < 1, the following inequalities hold:

Pris > (1+6)u] <e™”

and

Pr[S < (1—6)u] < e* /2

3 Statistical Query Model: Negative Results

In this section we present a negative result characterizing the Statistical Query Model.
Throughout this section, we use 2 to denote a finite set of size M and we are interested in functions take
inputs from €2 and output +1 or —1.

3.1 Statistical Dimension and Fourier Analysis

Definition 2 Let Q be a finite set and let F be a class of boolean functions whose input domain is 2, and D
a distribution over Q, we define SQ-DIM(F, D), the statistical query dimension of F with respect to D, to be
the largest natural number d such that there exists a real number A, satisfying0 < XA < 1/2 and F contains d

functions fi, f2,...., fa with the property that for all 1 # j, we have
1
(i £) =N <

Notice the definition of SQ-DIM in [BFJ+494] can be regarded as the special case where Q@ = {—1, +1}"
with the restriction that A = 0.

Notice though each of the functions fi, fa, ..., fa can be highly correlated to others, since the correlation is
always almost the same, we call it a “false correlation”. As we will prove in the next lemma, we can “extract”
d new functions fi, fa, ..., fa from fi, fa, ..., fa, such that the new functions are almost totally uncorrelated to
each other.

Lemma 3 Let Q, D, d, A, and f1, f2, ..., fa be as defined in definition 2, and A > 0. We define d real-valued
functions fl, fg,. 7faz

= 1 1 1
fi(l“):mfa(m)—g'(\/l_)\ \/1+) Zf; (1)

Then we have

(o f =11 5 vi 2
and

[(fi, Fi)] < d3 Vi (3)
Proof: One could directly substitute the definition of fi, ..., fs into the formula and check, but here is the
reasoning:

We first define a new function f which is the average of functions fi, fo, ..., fa:
d
7 1
“Ly
Then we can work out the inner product of f and f;:

yo ! d o1yt L
(7. 1) —3223 fifi) =545 D Afi i)

i

So if we define o = (% + %)\), we have

and since f(z) = %Zle fi(z), we also have

Therefore we know that o > 0 since (f,) > 0.
We define gi(z) = fi(z) — Z f() for i = 1,2,...,d. where Z is a constant to be decided. Now we compute
the inner products of g; and g;:

(9,9,) = (fz'—ZﬁfJ—Zﬂ

= A—ZozZ—}-ozZz—}-O(dS)
Let
a— A 1—A
Z=1- o T T+ (d—1)A

Then Z is a solution to the equation

A=2aZ+aZ>=0

and 0 < Z < 1. So we can show that
4
gi,9i)l < =
Now if we compute the inner product of g; with itself, we get
(9i,9:) = (fi—=Zf, fi—=Zf)
= (fi fi) = 2 F) = Z(fi, Y+ Z(F, F)
1
= 1—2aZ-|—aZZ+O(d—3)

So we have

Finally we define

= 1 1 1 1 _
fo) = =) = o= (\/1— Ve m)) @
and we have

o fy—11< 2 vi

d2’
and 3
(o f) < o Vi s
because we have 0 < A < 1/2 and therefore ﬁ < 2. |
So we now get a group of functions fl, fg, ey fd that are “almost” orthogonal.

Next, we can extend this group of functions to a basis and perform Fourier analysis on the basis. The
part of analysis are very similar to the proofs in [BFJ+94], but with different parameters and (sometimes)
improved bounds.

Lemma 4 Let Q, D, d, A\, and f1, fa, ..., fa be as defined in definition 2, and suppose that D has full support,
ie., Vz € Q,D(z) >0, and X > 0, d > 16. Let functions fl,fg, ...,fd be as defined in lemma 3, then there
exist functions fd+1, ...fM, such that {fl, ...,fM} form a basis for the vector space of all real functions over
Q. Furthermore, the added functions are orthonormal, namely, for any 5 > d and any k, (fj,fk) =0 and

<f~J7f~J> =1

Proof: We first prove that fl, fg, ey fd are linear independent. Otherwise we assume that fl = Z]>1 aj f~J
for some s, ...,aq. Then we have

0 = Ep

(.fl - Z a]fj)2:|

i>1

= BEolfi’1-23 s Eolfifil+ Y asanBnlfifi]

3>1 7,k>1

We use define aymas to be
Omaz = max{|a;| : j > 1}

> lajl? > s,

i>1

ZO‘JED[flfJ]

j>1

and thus we have

Samax

< =

and

2
Sama.’c

Y. warBplfifi]] < =5

3,k>1,3#k

So we have)
16ama.’£ Sama.’r

8
OS(I_d_S)"f'Of%na:r_

d? d
If @maxr <1, we have
16 8a? 8 16 8
1_8d3 2 _ mar mar>1______
(1= 8/d) + e — — e O

which is more than 0 when d > 16.
If amax > 1, we have

R 5 160 maz 8024z 8 5 16 8 8
(1—8/d”) + amaz — 2 —TZI—d—3+ame(1————)>1——>0
So either way we have a contradiction. 5 ;
Now we already have d linear independent functions fi,...fa, we can use Gram-Schmidt process to extend
them to a basis fi, f2, ..., fa, fat1, ..., far. for the vector space of all real functions over 2, and make sure the
added functions are orthonormal: for any j > d and any k, (f;, fx) = 0 and (f;, f;) = 1. [|

Now that we have a basis for real functions over €2, we can extend the distribution I} to a distribution D
over £ x {—1,+1}, and extend the basis to a basis for real functions over £ x {—1,+1}.

I:elnma 5 Let 2, D, d, X\, and functions fl, fg, ...,fM be as defined in lemma 4. We define a new distribution
D over @ x {—1,+1} as: N N
D(z,—-1) = D(z,+1) = D(z)/2

In other words, D is the tensor product of distribution D over Q and the uniform distribution over {-1,+1}.
We extend the definitions of fi, ..., far to the input domain Q x {—1,+1} by defining

filz,y) = fi(x)
forz € Q andy € {—1,+1}. We also define M new functions hi,ha,...,hq over Q@ x {—1,+1}:
hi(w,y) = fi(z) -y
forz € Qandy € {—1,+1}. Then {f~27 e frt, B, ..yhar} form a basis for the real functions over @ x{—1,+1}.
Proof: It is easy to check that

(Fuhy) = 3Folfie) hy(e, =D+ 3 FolFiw) - by (a, +1)]
= SB[~ (@) hy(@)]+ 5 Folfi(e) ()]
= 0
and
(hishi) = 5 Eolhi(z,~1) bz, ~)]+ 5 Folhi(e, +1) - hy(r, +1)]

Now that we have a basis for real functions over € x {—1,+1}, we can perform a Fourier Analysis for any
function over © x {—1,+1}.

Definition 3 ILet Q, D, d, and functions fi, fa, ..., far, h1, ..., har be as defined in lemma 5. Let g be an
arbitrary function over @ x {—1,+1}, we can write g (uniquely) as

a(o.w) = Y ouf(2) + 3 Bih(a.v))

We call (ay, ...,anm, B, ..., Sum) the Fourier Coeflicients of function g.

Notice the basis isn’t an orthonormal one, but it is close. The following lemmas show the upper bounds
for the coeflicients.

Lemma 6 LetQ, D, d, and functions fl, f~2, ...,fM, hi, ..., har be as defined in lemma 5. Let g be an arbitrary
function over @ x {—1,+1}, such that |g(z,y)| < 1 for allz € Q@ and y € {—1,+1}. We write g in its Fourier
coefficients as in definition 3. Then, fori=1,2,...,. M, |a;| <1+ 10/d® and |8;] < 1+ 10/d>.

Proof: WLOG we assume that |a| is the largest coefficient. We look at the projection of g on fl:

(al £ S ol f +zﬂi<fl,hi>) ;

1>1 i>1

d
(m + Zm(hofNi)) fi

<flvg>f1

And since this is a projection, we know it is no greater than ||g||, which bounded by 1. So we have

1> gl > Wh,a)hl-[{fi, fi)l

> (lar =Y fol-) (1=)
> arl(1-) (1 =)
> Jaal/(1+)

when d > 16. [|

Lemma 7 Let Q, D, d, functions fl,fg,...,fM, hi, ..., har and g be as defined in lemma 6, where d > 100.
Then we have

M
dopi<i+ % (6)
=1
and o
Y ai<t % (7)

Proof: we have

1> ||gl)?

PRI

> Zlai|2<f¢,f¢>+Z|ﬁi|2(huh = > laia(fi, f)l = Y 18iBs (his by |—Z|oa,@] firh;
i=1 i=1 i#j IS
d

> Y B (hihiy =2 Y asai(fi fi) =20 D 1BiBi(hi hy)
i=1 1<i<y<d 1<i<y<d

> 1——)Z|ﬁz| - —

So when d > 100, we have Zfl:l Bl < (1+2)/(1- &) <1+ 12,
The proof for the other inequality is similar. |
An immediate corollary from lemma 7 is:

Lemma 8 Let Q, D, d, functions fl,fg, ...,fM, hi, ..., har and g be as defined in lemma 6, where d > 100.
Then we have

SSIsI < VA (14 3) (®)

and

S il < VA (14 2) (9)

i=1

Proof: By Cauchy-Schwartz inequality and lemma 7,

W=

d d
Zlﬂil < (d-2|ﬁ¢|2>
< V/d+100
< Va4

10

The proof for the other inequality is similar.

The next lemma gives a general bound for how the coefficients are related to the inner products.

Lemma 9 Let Q, D, d, and functions fi, fo, ..., far, be as defined in definition 4. Let ¢ be a real-valued

function over Q such that |g(z)| <1 for allz € Q. We write down g as

= Zaifi(x)

Then
(9. f3) <oy VT2 + (1_ Hl(d‘jm) T
Proof: By lemma 3, we have
filz) = V1= Xfi(z) + (1 Y Bl N) f(z)
14+ (d—1)A
for 1 =1,2,...,d. Summing the expression above for : = 1,2,...,d, we get

%

= ;fi(x) = Z (=) +d(T (A= -|-1(d_—)‘1))\) f(=)

or
- VIFd—Dr X
f(z) = % . Zfi(x)
i=1
Therefore
. Y _
) = VT=A) + (1 - Hl(di_m) f)
_ : 1) VIFA—DX &<
= \/1—)\ft(m)—|—(1— 1—|—(d—1))\> yi ZZ;f,(as)
We are only interested in the coefficients a1, as,...,aq, and thus we define
M ~
h(z) = Z a; fi(z)
i=d+1

(10)

(11)

Then we have g(z) = h(z) + Zfl:l ozifi(x), and (h,fi) =0 for 1 = 1,2,...,d. Now we compute the inner

product of g and f;:

(9.fi) = (h(x)+zoz¢f~z‘(~"3)v Mﬁ(z)—k(l— 1-|-(d—1)/\>\/1-|-7_1 Zfz
- ai\/ﬁ<ﬁ,ﬁ>+m2a]<ﬁfﬂ>+(1_ 1+1(d_—Al)A>\/1+7 (Z
i

IA

oz,.\/l—)\—}-\/l—/\(z d§> (1—}-1(d_—)\1)/\> 1+

d—Dx [
- ai.er(l_ /1+1(d_>\))\> 1+(d 1) .(;ai>+A

where

IN
QUl©
TN
=
R
N——

—
+
al=
|
=
>

v ||'

" (),

9 d
< (%)
i=1
E

<
- d

since we have by lemma 8. Therefore,

{9, i) < ai-V1I=-X+ (1— 1+1(d_—)\1))\> 1+(j_1))‘-(2ai> +%
1- A T+ (d—1)X 50 10
< Ozr\/l—)\—i—(l— 1+(d_1))\) y .<\/E.(1+g))+?
1-—2X 1+ (d—-1)Xx 60
< Oli'm-l-(l— 1+(d—1))\) y +

3.2 Approximating a Function without a query

We give an upper bound on the advantage an algorithm A can have to approximating a class of functions, if
A doesn’t make any queries.

Theorem 2 Let Q be a domain of size M, let D be a probabilistic distribution over . Let F be a class
of functions F = {f1, fa, ..., fa}, such that |{fi, ;) — X\ < 1/d® for all pairs i # j, where X > 0. Let
g: 2 — [—1,+1] be the characteristic function of an algorithm A such that (g, fi} > T fori=1,2,...,d. Then
we have

14+ (d—1)A 70
T< /=2y
= d *a

for d > 100.

Proof: We decompose g into basis as shown in equation 10 in lemma 9. Then we have

T < (g, fi)
— 1-X 1+ (d—1)x 60
< o 1_’\+(1_ 1-|-(d—1)A> d)
for:=1,2,...,d.
Summing up these d inequalities, we get
d
1—A 1+ (d—1)A
< —X- ; . _
dT < V1=x ;a +d (1 1+(d_1))\) y + 60
50 1—2 1+ (d=1)x
< WV1-=X- d- (14— d-|1- . 60
= <\/_(+d)>+ (\/1+(d_1)A) a
_ 1—A 14+ (d—1)A 1—A
= \/1—>\~\/c_l+d~(1—,/1+(d_1))\>\/ y +60 41/ —
< V1+(d=1X-Vd+70
or
1+(d—1)x 70
T<
- d d
|
We next show that this bound is “almost tight”, i.e., we give an example where T' = i(dd_&.

Theorem 3 For any odd prime p and any integer n > 2, there exists a class of d = p"~! boolean functions
over GFy: F ={f1, fa,..., fa}, and a distribution D, such that: any pair of the functions has identical inner

,) _) 14(d—1))
product X and the inner product of constant function g(z) =1 and any f; is (g, fi)p = jd—L.

12

Proof: We consider the linear threshold functions:

1 , ifa-#>b
-1 , fa-#<b

where we fix b to be an element in GFj, between (p — 1)/4 and (p — 1)/2], and letd be elements in GFy' with
the restriction that a™ = 1: there are p"~! of such functions.
We define the probabilistic distribution I to be

. 0 fzl =gl=...=2""1 =0
D(z) = { L otherwise

pt—p

In other words, the distribution D is a uniform distribution over GFy* — {0"7'0,0"7"1,...,0" " (p — 1)}. The
reason that we exclude the p elements 0"~'0,0"'1,...,0" ' (p—1) is that all the functions behave the same on
these p elements and thus it is trivial to predict their outputs. We use A to denote the set of these p elements:

A={0"""0,0"""1,...,0" (p-1)}

Now we compute the inner product of fz,, and fa, . Notice that for any do,d1 € GF}', do # d, and
co,c1 € GFy, the equation

always has p”~? solutions for & € GF}', provided that ay = al = 1. We need to check the number of solutions
that are in A: but if £ € A, then

0-* = Co

Q D
8 8

1° = C1

- - - — n
do X =4ad1 - r=2=x

in which case there is exactly one solution in A, and thus there are (p"_2 — 1) solutions in GP;' — A. Therefore

Pr p[fags = fa, 0 = —1] = E E Prp[Z-do=co A Z-d1 =ci]

b—1 b—1
= Y Prp[f-do==F-d =cl+» > Prp[f-do=co AF-d=ci]
c=0 cg=0 cy#¢cg
1 n—=2 n—=2
= b-(p —1)+bb-—-1)-p
S b) +b(b—1)-p" 7]
_ b2.pn—2 b
pt—p

and similarly

2 n—2
Pr p[fags = fa,p = 1] = (p—b*-p"*—(p—b)

pr—p
So
Pr p[fage = far] = Prp[faes = fay0 = =11+ Pr p[fage = fay 0 = 1]
_ b2~pn_2—b+(p—b)2~pn_2—(p—b)
p*—p pr—p
(p° = 2pb+26°) - p" > —p

p"—p

Therefore we have

<.fc'iu,b7 f('i1,b> = Pr D[faﬂvb = fal"b] —Pr D[f('ig,b # f('il,b]
= 2-Prp[fage = fa, 0] —1

o (P —2wh+26%) - p" " —p

= _1
p"—p
_ (p_ 26)2 .pn—Q —p
p"—p

which we denote by A.

13

Now let’s compute the inner product of fz, and g, which is the constant-one function.

Prolfas=—1] = Y Prp[#-d=c]

-

Notice that for any ¢, the equation # - @ = ¢ has exactly p"~' solutions in GF}, and exactly one of which is

in A. Therefore

= p"Tl—1 b
Pr p[faps = —1] = Prp[#-d=c]=0b = -
[fan] ; [] 7 p —p
and thus
(9, fap) = Prop[far=1]—Prp[fap = —1]
= 1—-2-Pr D[fayl»,:—l]
_ p—2b
p

On the other hand, it is easy to verify that

= o 2.on—2_
1+(d—Dr Py =2ty
d - n 1
B —2b
p—2b
= gvfab>

p

3.3 A Lower Bound for Statistical Query Learning

We have proved that without making any queries, a learning algorithm cannot learn a function family with
advantage more than 4/ ﬂdd_ﬁ. Next we show that in order to improve the advantage, a lot of (normally
exponentially many) queries have to be made. More precisely, we have the following theorem:

Theorem 4 Let Q2 be a domain of size M, let D be a probabulistic distribution over Q0. Let F be a class of
functions F = {f1, fa, ..., fa}, such that |{f;, ;=X < 1/d® for all pairs i # j, where 1/2 > XA > 0 and d > 100.

Let A be an algorithm that makes Q queries to an honest SQ-oracle , each of which has sample count at most

N, and learns F with advantage S + W, where S > d_1/4, then we have

NQ > \/6_12'5

We comment that the total running time of A is bounded by N@, since N is written in unary. Therefore thus
the running time of A is also bounded by v/d - S/2. This theorem gives a tradeoff between the running time of
A and the “extra” advantage it can have in learning F: the running time goes up linearly with the advantage,
and especially, to get a constant advantage, a running time of Q(dl/z) is needed.

Proof: We assume A is a Turing Machine. Suppose the target function is f;. We define the state of A after
the k-th query to be the binary string SJ that describes the contents on A’s tapes, the position of the heads,
the current internal state of A. We deﬁne SJ to be the state of A before A starts. Notice each Si is a random
variable: the randomness comes from both the honest SQ-oracle and the random coins A tosses.

In the rest of the proof, we will omit the subscript A if there is no danger of confusion.

We define Ay, to be the all-pair L statistical distance among S}, 5%, ..., S

Ay = SD»(Sy, Sk, ..., S§)

Intuitively, A measures how “differently” A behaves when it has different target functions as inputs from
the oracle.
We shall prove the following lemmas (in the appendix) considering the Ay’s:

Lemma 10 Aq = 0.

14

This is obvious since A hasn’t made any queries yet, and the state of A is independent of the target function.

Lemma 11 A4 — Ap < N~\/c_l

Proof: First we compute the all-pair SD among a special collection of random variables.
Let @Q; to be a random variable defined by

Q; = g(X, fJ(X))

where ¢ is a query function and X is distributed over Q according to D. Notice @; can only be —1 or +1 for
all y’s, and thus we have

SD3(Q: @) = (Prp[Qi=1]—Prp[Q; =1])" + (Pr p[Qi = 1] = Pr p[Q; = —1])°
= 2'(P|’D[Qi:]-]_PrD[QJ:1])2

= %(ED[Q:] - ED[QJ])2

By lemma 6, we can write g in its Fourier coefficients:

oo,y = Y aiffa) + 3 Bihla,v)

and thus we have

So the expected value of g(z, f;(z)) is

Eplg(x, fi(x))] = Eb

and since we know from equation 4,

. 1 1 ! f
filz) = ﬁff(x) - (\/1 X VIt - 1)A>)

3 [1 ~
fi(z) =V1-2 J($)+(1— m)f(x)

Z Eplaifi(z)] + Z Ep

we have

and thus

Ep[g(z, f;(x))]

B By 1—2\ ~
Bifi(z) - (Vl—AfJ(l“)‘F (1— m) f(@)]

= Co+VI=X-Y BiEp[fi(x)fi(2)]

i=1

d
— G VTTX Y B)

i=1

is a constant that is independent of the target function.
Therefore, if we look at the difference between Fp[@Q1] and Ep[Q-], we have

where

15

[Ep[@1] — Ep[Q2]]

8 (¢ i - <f1,fz>)‘

IA

Zm ((o Pl 1 o)1)

IA

181 (s Pl + (Fo 1)) = B2 (o Jo) + (o 12)) |+ S8 (¢Fis)+ 47, £2)])

i=3

< B - ﬁ2|+ Z|ﬁ|

24

S | 62|+d5/2

for d > 100. This result is true for any pair (Q;, @;), and thus we have

SD»(Q:,Q;)

[
M-
M=

1]

—_
s

1]

I
Fﬂ:
- -

1]
—_
S
1]
-

SD2(Q1, Qs -, Qa)’

(Ep[Qi] — Ep[Q,])?

FE'{&
i

1]

-
S

1]

2
(19801 + i)

d d 2
)2 1 24 1, 24
5=+ 52320814180 5 + 5 ()

i=1 j=1

F’JZ
M S

1]
—_
~
Il
—_

24 288
(B _ﬁj)Q +2d- Zml' " d5/2 + e
i=1

I
‘Fﬂ:
M=

1]

—_
~

1]

1

100
(ﬁz - ﬁJ)Q + 7

A“E'ﬂ“&
M-

1]

—_
S

1]

1

Also,

M=
M=
B
S
~—

[S]

= d- Zﬁz—Z > BB

i=1 j=1 1<i<y<d
4 2
< (d+1)-) 8- (Zm)
i=1 i=1
d
< (d+1)-) B
i=1
100
< (@+DA+—)
Putting things together, and we have
1 100 100
SD2(Q1, Q2, ..., Qa)* < S+ 1)+ —)+—=<d

Now, coming back to the Ay’s: since we have sub-additivity for the all-pair L. statistical distances, and since
the random bits used by the algorithm A are always the same regardless of the target function, the only place
the statistical distance can increase is when A makes queries to the honest SQ-oracle. Furthermore, the amount
of the increase is bounded by the SD among the replies returned by the oracle, which is SD2(Q1, Q2, ..., Qa).
Notice that each query to the oracle has an sample count at most N, we have

Apgr — A < N -SD2(Q1,Q2,...,Qa) < N -Vd

16

Lemma 12 Ag < NQ@Q- Vd.
Proof: This comes directly from lemma 10 and lemma 11. |

Next we show the that in order to learn F with large advantage, the all-pair statistical distance has to be
large.

Lemma 13 If A learns F with advantage S + i(%)—A where S > d='%. Then Ag > dQ—S.

Proof: After making @) queries, the learning algorithm A should be ready to approximate the target function
fi- We write the characteristic function of A as 3; — notice this is a real-valued function since A might be
a randomized algorithm and the honest SQ-oracle gives random answers. Also this function is dependent on
the target function f;.

On a particular input z, A outputs 41 with probability (1 + :(z))/2 if the target function is f; and
(14 ¢;(z))/2 if the target function is f;. Therefore, when we look at the SD between Ség and Sé, we have

SD2 (S5, 85)° > Ep

) <1 +oile) 144y m)] = S Enl(¥i(z) — s(=))?] (12)

Now we do Fourier analysis for the 9;’s: we write
M
vj(z) = Zajkfk(x)
k=1

then we have

SD2(Sh, S5)° > %ED[(zéu(x)—wj(x))z]

Il
|
5]
o}
TN
M=
5
B
|
Q
~
bl
T
N~——
[¥]

AV
Lo =
[]=
Py
Q
S
Q
£
ol
N
|

—
Ul

Summing over all (i, j) pairs, we have

d
AL = YD TSDa(Sg, 85)°

(A4
[~]=
b | =
M-
B

bl

|

2
x

|
|5

1 d d d)
> §Zzz(o‘i’“_o‘ﬂ’“) — 16d

On the other hand, since A learns F with advantage S + 4/ ﬂ%&, we have

1+(d—-1)x .
(5, f5) > S+ %, 5j=1,2,..,d
and by lemma 9,
1+ (d— 1A 1-) 14+(d—1)Xx 60
S+ a <9, fi) Saj; VI=A+ | 1- TF(d=1)r 3 +d
or
1 [1—X 60
Oz”Z——l_)‘(s—‘r 7 _?>ZS
For each k, we define
d

d
By = max |aix|
1=
and
d d
=2 (e —au)’
im1 j=1

So we have
B Z Lk Z S

Then

d

Cy = Ez k—a]k

i=1 j=1

> 2. Y (Br—ai)’

@ik # By

= 2d-1)B —4Bx Y aint2 Y ab

@) # By @ik # By

> 2d—1)By —4Bx | (d=1)- > al| +2(Ax— Bj)
a;, # By

= 2(d—1)B} = 4Byy/(d = 1) - (Ax — B}) + 2(Ax - BY)

> 2(d—2)B; —Vd—1- A

> 2(d—2)S" —Vd—1- A

where the first inequality is because of Cauchy-Schwartz and the second is because By - \/Ar — B < (Bi +
Ax — BR)/2 = Ai /2.
Therefore

) 1 d d d)
AL > 5222((1%—@”) —16d

\%
QU
=
U
|
[
N
U
M)
|
U
|
—
(]~
N
kol
|
—
N
U

Notice that when d > 100,
d d d 100
A=) > ah<d-(1+ 7) =d+ 100

by lemma 7. So

Vd—1 d>5?
2 4

(d 4 100) — 16d >

when S > d—1/4,

|
Now putting lemma 12 and lemma 13 together, we have NQVd > dQ—S, or
NO > Vd- S
2
|

Interesting, the techinique we use in this proof is similar to the one Ambainis uses in [A00] to prove a lower
bound for the number of quantum queries a quantum search algorithm has to make.
As a comparison, implicit in [J00] is the following theorem:

18

Theorem 5 (Implicit in [J00]) Let Q be a domain of size M, let D be a probabilistic distribution over §).
Let F be a class of functions F = {f1, f2,..., fa}, such that {fi, f;) = 0 for all pairs i # j. Let A be an
algorithm that makes Q queries to an honest SQ-oracle, each of which has sample count at most N, and learns
F with advantage S, then we have

NQ =9~ o)

Proof’s sketch: Notice this is the case that all target functions are completely orthogonal and Fourier
Analysis works perfectly. Suppose A has an advantage of S. Then the characteristic function 94 has an
coefficient at least S for the target function. However 4 can have at most 1/5? coefficients that are larger
than or equal to S, by Parseval’s equality. One can simply query 1/5% more times to completely determine
the target functions and have advantage 1. But as proved in [J00], ©(d) queries are needed to learn F with
advantage 1. Therefore we have NQ = Q(d — 1/5?).]

The bound in [J00] is a bound for the specific case that all functions are orthogonal to each other, and in
this case, it does give a better bound. Our bound is weaker, but it works for a more general class of functions.

3.4 Hardness for Learning Booleanized Linear Functions over a Finite
Field
Next we show that the class of booleanized linear functions cannot be learned efficiently using statistical query:

Theorem 6 Let p be an odd prime andn > 1 an integer. Let ¢ : GF, — {—1,41} be a booleanizer such that
—% <{(y¥) < % and let F be a class of booleanized linear functions:

F={fayla" =1}

Let D be the uniform distribution over GF,'. Then any algorithm with an access to an honest SQ-oracle that
learns F with advantage |(¥)|+S+1/p" ™", where S > p= (P04 with respect to distribution D, has a running
time at least pt"~D/2 . S/2.

Proof: First notice there are totally p”~! functions in F. Second, for any @, # d2, af = a} = 1, and any
co,c1 € GFy, the equation
will always have p™~? solutions for & € GFy.

Now we define set ¥~ to be the set of negative examples for ¢ and set U to be the set of positive examples
for ¢. In other words,

0 - = Co

Q1 D
8 8

1° = C1

U = {2 € GFy | $(z) = —1}, U = {z € GF, | Y(x) = +1)
We also define
P
then we have so 4+ s; = p and (¥) = (s1 — so)/p. Therefore,

Z Z Pr[f-c'io:co/\:i'-c’il:cl]

co€E¥~ 1 €V

Pr [fags = fay,p = —1]

and similarly,

Pr [fao,p = fa, 0 = +1]

g E Pr[.i"é'o:CoAf'al:Cl]
cg€T+ c €T+
2

_ 5
= 3
So
sg —1—5?
Pr [fags = fai 0] = Pr [fags = fay o = =11+ Pr [fagp = fa,p = +1] = e

19

and thus

(fao,or far,p) =2-Prfage = fa, 0] — 1= (%)

2
If welet d =p" ! and X = (%) , then by theorem 4, we know that any algorithm that learns F by

statistical query with an advantage S + w will have a running time at least Vd- S/2 = p("_l)/2 -S/2.
Notice that

T+ @d=1) _ < 1—A>%

d At d
< \/X.<1+l.ﬂ>
2 d-vA
1
< \/X(l“r‘g)
S 81 — So 11
p P
) 1
= |<w>|+pn_l

So an algorithm with advantage |(¥)| + S + 1/p" " should have running time p{"~/2. 5/2.
|

Notice that it is not hard to prove that each function fz, has bias (¢). If (¢)) > 0, then the constant
function g(z) = +1 already has an advantage (¥) in approximating F, otherwise g(z) = —1 has an advantage
{(¢) in approximating F.

This result gives some positive evidence towards the security of the private-key cryptosystem proposed by
Baird [BO01].

Since linear threshold functions are special cases for booleanized linear functions, we have the following
theorem:

Theorem 7 Let p be an odd prime and n > 1 an integer. Let b be a non-zero element in GFy, such that
(p—1)/4<b<3(p—1)/4, and let F be a class of linear threshold functions:

F=A{fap|a" =1}

Let D be the uniform distribution over GFy'. Then any algorithm with an access to an honest SQ-oracle that
learns F with advantage |(p — 2b)/p| + S + 1/p"~", where S > p= (=074 with respect to distribution D, has
a running time at leastp("_l)/2 -S/2.

Furthermore, we have:

Corollary 1 For the class of linear threshold functions, in the case that p is exponentially large in n and
b= (p+1)/2, no statistical query algorithm can weakly learn F .

Proof: When b= (p+1)/2, we have (p — 2b)/p = —1/p, which is exponentially small in n. If an algorithm
A weakly learns F, it has to have an advantage ¢ > ;= for some constant c. Then by theorem 7 the running

time of A has to be at least p(»~1/2. (e —1/p—1/p™~"), which is exponentially large in n. [|

4 Algorithm for Linear Threshold Functions

In this section we present an algorithm BUILD-TREE that learns the special class of linear threshold functions
as shown in corollary 1, using a random example oracle. The running time of BUILD-TREE is slightly better
than the brute-force algorithm, and also slightly better than the lower bound for the statistical query model.

We first state the problem: pick an integer n > 1 and an odd prime p such that p is exponentially large in
n. Let b= (p + 1)/2, and the class of functions is the class of linear threshold functions with the fixed b and
with the constraint that the n-th entry of @ is 1:

F=A{fzla" = 1)

The distribution over the inputs is the uniform distribution. We show an algorithm that learns any function
f € Fin time p°(*/ 187 with advantage 0.5, with respect to a random example oracle. Notice the brute-force
algorithm that examines all possible functions has running time po(") and any SQ-algorithm much also have
a running time p°™ to have a constant advantage in learning F.

2Tn the rest of this section, we omit b in the description of fap since b is fixed to be (p+1)/2.

20

4.1 Description of the Algorithm

The idea for BUILD-TREE is pretty intuitive: given a target function fz, we know there is a “secret vector”
d associated with the function. If one picks a random negative example #, then the ezpected value of @ - Z is
(p—1)/4. If we draw (4¢ + 1) random negative samples, the expected sum of the inner products is about
(4¢ + 1)(p — 1)/4, which is about (p — 1)/4 modulo p, if ¢ € p (in our algorithm, we have ¢ = O(logn) =
O(loglog p)).. So it is more likely that the sum of (4¢+ 1) random negative examples is still a negative example
than is a positive one. The algorithm exploits this “marginal difference”, boosts it by Chernoff bound, and
gains a constant advantage in learning F. What the algorithm does is: it draws a lot (po("/1°g ") negative
examples, and when getting an input)?, BUILD-TREE tries to write X as the sum of (4g+1) negative examples
it drew, and estimates the success probability. If the success probability is high, it outputs “f()?) =17,
otherwise it outputs “f()?) = 41”7. The name of the algorithm comes from the fact that the algorithm
estimates the probability by building a complete binary tree from the samples it draws.

Our algorithm is inspired by the algorithm Blum et al. used in [BKWO00] to learn noisy parity functions,
where the main idea is also trying to write an input as logarithmically many samples.

Now we describe BUILD-TREE in more detail:

The algorithm BUILD-TREE has a random example oracle E Xy, which, at each invocation, produces a
random pair (Z, fz(Z)), where & is uniformly chosen from GF}'. The algorithm also has an input X on which
it tried to predict fa()?)

The algorithm consists of 2 phases. In Phase I, it draws about po("/1°g) samples and processes them; in
Phase 11, it reads the input X and tries to build a complete binary tree from the samples it drew in Phase I,
where each node is a multi-set of elements in GFy'. Finally, BUILD-TREE counts the number of elements in

the root node and use this number to predict fa()?)

e Phase I: We define a = logn/2 and b = 2n/log n, and think of each vector in GF}' as divided into a

blocks, each block containing b elements in GF},.

We define

K= pb . 22a+1 .

BUILD-TREE draws 27 !(2% 4+ 1) K negative samples. Notice each fz is “reasonably balanced” and thus
there would be no trouble getting a lot of negative samples. We use N to denote 2*~' K. BUILD-TREE
groups these samples into 2 + 1 groups of N elements each, and denotes these groups by Go, G, ...,Gaa.
Then it add the last 2 groups Gaa_; and Gza entry-wise to form a new group, Gha_;. More precisely,
suppose Gaa_1 = {a1,az,...,an} and Gaa_; = {b1,b2,...,bx}, then

Gha_y = {a1 + b1,a2 + b2, ...,an + by}

is also a group of N numbers. Now define G} = G;, for 1 = 0,1,...,2* — 2, and now we have 2% groups
1y...;Gha_y of N elements.

e Phase II: In this phase BUILD-TREE gets a new sample X and it tries to learn fa()_(') The approach is
to try to write X as the sum of 2* + 1 negative samples drawn from phase 1. More precisely BUILD-TREE
tries to find 2% elements &, &, ..., f2a_1, such that #; € Gi for 1 =1,2,...,2% — 1 and

X=F1 +Fr+ -+ Faa_;.

Notice #2a_1 € Gha_, is already a sum of 2 negative samples, and thus if one can find such an X‘, it is
the sum of 2¢ + 1 negative samples.

Since BUILD-TREE is working in GF}, it can compute YV = 2%)?, and subtract ¥ from each element in
each group G.. More precisely, we define

Ai={Z-Y |z e Gl

for 1 =0,2,....,2% — 1. Then the task for BUILD-TREE becomes finding 2¢ elements, one from each A;
such that they add up to 0.

To do so, BUILD-TREE will build a complete binary tree of sets. First some notations: We define the
height of a node in a binary tree as the shortest distance from this node to a leaf node, and a leaf node
has height 0. The height of a binary tree is the height of its root. A node that is neither a leaf node nor
the root node is called an internal node. There are (2* — 2) internal nodes for a complete binary tree of
height a.

The BUILD-TREE algorithm will build a complete binary tree of height a, and every node in the tree
is a multi-set of elements in GF;: on the leaves are the sets A;, and each internal node is a set whose

21

elements are sums of the elements of its two children nodes. All internal nodes of height ! contain
2°7!""1K elements, all of which have 0’s at the first I blocks.
Here is the actual construction:
BUILD-TREE will build a complete binary tree of height @, and there are 2% nodes of height k: we will
denote these nodes by GE, G¥, ...,G};a_k_l. The construction is from bottom-up: one builds the nodes
of height 0, or the leaf nodes first, and then the node of height 1,2,...,a — 1, and finally the root node.
— LEAF NODES:
The leaf nodes are just the sets Ao, Ay, ..., Aza_;. In other words, let G = A; fori =0,1,...,2% — 1.
— INTERNAL NODES:
After all the nodes of height (I — 1) are built, BUILD-TREE constructs the nodes of height 1.
To construct node G, BUILD-TREE needs nodes Gé?l and Glz?iu namely, the two children nodes
of G. The BUILD-TREE does the following:
It starts by setting G! to be the empty set and label all elements in Gé?l and Gl27+11 as “unmarked”.
It repeats the following “SELECT-AND-MARK?” process for 2¢7'"1 K times:
BEGIN OF SELECT-AND-MARK
* BUILD-TREE (arbitrarily) picks an unmarked element @ € Glzfl, and scans Glg_&l to check if
there is an unmarked element ¢ € G;?_:l, such that @ + ¢ has the first ! blocks all-zero. Notice
that both @ and ¢ has the first [— 1 blocks all-zero already, and thus BUILD-TREE is actually
looking for a ¥ whose I-th block is the complement of that of .
+ If BUILD-TREE finds such a @, it puts @ + @ into G and marks both @ and @.
x If BUILD-TREE can’t find such a @, it aborts: the algorithm fails.
END OF SELECT-AND-MARK
If BUILD-TREE doesn’t abort in the 2¢7'~' K SELECT-AND-MARK processes, it constructs a set
Gt of size 2¢7'IK.
— ROOT NODE:
If BUILD-TREE doesn’t abort in constructing the (2* — 2) internal nodes, it proceeds to build the
root node, G§. Notice the children of node G§ are nodes GZ~! and G¢™', each of which contains K
elements: suppose that
Gyl = {d:1, dz, ..., UK}
and
G ={d, 0, ..., Tk}
Then the root node G§ is
Gy = {ﬁl + 7; | a; + U; :6, 1= 1,2,...,](}

In other words, G§ is a multi-set of 0’s, and the size of Gy depends on the number of corresponding
pairs of vectors in Gg_l and G‘f_l that are complement to each other.
In this way BUILD-TREE builds a complete binary tree all the way up the the root. If the size of the root
node is greater than 2%+t n, BUILD-TREE outputs “f(X) = —1”; otherwise is outputs “f(X) = +1”.

4.2 Analysis of the BUILD-TREE Algorithm

We fix the target function fz, and define two sets A = {0, 1, ..., (p—1)/2} and B = {(p+1)/2, (p+1)/2,...,p—1}.
A and B forms a partition of GF}, and an # is a negative example, if and only if @ - & € A.

Lemma 14 For anyl=0,1,...,(a — 1), the elements in the nodes of height ! are independent to each other.

Proof: Notice each element in nodes of height ! is a sum of 2 elements in nodes of height ! — 1, and is
recursively a sum of 2! elements in the leaf nodes. Since BUILD-TREE marks all the elements that are “used”,
different elements in nodes of height ! are sums of totally different elements of the leaf nodes. The elements
in the leaf nodes are independent to each other, and thus the elements in the nodes of height ! are also

independent to each other. |
Lemma 15 For each randomly chosen negative example T = (ml,xQ,...,x"), if we only look at its prefix,
(', 22,...,2™"), they are uniformly randomly distributed.

Proof: Notice the set of negative samples is the set of #’s such that @ - # € A. For any particular setting
of (z',2%,...,2™7"), there are exactly |A| = (p — 1)/2 elements y € GF), such that @ - (z',2%,...,2" 7 y) € A,
since we have a” = 1.

Therefore each prefix (1:1, z2, ...,x"_l) appears exactly the same number of times, and thus these prefixes
are uniformly distributed. |

22

Lemma 16 For any element in nodes of heightl, 0 <1 < a, the (I 4+ 1),...,(a — 1)-th blocks of the element
are uniformly distributed.

Proof: We prove by induction. The case I = 0 is obvious from lemma 15. For [> 0, notice an element in a
node of height [is constructed by adding two elements whose I-th block are complement to each other — we
denote these two elements of height (I—1) by @ and ¢. By inductive hypothesis, the (I+1),(I+2),...,(a—1)-th
blocks of both @ and ¢ are independently uniformly distributed, and since the construction of a node of height
I doesn’t use any information about the (I + 1), (I + 2), ..., (a — 1)-th blocks, the (I + 1), (1 + 2), ...,(a — 1)-th
blocks of @ + ¢ are still uniformly distributed. [|

Lemma 17 In constructing the binary tree, for any internal node, the probability that the construction aborts
is at most 2% - ™"

Proof: Notice that if we look at the first a — 1 blocks, all the samples are like elements uniformly chosen
from GF}'. Furthermore, the information about the last block is only needed in constructing the root node.
So when we compute the probability that BUILD-TREE aborts, it doesn’t make any difference if we “pretend”
all our samples are chosen uniformly from GF},
examples. Notice in constructing the node G, BUILD-TREE aborts only if for a particular @ € 012717 none of
the unmarked elements in G;?il has the I-th block that is the complement of the [-th block of #. But there
b g2et!

instead of chosen uniformly from the the set of negative

are always at least K = p - n unmarked elements in G127+11, each of which is independently uniformly
distributed, and there are only p® possible values for the I-th block, then probability that BUILD-TREE aborts

for this node is at most
b 2a+1
2 ‘n —n

1
1——)F <e
(-2

And since BUILD-TREE constructs totally 2% — 2 internal nodes, the probability that it aborts is at most
2.7 |

We next compute the expected size of the root node, which is K times the probability that an element
from G¢~' and an element from G¢~' add up to 0.

Lemma 18 Suppose G-X =1. The probability that an element from Gg_l and an element from G‘f_l add up
to O equals the l/pb_1 times the probability that the sum of 2% + 1 randomly chosen elements from A equalsl.

Proof: We use P; to denote the probability that 2¢ + 1 random elements from A add up to I, or
P =Pr T1,T2,...,Toa +1€A[r1 +ro+ -t roagr = l]
and we need to prove that
- — T a— — a— P
Prii+y=0]|%€Gg L €G] l]zpb—_l1

For an arbitrary pair of elements # € G¢™! and § € G¢™!, we write them as

S o S o 12
T==%Fo+F14 -+ Foa-1_4 — 5X
and
L o S 1=
Y = Tga-1 + Toa—-141 + -+ Toa — EX
Where each #; and is a random negative sample.
We define r; = #; - @ for 1 = 0,1, ...,2%. Then we have r; € A for all ¢’s. It is useful to view #; as being

chosen in the following two-step procedure: first one chooses a random r; € A and then randomly chooses
an #; € GF; such that #; - @ = r; — notice when r; is fixed, choosing an Z#; € GF; such that #; -d@d = r; is
equivalent to randomly choosing the first n — 1 entries of #; and setting z} accordingly.

Now we fix all the r;’s and consider the probability that & + § = 6, conditioned on that ¥; - @ = ry,
i=0,1,...2%

Notice that we have
5

5
(F+9)-da=Y Fira=X-a=> ri-l (13)
i=0 i=0
and thus if [# Eio r;i, the probability that # + 5 = 0 is 0.
Now we consider the case that | = Eio
always 1/p®~".
Notice that # + § = 0 is actually a set of b linear equations: the last b entries of Z + i are all zero. But

.. 2@
conditioned on #;-d =r; and 1 = 3 _7_¢

r; — we shall prove that in this case, the probability # + 7 = 0 is

ri, these b equations are not independent: the first (b— 1) equations will

23

imply the last one, since we have equation 13 and since @™ = 1. In other words, in computing the probability
that £ + § = 6, we don’t have to consider the last entry of Z;’s since they are already “taken care of” by the
conditions #;-d =r; and | = io r;. However, by lemma 16, if we don’t consider the last entries, all the #;’s
are uniformly distributed, and so is Z + ¥, which is the sum of 2¢ + 1 uniformly distributed vectors minus X ,
and is still a uniform vector in GF;'~"'. So the probability that &+ § = 0 is }% since there are p™ ! possible
values for 7 + §.

Finally we have

29 29
Pri#+§=0[(FeG; ", jeGi™] = Pri#+§=0[) ri=1-Pr[> ri=]]
1=0 =0
- pn—l

So the probability that the construction of the binary tree succeeds only depends on [, the inner product
of the input X and the secret vector d. Next we give the bounds for P, for different 1.

Lemma 19 Let m be a natural number such that m = 1 (mod 4) and m > 10. Let p be an odd prime
number (p > 2) that is larger than 50m. Let 1 be a natural number such that 0.05p < 1 < 0.45p. Let
A be the set {0,1,...,(p — 1)/2}. Let z1,z2,...,m be random samples chosen uniformly from A and let
y=121+ 22+ ..Tm (mod p), Then

Priy=1> %(1 +0.5™)
Proof: We use k to denote (p — 1)/2, and thus A = {0, 1,...,k}. We look at a polynomial
F(z) :(1+x-|—-~~+xk)m
We can expand out this polynomial modulo (z? — 1) and get
Flz)=ao+a1 s+ -ap_ LgPt (mod (z” — 1))
It is easy to see that

aq

Pr[yEl]:W

(14)

Now we focus on computing these a;’s.

We define w = ¢' 5 to be a p-th root of 1. If we plug w’ into F(z), we get

p—1 ‘
Zozl Cwit = F(w)
=0

So we have a linear system: define a p x p matrix U as:

1 w e Pt
w w? cee @21
U= .
WPl 2=)
In general, [U];; = w’' — in fact, U is the Fourier Transformation matrix, and we have
(0704} F(l)
aq F(w)
U- . = .
ap_1 F(wp_l)

We define V = U™ and it is easy to verify that [V];; = :—7 U™ or

1 w! R)

L1 w w2 s wT2emD
V=U"=- .
p :

w— =1 ,=2(e-1) w2

So we have

o F(l) 1 Wl w1
a1 F(w) 1 w w2 w21
. =V. . ==
: : P : : . :
ap—1 F(wP™) It -1) B ¢ O
or
p—1
-3l
ap = — w 'F
18
3=0
So we have
o 1 1
Priy=1]= L — N WG
v=0= g7 = e Z% ()
Notice that ‘
(k + 1)'m y J= 0
F(w’) = (1 Jo. .. Jkym _
(@) =+ + +w’) <1_wj(k+1))m .
—_ , otherwise

Substituting in the formula for F(j) in equation 17, we have

Priy=1]= m;w‘”%)

Again, notice that w/ = w?*+1) we have

T p

1 1 = W
P =l = - :
rly=1] p + plk+1)m ~ (14 wilk+1))m

1 1 p—1 —20(j+1)k

= -t ' Z - &
p plk+1)™ = (1 4+ wilkt)ym
1 1 Lo

= —+ m \m
pooplk+1)m = (1+w)

We notice that

—21(=3)

and if we sum over these two terms, we get

w—2U=3) w2l

u+wﬂw1:(uij%m>

_ w3l (1+ wj)m + w_Qlj(l + w_j)m

(Fwy e

;27
P

Notice that w = e¢'» and thus

. o y
14w’ :1+€Z_Pl :2cos(ﬂ)~e”’
p

Therefore

w2 (1+w)™ =

and similarly

w_Qlj(l + w_j)m =

|1+ wi|?m

;L

L 4lgm ; e\
624_5_ . <2cos(ﬂ) ~elJP_)
p

Y m (m44l)g
(2 cos(ﬂ)> et
p

_jAlgw jﬂ' _ir "
e'"r - [2cos(—=)-e P
p

gr \" i
2 cos(— -e P
(2o

25

1, gfwﬂl<1—wﬂﬂﬂ)m
p(k+1)m

(15)

(18)

Summing them up, and we get

w—2U=5) N w2l B ‘.cos(;)—m'l';lj”)
(t+w)" " (T Fw)m (2cos(22))”

Now we can simplify the formula for the probability in equation 18 to:
p—1 COS m+4l j7\')
k R (19)
+ J=1 (2 cos(m))

Now since we require m to be 1 modulo 4, we write m as m = 4¢ + 1. Also since m is an odd number, it
is easy to verify that

1

Priy=1=

M

COS(m+4l)j7\') COS(m+4lp)£P—j)7r)
(2 cos(f)) (2 cos(ﬁp—_;M))

If we define r = (p — 1)/2 — j, we know that

(p—1)/2 cos(£4q+1+4l J‘7r)
plk+1)™ = (2 COS(J:))
—1 COS((4q+1+41)(%1—r)7r)

1 9 p=1)/
= -4 — E b -
. m —1
p plk+1) e (2 cos((251 p—r)w)>

The terrible-looking term in the last line can be simplified: notice that

(2r+1)(4g+ 4+ 1)
2p

os(

= sin(

(4 + 1+ 4 (L —r)Tr) o <4q+4l+1ﬂ'_ (2r+1)(4q+4l+1)ﬂ'>)

p 2 2p

and

(55t =) T 2r+1 o (2r+1
cos(—2———) = cos(= — — m) = sin - T
p 2 2p 2p
Now we further simplify the probability to

o
B2l ((2r+1)(§§+4l+1) ,r)

plk+ 1) = (zsin (%‘—%))m

Now we define
sin (£2r+1)(§g+4l+1) 71-)
D, =

(2 sin (2—T2+—1ﬂ'))
P

and we will try to estimate D, for 0.05p <1 < 0.45p.
Notice we have p > 50m = 200q + 50, we have

T g+ 4l + 1 46w
0" 2 <%0

and thus
. <4q—|—4l+1

467
0.248
™ Tr> > sin(— =) >

. e < iy
Sin — —
2p 2p

Also we have

26

So we have
sin (MW)
2p

For the rest D,’s, we bound them from the other direction: first we always have:

(2r+1)(4g+4+1)
n (233 TK') > —1

Do = > 0.248 - (2)7

N |

and second, by expanding sin(z) to its Taylor Series, we have
3

. x
sin(z) >z — T =z(l-

oo 412
e O R O 7] I P e
2 2p 6 2p

)

22
6

and therefore we have

since

0<2r+1 <7r
T
2p 2

Therefore we have

i (2ril)(4g+4i41)
sm(2r41) (4g44141)

2p

Dr=— V" 2_<m>m:_(1.§49)m'<2r1+1>m
<Zsm(2p Tr))

for r > 1.
Now combining the results from equation 21 and equation 22, we have:

.
1 2
riv=0 = St e &

r=0

%1_1 m
! 2 |o2as-(Bym — (2T L
> p+p(k-|-1)m 0248 (Tl') (1.849) ; <2r-|—1)

m
Now look at the function g(r) = (erT) . It is a convex function when r > 0, which means that

a+%
[swids > gt
a—3
So
-1,
S n) <[GR) e
< dr = ———
= 2r+1 12 \2r+1 (m—1)-2m
Notice that » »
— > 062, ——— < 0.5
G+r 0% 360k+1) ©

Putting everything together:

S 1 n 0.497 p " 1 p "
p p (k+)= 2p(m — 1) 3.69(k +1)

> l(1 + 0.495 - 0.62™)
p

> l(1 +0.5™)
5 .

27

(21)

(22)

Lemma 19 shows a lower bound for the “good” elements in A, namely the elements between 0.05p and
0.45p: they have a “marginal advantage” 0.5 of being the sum of m elements from A.

The opposite of lemma 19 is also true, i.e., the “good” elements in B, namely the elements between 0.55p
and 0.95p have a “marginal disadvantage” 0.5™ of being the sum of m elements from A:

Lemma 20 Let m be a natural number such that m = 1 (mod 4) and m > 10. Let p be an odd prime
number (p > 2) that is larger than 50m. Let I be a natural number that that 0.55p < | < 0.95p. Let
A be the set {0,1,...,(p — 1)/2}. Let z1,22,...,2m be random samples chosen uniformly from A and let
y=121+ 22+ ..m (mod p). Then

1

Priy=1]< —(1—0.5™)

P

The proof is essentially the same as the proof for lemma 19.
Now combining lemma 18, lemma 19 and lemma 20, we are ready to prove theorem 8:

Theorem 8 With probability at least 0.8, the BUILD-TREE algorithm learns F with accuracy 1 —e %" In
other words, the BUILD-TREE algorithm learns F with advantage 0.5, and has a running time p°(™/1°8 ™)

Proof: First BUILD-TREE aborts with very low probability and we don’t have to worry about that.

We still denote the input vector by X, and we use the same notations as in lemma 18. Notice the size of
the root node is the number of (d;, 7;) pairs such that 4; +7; = g. By lemma 18 and theorem 19, we know that
ifl = @- X is within the range [0.05p, 0.45p], then the probability that o; + ¢; = 0 is at least (1+ 0.520+1)/pb.
if we define

e=05""*!
then the expected size of the root node is at least

pa+1

u:[&’(l—l—e)/pb:Z -n(l+e)

By lemma 14, all these (;, ¥;) are independents, and thus by Chernoff bound, the probability that the actually

size of the root is smaller than 224+1 -n is at most

~(:5022*" 92 6—0.2«0.52°+1+2A22"+1.n < =005m

e 2
6_(1+5) uf2 —e

So when @- X € [0.05p, 0.45p], BUILD-TREE is correct with probability at least 1 — €097 Similarly, by
lemma 18 and theorem 19, we know that when @ - X € [0.55p,0.95p], the probability that @; + @; = 0 is at
most (1 — 0.520+1)/pb7 and again by Chernoff bound, the probability that the actual size of the root node is

at .
larger than 2° " nis at most

1
—(=)222" ! 1t /s <e—o.15~o.52“+1+2~22"+1.n < o—003n

(3502 /s _ (1

€ €

and BUILD-TREE is correct with probability at least 1 — e=:0%7,

When @ - X is within the range [0,0.05p] U [0.45p,0.55p] U [0.95p, p], BUILD-TREE might make a lot of
mistakes, but that happens only with probability 0.2. So with probability 0.8, BUILD-TREE is correct with
accuracy at least 1 — e~ By Lemma 1, BUILD-TREE has an advantage 0.6 — 2¢7%%%" > 0.5.

Finally the running time: In the phase I of BUILD-TREE , 2°7'(2¢ + 1)K = 2*7'(2* 4 1)220+1pb negative
samples are drawn, and that takes time 2°(%) . p@(n/lo8 7) 200/ = pP?/1°8 ") 1n the phase II, a binary tree
of height a is constructed, where each node takes time at most (271 K)? = pCr/1°8 ™) and there are 2% — 1
nodes to construct. So the total running time of BUILD-TREE is p@(*/1087)

|

It is interesting to compare BUILD-TREE with the algorithm used in [BKWO00], which also draws a lot of
samples, view each sample as blocks, and try to write an input as the sum of O(logn) samples, and both
algorithms have a similar sub-exponential bound. However, there are differences: in [BKWO00], the algorithm
draws samples with labels, and it writes an input as the sum of O(log n) samples to fight the noise — if there
were no noise, it is easy to learn the function by Gauss elimination; in this paper, BUILD-TREE only draws
negative examples, and it writes an input as the sum of O(log n) negative sample to create a probabilistic gap
— there is no noise in the problem. Furthermore, the algorithm in [BKWOO] is satisfied with justing finding a
way to write an input as a sum of O(logn) samples, while BUILD-TREE has to estimate the probability that
an input can be written as a sum of O(log n) samples, and thus is more complicated in this sense.

Notice that, using the same “padding” technique as in [BKWO00], we can make the BUILD-TREE is
polynomial-time algorithm: one simply pad p™1°8 " zeros to the input of BUILD-TREE , and then BUILD-
TREE ’s running time becomes polynomial in the input length. However, still no polynomial-time algorithms

28

can learn this class of linear threshold functions in statistical query model. This gives an example of PAC-
learnable, but not SQ-learnable class of functions. Previously, both [K98] and [BFJ+94] proved that the class
of parity functions fits into this category, and later [BKWO0O0] proved that a class of noisy parity functions also
fits. The linear threshold functions over a finite field is the first class of functions in this category that are not
parity functions. We hope this result can provide further insights into SQ-learning algorithms.

5 Conclusions and Open Problems

In this paper, we discussed the problem of learning (possibly highly) correlated functions in the statistical
query model. We showed an almost-tight upper bound of the advantage an algorithm can in approximating
a class of functions simultaneously. We also show that any SQ algorithm trying to get a better advantage in
learning the class of functions has to make a lot of queries. A consequence of our result is that the class of
booleanized linear functions over finite fields are not SQ-learnable, which include linear threshold functions.
Finally we demonstrated a PAC learning algorithm that learns a class of linear threshold functions with
constant advantage and running time that is provably impossible for SQ-algorithms. With proper padding,
our algorithm can be made in polynomial time, and thus putting linear threshold functions into the category
of PAC-learnable, but not SQ-learnable functions, and they are the first class in this category that are not
parity functions.

The technique we used in this paper to prove the lower bound is to keep track of the “all-pair statistical
distance” between scenarios when the algorithm is given different target functions Our technique is similar to
the one used in [A00], where the author proved a lower bound of quantum queries a quantum search algorithm
has to make, but in a different setting. Their technique is to keep track of the sum of the absolute values of
the off-diagonal entries in in the system’s density matrix — we denote this quantity by S. Roughly speaking,
the author in [A00] proved that:

1. Before the algorithm makes any quantum queries, S is large.
2. After the algorithm finishes all the queries, S is small.
3. Each quantum query only decreases S by a small amount.

And then they conclude that lot of quantum queries are needed. It would be interesting to investigate if there
is a deeper relationship between the 2 techniques.

People already understand SQ-learning un-correlated functions: both lower bounds and upper bounds on
the number of queries are shown, and the two bounds match. Our paper gives a lower bound for SQ-learing
a class of functions that are correlated the same way, but no matching upper bound is known. Even less is
known for the case that all the functions are correlated, but not in the same way. In general, given d functions
fi, fz, ..., fa and their pair-wise correlation (f;, f;) for all i # j, can we find a good lower bound for the number
of queries needed to learning these d functions well? Is there an (even non-uniform) matching upper bound?

Another interesting problem is: do there exist efficient algorithms to learn booleanized linear functions over
finite fields? For parity functions over GFxz, they are easy to learn when there is no noise, and hard if there is
noise — the state of art are Blum et al.’s algorithm [BKWO00], which takes time 0(2"/1°g ™) for n-bit parity
functions with respect to uniform noise of constant rate, and Goldreich-Levin-Jackson’s algorithm [GL&89, J00],
which takes time 0(2"/2) for n-bit parity functions, with respect to uniform noise of rate (1/2 — 1/poly(n))
and some classes of malicious noise. However, in the case of finite fields of large characteristics, it seems it is
hard to learn the booleanized linear functions even without noise. Notice an efficient learning algorithm will
break Baird’s cryptosystem, and an hardness result will automatically translate to a security proof for Baird’s
system.

Another interesting topic is learning functions in finite fields in general: instead of limiting the outputs of
functions to be boolean, we allow functions to output elements in a finite field, or some other large domains.
What kind of functions are learnable?

Acknowledgement

Leemon Baird gave the initial motivation of this paper by mentioning his cryptosystem, which lead us into
studying the problem of learning booleanized linear functions. Avrim Blum gave a lot of invaluable advice on
what problems are interesting and helped formulate ideas into a paper. Adam Kalai and Steven Rudich helps
clarify a lot of concepts and especially helped me understand what the right problems should be asked. Salil
Vadhan showed me the idea of proving the sub-additivity of all-pair statistical distance, which is one of the
essential tools used in the paper.

29

References

[A00] Andris Ambainis. Quantum lower bounds by quantum arguments, In Proceedings of the 32nd ACM
Symposium on Theory of Computing, pages 636-643, 2000.

[AD98] Javed Aslam and Scott Decatur. General Bounds on Statistical Query Learning and PAC learning
with Noise via Hypothesis Boosting, In Information and Computation, 141, pages 85-118 (1998).

[BO1] Leemon Baird. Blind Computation. Manuscript, 2001.

[BFJ+94] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and Steven Rudich.
Weakly Learning DNF and Characterizing Statistical Query Learning Using Fourier Analysis. In Proceed-
ings of the 26th Annual ACM Symposium on Theory of Computing, pages 253-262, 1994.

[BFK+96] Avrim Blum, Alan Frieze, Ravi Kannan, and Santosh Vempala, A Polynomial-time Algorithm
for Learning Noisy Linear Threshold Functions, In Algorithmica, 22:35-52, 1998. An extended abstract
appears in Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS’96),
pages 330-338.

[BKW00] Avrim Blum, Adam Kalai and Hal Wasserman, Noise-tolerant Learning, the Parity problem, and
the Statistical Query model. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing,
pp. 435-440, 2000.

[D95] Scott Decatur, Efficient Learning from Faulty Data. Ph.D. Thesis, Harvard University, TR-30-95, 1995.

[GL.89] Oded Goldreich and Leonid Levin, A hard-core predicate for all one-way functions. In Proceedings of
the 21st Annual ACM Symposium on Theory of Computing, pp. 25-32, 1989.

[JOO] Jeff Jackson On the Efficiency of Noise-Tolerant PAC Algorithms Derived from Statistical Queries. In
Proceedings of the 13th Annual Workshop on Computational Learning Theory, 2000.

[K98] Michael Kearns. Efficient noise-tolerant learning from statistical queries. In Journal of the ACM, 45(6),
pp. 983 — 1006, 1998. Preliminary version in Proceedings of the 25th Annual ACM Symposium on Theory
of Computing, pp. 392-401, 1993.

[MR95] Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms, Cambridge University Press,
1995.

[SS96] Robert Schapire and Linda Selle, Learning Sparse Multivariate Polynomials over a Field with Queries
and Counterexamples. In Journal of Computer and System Sciences, 52, 201-213, 1996.

[VO01] Salil Vadhan, Private Communication.

[V84] Leslie Valiant, A theory of the Leanable. In Communications of the ACM, 27(11): 1134-1142, November
1984.

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

30

