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Abstract. In this paper, we investigate and analyze for the first time the stability properties of
heterogeneous networks, which use a combination of different universally stable queueing policies for
packet routing, in the Adversarial Queueing model. We interestingly prove that the combination of
SIS and LIS policies, LIS and N'TS policies, and LIS and FTG policies leads to instability for specific
networks and injection rates that are presented. It is also proved that the combination of SIS and
FTG policies, SIS and NTS policies, and FTG and NTS policies is universally stable. Furthermore,
we prove that FIFO is non-stable for any r > 0.749, improving significantly the previous best known
bounds of [2, 11], by using new techniques for adversary construction and tight analysis of the packet
flow time evolution.

1 Introduction

In this paper, we study the behavior of packet-switched communication networks in which packets arrive
dynamically at the nodes and are routed in discrete time steps across the edges. A crucial issue that
arises in such a setting is that of stability - will the number of packets in the system remain bounded, as
the system runs for an arbitrary long period of time? The answer to this question typically depends on
the rate at which packets arrive into the system, and on the contention-resolution protocol that is used
when more than one packet wants to cross a given edge in a single time step.

The stability problem has been investigated under various models of packet routing and in a number of
overlapping areas, see for example [7,8,5,6,9,1]. The adversarial queueing model of Borodin et al. [3], was
developed as a robust model of queueing theory in network traffic, and replaces stochastic by worst case
inputs. The underlying goal is to determine whether it is feasible to prove stability even when packets are
injected by an adversary, rather than by an oblivious randomized process. Adversarial Queueing Theory
considers the time evolution of a packet-routing network as a game between an adversary and a protocol.
The adversary, at each time step, may inject a set of packets at some nodes. For each packet, the adversary
specifies a simple network path that the packet must traverse and, when the packet arrives to its final
destination, it is absorbed by the system. If more than one packet wish to cross an edge e in the current
time step, then a contention resolution protocol is used to resolve the conflict. We use the equivalent term
policy or service discipline for such a protocol.

A crucial parameter of the adversary is its injection rate. The rate of an adversary in this model, is
specified by a pair (r,b) where b > 1 is a natural number and 0 < r < 1. The adversary must obey the
following rule: “Of the packets that the adversary injects in any interval I, at most [r|I|] + b can have
paths that contain any particular edge.” Such a model allows for adversarial injection of packets that are
“bursty”.

In this paper, we consider only greedy (also known as work-conserving) protocols - those that advance
a packet across an edge e whenever there is at least one packet waiting to use e. We. also, consider discrete
time units t = 0,1, 2,.... In each time unit a queue can serve exactly one packet.

In particular, we study the stability properties of five greedy service disciplines. The Shortest-in-
System (SIS) policy gives priority at every queue to the packet that was injected most recently in the
system. On the contrary, the Longest-in-System (LIS) policy gives priority at every queue to the packet
that has been in the system the longest. The Farthest-to-Go (FTG) policy gives priority to the packet
that still has to traverse the largest number of queues, while the Nearest-to-Source (NTS) policy gives
priority to the packet that has traversed the smallest number of edges. Finally, First-In-First-Out (FIFO)
policy gives priority to the packet that has arrived first in the queue.
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We emphasize the fact that until now the stability of these protocols has been studied in isolation
i.e. in networks where all queues obey a single service policy. In this work, we study for the first time,
combinations of these policies. The issue of the stability of combinations of policies studied in this paper is
highly motivated by the fact that modern communication networks (and the Internet) are heterogeneous
in the sense that more than one disciplines are used on the network servers.

We also focus on FIFO, since FIFO is one of the simplest queueing policies and has been used to
provide best-effort services in packet-switched networks.

In [2, 3], the authors highlight a very basic algorithmic question: when is a given contention-resolution
protocol stable in a given network, against a given adversary? More specifically, these questions are based
on the following definitions.

Definition 1. We say that a protocol P is stable on a network G against an adversary A if there is a
constant C' (which may depend on G and A) such that, starting from an empty configuration, the number
of packets in the system at all times is bounded by C'.

Definition 2. We say that a graph G is universally stable if every greedy protocol is stable against every
adversary of rate less than 1 on G.

Definition 3. We say that a protocol P is universally stable if it is stable against every adversary of rate
less than 1, on every network.

The current state-of-the-art mostly focuses on FIFO and also other greedy protocols on networks
whose queues use a single service discipline. In particular, in a fundamental work in the field of stability,
Andrews et al. [2] have proved that LIS, SIS, NTS, and FTG policies are universally stable and that
FIFO is unstable for a particular network for r > 0.85.

Later, Goel [10], in a very interesting work, presented an even simpler network of only 3 queues
(see Figure 1) for which FIFO is unstable, as a corollary of his main Theorem investigating structural
conditions for the decidability of the question if a given network is stable for FIFO.

o
Fig. 1. Goel’s network

In [11], the FIFO instability bound is slightly improved by our team by showing a network for which
FIFO is unstable for r > 0.8357. Also, an open question raised by Andrews et al. [2] is partially answered
in [11] by showing for the first time upper bounds on r for the stability of FIFO in networks with a finite
number of queues. These bounds depend on the size of the network.

Summary of results: In this work,

1. For the first time, we investigate stability properties of combinations of queueing disciplines.

2. We demonstrate instability of certain combinations of universally stable protocols in the same net-
work.

3. We prove universal stability of certain other combinations of universally stable service policies in the
same network.

4. We significantly improve the best previously known [2, 11] FIFO instability lower bound by presenting
a FIFO network where r > 0.749 leads to instability.

5. We present the first instability bound for r < 0.708 = %, where r = 0.708 is the lower instability
bound for which we have seen a constructive proof [2] (with the exception of the result of [4] for
LIFO, NTG and FFS, where the authors show that there exist arbitrarily small rates for instability
of these protocols).

6. In the second result above, we interestingly show that for instability it suffices to have only two queues
with a policy different from all other queues in the network.



In particular, our results on combinations of queueing disciplines are summarized in the table below.
These results seem to suggest the need for an extended definition of the notion of universal stability of
protocols, taking into account their sensitivity to changing the discipline of some (even a small number)
of the queues in the network.

Protocols Combination|Stable?
LIS-SIS No
LIS-NTS No
LIS-FTG No
SIS-NTS Yes
SIS-FTG Yes
FTG-NTS Yes

Table 1. Universal stability of combinations of universally stable protocols considered.

We also provide two new FIFO instability lower bounds, based on new approaches and techniques,
which might independently significantly benefit possible future research. For the first improved bound
(r > 0.771) we introduce a new type of inductive hypothesis, assuming that the initial packets are in
more than one queues, taking also care of their relative spread among the queues so as to enable the
packets to proceed fast enough to block possible new injections. For the second bound (r > 0.749), we
perform in addition a tight analysis of the time evolution of packet flow by exactly estimating the number
of the remaining packets in various queues as time proceeds in order to precisely measure the actual delay
imposed. To allow for further delay of initial packets, we introduce a modified network with additional
queues where appropriate injections are performed.

For simplicity, and in a way similar to that in [2], we omit floors and ceilings and sometimes count
time steps and packets roughly. This only results to loosing small additive constants while we gain in
clarity.

For lower bounds of the type we are interested in obtaining in this paper, it is advantageous to have
an adversary that is as weak as possible. Thus, for these purposes, we say that an adversary A has rate
r if for every t > 1, every interval I of ¢ steps, and every edge e, it injects no more than [r|I|] packets
during I that require e at the time of their injection.

We will present our lower bounds for systems that start from a non-empty initial configuration.
This implies instability results for systems with an empty initial configuration, by the following lemma
presented in Andrews et al. [2].

Lemma 1. Let G be a graph, P be a greedy protocol, and A an adversary of rate v, and suppose the
system (G, A, P) is unstable starting with some non-empty initial configuration. Then, there exists a
system (G, A, P) that is unstable starting with an empty initial configuration, where A is an adversary
of rate r.

Organisation of the paper: In section 2 we present instability results for combinations of the (in
isolation) universally stable protocols LIS and SIS, LIS and FTG, LIS and NTS. In the next section, we
show universal stability of mixing universally stable policies, such as SIS and FTG, SIS and NTS, FTG
and NTS. In section 4 we present the two improved FIFO instability bounds and discuss the techniques
used. After the references an appendix is given.

2 Non-Stable Combinations of Universally Stable Policies

We split the time into periods. In each period we study the number of initial packets by considering
corresponding time rounds. For each period, we inductively prove for instability that the number of packets
in the system increases. This inductive argument can be applied repeatedly, thus showing instability. Our
constructions use symmetric networks of two parts. The inductive argument has to be applied twice so
that increased population appear in the same queues, since we use symmetric networks.



2.1 Mixing of LIS and SIS is Unstable

Theorem 1. Let r > 0.683. There is a network G that uses LIS and SIS as queueing disciplines and
an adversary A of rate r, such that the (G, A, LIS, SIS) system is unstable, starting from a non-empty
initial configuration.

Proof. Let’s consider the network in Figure 2.

Fig. 2. A Network that uses LIS and SIS as queueing disciplines.

All the queues of this network use the LIS queueing discipline except from the queues that correspond
to the edges g, g' that use the SIS queueing discipline.

Inductive Hypothesis: If at the beginning of phase j, there are s packets queued in the queues ey, fé
requiring to traverse edges eg, g, f3, then at the beginning of phase 7+ 1 there will be more than s packets
queued in the queues e1, f3 requiring to traverse edges e;, g f3

From the inductive hypothesis, initially, there are s packets (called S — flow) in the queues e, f3
requiring to traverse edges eg, g, f3-

Phase j consists of 3 rounds. The sequence of injections is as follows:

Round 1:

For s steps, the adversary injects in fé queue a set X of rs packets wanting to traverse edges
fé,eo, fi, f3.€1,9 fé. These packets are blocked by the S — flow in queue eg because ey has LIS as
queueing discipline and because for every arrival of an injected packet in ey there is at least one S — flow
packet there.

At the same time, the S — flow is delayed by the adversary’s single injections S; = rs in queue g that
require to traverse only queue g. This happens because g follows the SIS policy and S; is earlier than S
in the system. Note that because of SIS, when a packet from S; — flow is injected at g, it has priority
over all packets from S — flow that are queued at g. Thus, all the S; packets traverse g and some packets
from S — flow traverse g. Their number is s — rs. Therefore, at the end of this round there are rs packets
of S in queue g.

Round 2:

For the next rs steps, the adversary injects a set Y of r2s packets in queue f2 requiring to traverse
edges fz, €o, f2,€1,9 , f3 These packets are blocked by the set X in queue eg because ey uses LIS policy
and the set X has arrived earlier in queue eq.

At the same time, all X packets traverse eq, fi but they are blocked in f3 that uses LIS policy because
of the remaining rs packets of S — flow in g at the end of the previous round, that want to traverse fs.

Round 3:

For the next T = r?s steps, the adversary injects a set Z of r3s packets requiring to traverse edges
e1, g', fé. Moreover, the Y packets reach queue e; because they are not blocked by X packets any more.
Also, X., = r%s packets of X reach queue e; traversing fs, while Xy, = rs — r?s X packets remain in
queue f3.

At the end of this round the number of packets queued in queues f3,e; requiring to traverse edges
€1, gl ’ fi; is

s =X, +Xp+Y+Z-T=r’s+rs—r’s+r’s+r’s—r’s=rs+r’s

In order to have instability, we must have s >s. Therefore, we should have rs+1r3s > s,i.e. 7 > 0.683.
This concludes our proof.
O



2.2 Mixing of LIS and NTS is Unstable

Theorem 2. Let r > 0.683. There is a network G that uses LIS and NTS as queueing disciplines and
an adversary A of rate r, such that the (G, A, LIS, NTS) system is unstable, starting from a non-empty
initial configuration.

Proof. (See appendix)

2.3 Mixing of LIS and FTG is Unstable

Theorem 3. Let r > 0.683. There is a network G that uses LIS and FTG as queueing disciplines and
an adversary A of rate r, such that the (G, A, LIS, FTG) system is unstable, starting from a non-empty
initial configuration.

Proof. An interesting proof is presented in the appendix. In this proof we consider the network in Figure 3.

Fig. 3. A Network that uses LIS and FTG as queueing disciplines.

3 Universally Stable Combinations of Universally Stable Policies

Let 0 < € < 1 be a real number. We assume that r = 1 — ¢, m is the number of network edges, and d
is the length of the longest simple directed path in the network. Our techniques here are motivated by
analogous techniques in Andrews et al. [2].

3.1 Mixing of SIS and FTG is Universally Stable

Lemma 2. Let p be a packet waiting in a queue e at time t and suppose there are currently k — 1 other
packets in the system requiring e that have priority over p. Then p will cross e within the next @ steps
if the queueing discipline in queue e is SIS or FTG.

Proof. Let’s assume that p does not cross e in the next @ steps from the moment it arrives in queue e.
It will be proved that this assumption results in a contradiction. In order for packet p not to cross queue
e in the next £ steps, other packets cross e in these steps (one distinct packet crosses queue e in each
step because of the greedy nature of the protocol). These packets must either belong to the set of &k — 1
packets existing in the system at time ¢ requiring edge e that have priority over p or belong to the (at
most) (1 — €)Et2 + b packets (from the definition of bounded adversary [2]) requiring queue e that can
be injected in the system during the time period of # steps.

Note that all new packets have priority over p if SIS policy is used. Also, if FTG is used, in the worst
case all new injections have longer paths to cross than packet p. Therefore at most

E—14+(1—¢) +0b

k+b kE+0b
. < —

packets have priority over p during this time period. Hence, there is a contradiction. Thus, p will cross
e within the next ££2 steps.

O



mb

kj_1+mb
w, where k; = ™.

Let’s define a sequence of numbers by the recurrence k; =
Lemma 3. When a packet arrives at an edge eq—jq1 that has distance d — j from the final edge on its
path, there are at most k; —1 packets requiring to traverse eq— ;41 with priority over p, if the used queueing
policy is SIS or FTG.

Proof. Induction will be used to prove the claim of this lemma. If queue eq_ ;41 uses SIS as service
discipline then the claim holds for j = 1, since for any queue e4_;1 = e4 the only packets requiring to
traverse it, which initially could have priority over p, are the (at most) b — 1 packets injected in the same
time step as p (b— 1< ky —1).

If queue eq_ ;11 uses FTG as service discipline we will prove that the claim holds for j = 1. Let’s
define as X;(t) the set of packets in the queue e4—;4+1 that still have to cross at least ¢ edges at time ¢
and let’s assume that /; is (at most) the number of packets in the system that still have to cross at least
i edges (i = d — j + 1). Let ¢ be the current time and let ¢ be the most recent time in which X;(¢ ) was
empty. Any packet in X;(#) must either have had at least 7 + 1 edges to cross at time t or else it must
have been injected after time t. But, at every step " between times ¢ and t a packet from Xz-(t”) must
have crossed edge e4—;41. Hence,

IXi()| <lgr 4+ (t—t )1 —€)+b—(t—t)=1liy1 —(tE—1t)e+b
From the above inequality, we conclude that

t . tl S li+1 + b
€

Hence, because there are m queues the total number of packets in the system that have to cross ¢ or
more edges is always at most M

In the case of j =1 and FTG as used policy, we claim that k;—1 = lq_141=4 because in the queue ¢4
packet p will have to cross d edges. Therefore, only packets that have to cross d + 1 edges have priority
over p in queue e4. But, no packet has to cross d + 1 edges because d is the length of the longest path in
the network. So, l4+1 = 0. Therefore, 0+€mb — 1 = k; — 1 packets could have priority over p in queue e4
when FTG is used. Thus, the claim holds for j =1 if FTG is used.

Now suppose that the claim holds for some j. Then by lemma 1, p will arrive at the tail of eq_; on
its path in at most another kj:rb steps, during which at most (1 — e)@ + b packets requiring edge eq—;
arrive with priority over p. Thus, when p arrives at the tail of e;—; at most

kj+b+b:kj+b_ mkj-l-mb
€ € €

1<

ki—1+(1-¢) —1=kjy1 -1
packets requiring queue e4_; have priority over p and hence the claim holds.
O

Theorem 4. The system (G, A, SIS, FTG) is stable, no queue ever contains more than kq packets and

no packet spends more than %(db + Zle k;) steps in the system, where d is the length of the longest
simple directed path in G.

Proof. Assume there are kg + 1 packets at some time all requiring the same edge. Then, the packet with
the lowest priority of the k; + 1 packets contradicts the claim of lemma 2. Combining both lemmas, a
packet p takes at most @ steps to cross the edge eq_;41, which distance from the final edge on its path

ab+37 ki
is d — 7, once it is in the queue for this edge. Therefore, the delay bound is D = JFZ%

spends more than D steps in the system.

. No packet

O

3.2 Mixing of SIS and NTS is Universally Stable

Theorem 5. The system (G, A, SIS, NTS) is stable, there are never more than ky packets in the system
and no queue contains more than %(kd_l + b) packets in the system where d is the length of the longest
simple directed path in G.

Proof. (See Appendix)



3.3 Mixing of FTG and NTS is Universally Stable

Theorem 6. The system (G, A, FTG, NTS) is stable, there are never more than kg packets in the
system and no queue contains more than %(kd—l + b) packets in the system where d is the length of the
longest simple directed path in G.

Proof. (See Appendix)

4 Improved Lower Bounds for Instability in FIFO Networks

In [2], Andrews et al. proved the non-stability of FIFO giving a lower bound of 0.85 for the injection rate
r. Our team in [11] achieved to slightly lower the injection rate bound for which FIFO is unstable to
0.8357. In this work, we present two adversary constructions that lower the injection rate bound to 0.771
on the network that we consider in Figure 7, and to 0.749 on the network that we consider in Figure 4
for which FIFO is unstable. Furthermore, the techniques that have been applied to achieve these new
bounds are presented.

4.1 An Improved Lower Bound Using a New Adversary Construction

The basic technique introduced here is a “broader” inductive hypothesis, according to which we consider
initial packets in more than one queues rather than in only one queue in previous approach. Thus, we
are able to show bigger delays and get a better instability bound. Note that we additionally impose a
restriction on the relative number of initial packets in the two queues, for symmetry reasons.

Theorem 7. Let r > 0.771. There is a network G and an adversary A of rate r, such that the (G, A,
FIFO) system is unstable, starting from a non-empty initial configuration.

Proof. (See Appendix)

4.2 A Better Bound by a Sharper Time Analysis of Packet Flow

Theorem 8. Let r > 0.749. There is a network G and an adversary A of rate r, such that the (G, A,
FIFO) system is unstable, starting from a non-empty initial configuration.

Fig. 4. Network Gi.

Proof. We consider the network G in the above figure.

Inductive Hypothesis: If at the beginning of phase j, there are s packets queued in the queues
€o, fé, f;, fé, ff; requiring to traverse edges eg, f1, f3, f5, all these packets manage to depart their ini-
tial edges to the symmetric part of the network (fy, f3, f5) as a continuous flow in s time steps, and the



number of packets that are queued in queues f4, f6 is bigger than the number of packets queued in queues
f3, f5 then at the beginning of phase j + 1 there will be more than s packets (s packets) queued in the
queues fs3, f5, f4, f6, €1 requiring to traverse edges e, fl, f3, f5, all of which will be able to depart their
initial edges to the symmetric part of the network ( fl, f3, f5) in s time steps as a continuous flow and
the number of packets that are queued in queues f4, fg is bigger than the number of packets queued in
queues f3, f5.

Note that the second part of the inductive hypothesis, that claims that if at the beginning of phase
j all s packets queued in the queues e, fé, f;, fé, fé requiring to traverse edges e, f1, f3, fs manage to
depart their initial edges to the symmetric part of the network as a continuous flow in s time steps then
at the beginning of phase j + 1 all s packets that are queued in queues fs, f5, f1, f6, €1 requiring to
traverse edges e, fi, fé, fé will be able to depart their initial edges to the symmetric part of the network
in s time steps as a continuous flow guarantees the reproduction of the inductive hypothesis in queues
f3, fs, f1, f6, €1 but with some flows (in particular in queues f3, f4, f5) that have packets that don’t want
to traverse edges eq, f{, fé, fé regularly spread among the packets that want to traverse these edges. This
argument implies the third part of the inductive hypothesis that claims that if at the beginning of phase
7, the number of packets that are queued in queues f;, fé is bigger than the number of packets queued in
queues fé, fé then at the beginning of phase j + 1 the number of packets that are queued in queues fy, fg
is bigger than the number of packets queued in queues f3, f5 because in the first round of the adversary’s
construction we inject packets in queue f:l and if the third part of the inductive hypothesis doesn’t hold
then we cannot guarantee that all the initial s packets will depart their edges to the edges f1, f3, f5 in s
time steps as a continuous flow. However, we include it to the inductive hypothesis for readability reasons.

From the inductive hypothesis, initially, there are s packets (called S— flow) in the queues e, fé, fi, f;, f(;
requiring to traverse edges eg, f1, f3, f5-

Phase j consists of 3 rounds. The sequence of injections is as follows:

Round 1:

For s steps, the adversary injects in f; queue a set X of rs packets wanting to traverse edges
f;,fé,eo,fg, I3, f5,el,f1,fé,fé. These packets are blocked by the S — flow.

At the same time, the S — flow is delayed by the adversary’s single injections S; = rs in queue f;.
The S; packets get mixed with the packets in the S — flow.

Notice that because of the FIFO policy, the packets of S, 5; mix in consecutive blocks according to
their initial proportion of their sizes (fair mixing property). Since |S| = s and |S;| = rs, these proportions
are and respectively Thus, during the s steps of round 1, the packets of S, Sy, which cross fi

r+1 T+1 ?
are, respectively, s T}rl = +1 and st a= Tffl.
. . . s __ rs .
Therefore, the remaining packets of each type in queue f; are for Syem: s — 35 = ;55 and for Sy rem:
2
_ s — 1’5
TS~ 2T = v
Round 2:

For the next rs steps, the adversary injects a set Y of r2s packets requiring edges f4, f6, €0, f1, f6, €1,
fl, f3, f5 These packets are blocked by the set X At the same time, the adversary pushes a set Sy of
single injections in the queue fo, where |S3| = r2s, a set S3 of single injections in the queue f3, where
|S3| = 7?s and a set Sy of single injections in the queue f5, where |Sy| = r?s.

Because of the FIFO policy, the packets of X, So mix in consecutive blocks according to their initial

proportion of their sizes. Since |X| = rs and |Sz| = r?s, these proportions are —— and respectively.

7‘+ T+1 ’

Thus, during the rs steps of this round, the packets of X, S, that pass f2 are, respectively, Xpass, 1, = %,
2
and Sz,pass,fz = TT+51
2
Therefore, the remaining packets of each type are for X,em, f,: 75 — =5 = 747 and for S5 rem, fat
’f‘ s — r?s _ r3s
r4+1 = ’I‘+

Note that in queue f;, there are the remaining S — flow and the remaining S; — flow packets. Since
their total number is rs (which is equal to the duration of the round), the Si yem — flow does not delay
the Srem — flow. Note also that, because the Si r.m packets are absorbed after they pass only fi, only
the S,em packets require edge fs. As a result the stream arriving from f; to f3 contains empty spaces at
the positions of the Si ,en packets. However, these empty spaces are uniformly spread in the system for
the duration of the time period. Therefore, during round 2, three different flows of packets arrive to the
f3 queue:

— the Xpss, 1, — flow, where | X o551, | = +1 This flow is mixed with S5 ;qss, 7, — flow. However, since
their total number is rs (that is equal to the duration of the round), S pass,f, — flow does not delay




the Xpqass,7, — flow. Note also that, because the S pqss, 7, — flow is absorbed after it passes f2, only
the Xpgss,f, — flow requires edge f3. As a result the stream arriving from f> to f3 contains empty
spaces at the positions of the S5 45,7, packets.
— the Syem — flow, where |Spem| = T:fl.
— the S; single-injected packets, where |S3| = r2s.

Since the total number of packets in the three flows is |T'| = %Jﬁi‘gﬁm the corresponding proportions
are:

Xpass.fy 1 . Srem — 1 . Ss _ _r’4r
for Xpass,fg- T = PErya for S’rem- T = PFr¥2? and for Sg. T = 2¥ry2
Thus, the remaining packets in queue f3 from each flow at the end of round 2 are: for X,epm, f,:
TS TS — r°s4+T1Ss . TS TS — 'r35+'r5 2 7‘2+’I‘ —
r+1  r24r+2 T (r+1)(r2+r+2)° for STem,fif' r+1  r24r+2 ~ (r+1)(r2+r+2) and for 53’”””' rS=TS e <
rts4ris
retr2°

The technique of proportions can still be used even if some flow has empty spaces since the empty
spaces are uniformly spread.

Note that during round 2 the stream arriving to f5 contains 3 different flows of packets: the Sy single-
injected packets, where |Sy| = r?s, the Spqess, £, — flow, where |Spass, ;| = 7z and the Xpos 1 — flow,
where [Xposs, 3| = oprgs-

Note also that the S3 packets that traverse f3 are absorbed after they pass fs.

Since the total number of packets in the three flows is |T'| = rlotrd st ortstors

: P R the corresponding
proportions are:

. Xpass,f3 _ TS — 1
for Xpass,fs- T’ T rds4r3s42r2s42rs ~ r34r242742
_ . Ppass.fz _ 1
for Spass,fs1 5 = mmyags and
— for Sy: S = r2s(r’+r+2) _ _rP4ri4or
4- T T Tasyrist2rist2rs | ri4ri42r+2

Thus, the remaining packets in f5 queue from each flow at the end of round 2 are:

T4S+7‘2 s

_ . TS _ T8 —
for Xpass,fs* iris — PrteT2 = R
— for S . TS _ TS — T s+17s
pass,fs: rZipy2 r34+r242r+2 = (rZ4r+2)(r3+r2+2r42)
o . T4s+r3s+2r25 _ 7‘58+’l‘3§
for Sy: rs — TR = mhehage
Round 3:

For the next |T},und—3| = 7°s steps, the adversary injects a set S5 of r3s packets requiring to traverse
edge f4 (single injections). The set S5 is mixed with the set Y in consecutive blocks according to their
initial proportion of their sizes. These proportions are Y : % and S5 : ;7. Thus, during the r2s steps

. . . . 2 3
of this round, the packets Y, S5 that remain in queue f; are respectively, |YVyem| = r%s — - +51 = +51 and
— m3 s _ rs
[S5,rem| =1°s — Tl rHl°

Furthermore, the adversary injects a set Z of r3s packets requiring to traverse edges fs,e1, f{, fé, fé.
The set Z is mixed with the set Y45, in consecutive blocks according to their initial proportion of their
2

r3s — r(r+1)
r3stzy | TohrHle

%3

1
2
r4s 3
I +7r3s

. . . — 1 .
sizes. These proportions are Yp,ss: = o and Z:

Thus, during the r2s steps of this round, the packets that pass fs are respectively, [Yoass, fo| = Tzfﬁ

3
%. Therefore, the remaining packets in fs queue are:
_ 2 — 4 _ .3 r3s(r+1 _ 5
|YTe'm,,f6| - :+_sl - 7"2:-7"5-{—1 - (T-‘rl){T‘Qs-‘rT-}—l) and |Zrem,f6| =7rTs—- Tz-{(—r—i-l) - T2:Ts+1‘
Note that the total number of packets in f5 at the end of round 2 is |T} | = rlstrost3rost3rtetristar’s
ote that the total number of packets in queue f5 at the end of rou s|T1| = (T3 (e t2)
However, it has been proved by MATLAB that Ty < r2s, Vr > 0 . Therefore, the remaining time is
t 2 T — 7‘6S+27‘5S+37‘4S+47‘35+27‘25
rem =718 1= 5 2ri 35134 61216r+4 . .
In ¢, steps the number of X,.., s, packets that traverses f5, that is equal with the number of Syem, s,
packets that absorbed when they pass f5 is
_—  _trem _ r65+2r5s+3r4s+4r33+2r2s
T 2442 T (r24r+2)(r5+2r2 45734672 4+67+4)
5 4 3 2
Note that the total number of packets in queue f3 at the beginning of round 3 is [Tx| = © S+(7;J‘:1+)3E:2_ﬁ125)+2”

However, r?s < |Ty|, Vr < 1 (it has been proved by MATLAB). Thus, a number of X,cp, £, Srem, fs> 93,rem

and |Zpass,fs| =

|Xpass,f3,fs| = |Sabsorb,fs,fs




packets remain in f3. This number is |T3| = |T| — r?s = %% From this number of packets, the

| ] — 2r2s—r3s—r%s
+7‘+2 (r?+r+2)2

Also, the total number of packets that are in queue f» at the end of round 2 is |T3| = r?s. Thus, all
the X — flow packets in queue f, are queued in queue f3.

At the end of this round the number of packets that are in queues f3, f4, f5, f6, €1 requiring to traverse
the edges el f{,f:;, fé is

S = s 4%+ 05+ et T e S

In order to have 1nstab1hty, we must4 ha\ge s >s. Therefore,

ris + :+s1 + (r+1T)(er2r-T+sr+2) TG Ty > 8 = 7 > 0.749

The above inequality has been proved by MATLAB.

This concludes the first part of the proof. In order to conclude the proof we should also show that the
number of packets that remain in queues f3, f5 (Q(f3),@(f5)) should be less than the number of packets
that remain in queues fy, fo (Q(f1), Q(fs)), i-e. Q(f3) + Q(f5) < Q(f1) + Q(fe)- But,

Q(fB) + Q(f5) = |Xrem,f2| + (|XTem,f3| - |X:Dass,f3,f5|) + (|ST€m,f3| - |Sab8m‘b,fs,f5|) + |S3,T8m,fs| and

Q(f4) + Q(fﬁ) = (|Yrem| + |55,Tem|) + (|Yrem,f6| + |Zrem,f6|)

Assigning the approprlate values to the above equations we take: \

— r s r°s+rs rSs+27° s43r* s4+4r3s+2r2s 2r2s—r3s—rs
Q(fs) +Q(fs) = T+1 + 2((r+1)(r2+r+2) (r2+r+2)(r5+2r4+5r3+6T2+6r+4)) R and

Qi) + Q(fe) = 1%s + (5SS

Using MATLAB it has been proved that Q(f3) + Q(f5) < Q(f1) + Q(fe) = r > 0.743. If this
constraint holds, the third part of the inductive hypothesis is fulfilled.

Notice that we have, till now, managed to reproduce the inductive hypothesis in queues fs, f5, f1, f6, €1
but with some ﬂows (1n particular in queues f4, f3, f5) having empty spaces (packets that don’t want to
traverse edges eq, fl, f37 f5) In order for the induction step to work we must show that all these packets
in these queues will manage to depart to the symmetric part of the network (f;, f37 f5) in the s time
steps as a continuous flow. We now show this.

As we have shown above all the packets that are queued in e; queue want to traverse edges e, fl, f3, f5
and their flow is continuous without empty spaces (packets that don’t want to traverse edges e1, fl, f3, f5)
Also, the number of packets queued in f4, fs queues is bigger than the number of packets queued in f3, f5
queues. The packets queued in fz queue can be seen as a continuous flow that wants to traverse edges
e1, f{, fé, fé, while the set of packets in f4 queue consist of packets that want to traverse edges ey, fL fé, fé
(Yrem) and packets that are single injections (S5 rem) that can be considered as empty spaces. Because of
that we should show that all the (Y,..,) packets manage to leave their initial edge during s time steps.

In order to show that, we should estimate the number of Y;..,, packets that manage to traverse queue
f4 within the time steps the initial packets in queue fg need to traverse edges fg,e1. Then, if we show
that this number is bigger than the number of Yy¢p, S5 rem packets that remain in f4 queue we prove
that actually the S5 rem packets do not delay the Y,., packets. Therefore, with this way it is proved
that in s time steps all the s packets that want to traverse edges eq, fl, f3, f5 leave their initial edges to

fla f37f5

The number of time steps needed for all the initial packets in queue fg to traverse edges fg,e1 is

number of packets that belong to S5 rem i [S3,rem, 2| = |T3

|T4| = |ZTem fs| + |Yrem,fs| + (|Zpass f6| + |Ypass,fs| + |Xpass f3| + |Xpass f3afo| TTound—3)
_ T s + T s+'r S + 7'65+27'55+37' s+4r35+2r s
— 1 (r2+r+2)(r3+r2+42r+2) (r24r+2)(r5+2r%s+5r3+6r2+67r+4)

In Ty time steps, the number of Y,.,, packets that traverse fy is A = |Ty and the number of

=
Ss,rem Packets that traverse fy is B = |Ty| 15 1 Where 71 are the mixing proportions of Yiem, Ss,rem
correspondingly.

We should show that A > |Yyem| — A+ S5 rem| — B- It was proved by using MATLAB that this holds
for r > 0.

Taking the maximum of the three values max {0.749,0.743,0} = 0.749, the network G is unstable for

r > 0.749. This concludes our proof.

'r+1 ?

O
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Appendix

Mixing of LIS and NTS is Unstable

Theorem 2. Let r > 0.683. There is a network G that uses LIS and NTS as queueing disciplines and
an adversary A of rate r, such that the (G, A, LIS, NTS) system is unstable, starting from a non-empty
initial configuration.

Proof. Let’s consider the network in Figure 5.

Fig.5. A Network that uses LIS and NTS as queueing disciplines.

All the queues of this network use the LIS queueing discipline except from the queues that correspond
to the edges g, g that use the NTS queueing discipline.

Inductive Hypothesis: If at the beginning of phase j, there are s packets queued in the queues ey, fé
requiring to traverse edges eg, g, f3, then at the beginning of phase j 41 there will be more than s packets
queued in the queues eg, f3 requiring to traverse edges ey, g', fé.

From the inductive hypothesis, initially, there are s packets (called S — flow) in the queues e, fé
requiring to traverse edges eg, g, f3.

Phase j consists of 3 rounds. The sequence of injections is as follows:

Round 1:

For s steps, the adversary injects in f; queue a set X of rs packets wanting to traverse edges
fé,eo, fi, f3.€1,9 fé. These packets are blocked by the S — flow in queue eg because ey has LIS as
queueing discipline and because for every arrival of an injected packet in ey there is at least one S — flow
packet there.

At the same time, the S — flow is delayed by the adversary’s single injection S; = rs in queue g that
require to traverse queue g. This happens because g follows the NTS policy and S is nearest to its source
than S. Thus, at the end of this round rs packets of S will remain in queue g because all the S; packets
pass as they arrive in queue g and the size of Sy is rs.

Round 2:

For the next rs steps, the adversary injects a set Y of r2s packets in queue f; requiring to traverse
edges fé, €0, f2,€1,4 fé‘ These packets are blocked by the set X in queue eg because ey uses LIS policy
and the set X has arrived earlier in queue eg.

At the same time, all X packets traverse eg, fi but they are blocked in f3 that uses LIS policy because
of the remaining rs packets of S — flow in g that want to traverse f3 and are longer time in the system
than X.

Round 3:

For the next T' = r%s steps, the adversary injects a set Z of r®s packets requiring to traverse edges
e1, g', fé. Moreover, the Y packets reach queue e; and X, = r?s packets of X reach queue e;, too. Also,
Xy, =rs —r?s X packets remain in queue fs.

At tlhe end of this round the number of packets queued in queues f3,e; requiring to traverse edges
€1,9, f3 is

sl:Xel+Xf3+Y+Z—T=r23+rs—r2s+r23+r3s—r23=1“s+1“3s
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In order to have instability, we must have s >s. Therefore,

rs+1r3s>s
= > 0.683.

This concludes our proof.

Mixing of LIS and FTG is Unstable

Theorem 8. Let r > 0.683. There is a network G that uses LIS and FTG as queueing disciplines and
an adversary A of rate r, such that the (G, A, LIS, FTG) system is unstable, starting from a non-empty
initial configuration.

Proof. Let’s consider the network in Figure 6.

Fig. 6. A Network that uses LIS and FTG as queueing disciplines.

All the queues of this network use the LIS queueing discipline except from the queues that correspond
to the edges g, g' that use the FTG queueing discipline.

Inductive Hypothesis: If at the beginning of phase j, there are s packets queued in the queues eq, fé
requiring to traverse edges eg, g, f3, then at the beginning of phase 7+ 1 there will be more than s packets
queued in the queues ey, f3 requiring to traverse edges eq, gl, fé.

From the inductive hypothesis, initially, there are s packets (called S — flow) in the queues eg, fé
requiring to traverse edges eg, g, fs.

Phase j consists of 3 rounds. The sequence of injections is as follows:

Round 1:

For s steps, the adversary injects in fé queue a set X of rs packets wanting to traverse edges
fé,eo, f1, f3, €1, g'7 fé. These packets are blocked by the S — flow in queue ey because ey has LIS as
queueing discipline and because for every arrival of an injected packet in ey there is at least one S — flow
packet there.

At the same time, the S — flow is delayed by the adversary’s injection S; = rs packets in queue g
that require to traverse queues g, ho, hy. This happens because g follows the FTG policy and S; has more
edges to traverse than S. Thus, at the end of this round rs packets of S will remain in queue g because
all the S packets pass as they arrive in queue g and the size of S is rs.

Round 2:

For the next rs steps, the adversary injects a set Y of r2s packets in queue fé requiring to traverse
edges fé, €o, f2, €1, g'7 fé. These packets are blocked by the set X in queue eg because eg uses LIS policy
and the set X has arrived earlier in queue eg.

At the same time, all X packets traverse eg, f1 but they are blocked in f3 that uses LIS policy because
of the remaining rs packets of S — flow in g that want to traverse f3 and are longer time in the system
than X.

Round 3:

I11



For the next T = r2s steps, the adversary injects a set Z of r3s packets requiring to traverse edges
e1, gl, fé. Moreover, the Y packets arrive in queue e; and X,, = r?s packets of X arrive in queue ey, too.
Also, Xy, =rs —r?s X packets remain in queue f3.

At the end of this round the number of packets queued in queues f3,e; requiring to traverse edges

61,gl,fé is
s =Xe, + X, Y +Z-T=r’s+rs—r’s+r’s+r’s—r’s=rs+r’s

In order to have instability, we must have s >s. Therefore,

rs+1r3s>s
== r > 0.683.

This concludes our proof.

Mixing of SIS and NTS is Universally Stable

Lemma 4. Let p be a packet waiting in o queue e at time t and suppose there are currently k —1 other
packets in the system requiring e that have priority over p. Then p will cross e within the next @ steps
if the queueing discipline in queue e is SIS or NTS.

Proof. Let’s assume that p does not cross e in the next steps from the moment it arrives in queue
e. It will be proved that this assumption results in a contradiction. In order for packet p not to cross
queue e in the next @ steps, other packets cross e in these steps (one distinct packet crosses queue e
in each step because of the greedy nature of the protocol). These packets must either belong to the set
of k — 1 packets existing in the system at time ¢ requiring edge e that have priority over p or belong to
the (at most) (1 —e¢) # + b packets requiring queue e that can be injected in the system during the time
period of @ steps.

Note that all new packets have priority over p if SIS policy is used. Also, if NTS is used in the worst
case new injections are nearest to their source than packet p. Therefore at most

k+b k+b
+h<

k+b
€

E—1+(1—¢)

€

packets have priority over p during this time period. Hence, there is a contradiction. Thus, p will cross

e within the next % steps.

O

M7 Where kl — m_b_

Let’s define a sequence of numbers by the recurrence k; = - .

Lemma 5. When a packet arrives at the queue of the j** edge e; on its path, there are at most k; — 1
packets requiring to traverse e; with priority over p if the used queueing policy is SIS or NT'S.

Proof. Induction will be used to prove the claim of this lemma. If queue e; uses SIS then the claim
holds for j = 1, since for any queue e; the only packets requiring to traverse it, which initially could have
priority over p, are the (at most) b — 1 packets injected in the same time step as p (b—1 < ky — 1).

If queue e; uses NTS then we will prove that the claim holds for j = 1. Let’s define X;(t) the set of
packets in the queue e; that have crossed less than i edges at time ¢ and let’s assume that [; is (at most)
the number of packets in the system that have crossed less than i edges (i=j). Let ¢ be the current time
and let ¢ be the most recent time in which X;(¢' ) was empty. Any packet in X;(¢) must either have had
crossed less than ¢ — 1 edges at time t or else it must have been injected after time ¢ . But, at every step
t" between times ¢ and ¢ a packet from Xi(t”) must have crossed edge e;. Hence,

X)) <L+ (E—t)1—e)+b—(t—1t)
=1[_1— (t—tl)e—}-b

From the above inequality, we conclude that

Hence, because there are m queues the total number of packets in the system that have crossed less
than 7 edges is always at most mliz1+mb e claim that, at most M — 1 packets could have priority

v



over p in queue e; when NTS is used because in the queue e; packet p hasn’t crossed any edge. Therefore,
no packet from the old ones have priority over p in queue e;. So, lo = 0. Therefore, % —1 < k; — 1 packets
could have priority over p in queue e; when NTS is used. Thus, the claim holds for j = 1 if NTS is used.

Now suppose that the claim holds for some j. Then by lemma 3 p will arrive at the tail of e;; in at
most another kj:rb steps, during which at most (1 —€) kj:rb + b packets requiring edge e;j41 arrive with
priority over p. Thus, when p arrives at the tail of e;; at most

_1<mkj+mb

kj—1+(1—€) +b=

—kj:“b —1=kj—1

kj+b
€

packets requiring queue e;;; have priority over p and hence the claim holds.

O

Theorem 5. The system (G, A, SIS, NTS) is stable, there are never more than kq packets in the system
and no queue contains more than %(kd_l + b) packets in the system where d is the length of the longest
simple directed path in G.

Proof. Assume there are kg + 1 packets at some time all requiring the same edge. Then, the packet
with the lowest priority of the k4 + 1 packets contradicts the claim of lemma 4. Combining both lemmas,
a packet p takes at most k":r steps to cross the j** edge on its path, once it is in the queue for this edge.

O

Mixing of FTG and NTS is Universally Stable

Lemma 6. Let p be a packet waiting in o queue e at time t and suppose there are currently k —1 other
packets in the system requiring e that have priority over p. Then p will cross e within the next @ steps
if the queueing discipline in queue e is FT'G or NTS.

Proof. Let’s assume that p does not cross e in the next steps from the moment it arrives in queue
e. It will be proved that this assumption results in a contradiction. In order for packet p not to cross
queue e in the next @ steps, other packets cross e in these steps (one distinct packet crosses queue e
in each step because of the greedy nature of the protocol). These packets must either belong to the set
of k — 1 packets existing in the system at time ¢ requiring edge e that have priority over p or belong to
the (at most) (1 —e¢) @ + b packets requiring queue e that can be injected in the system during the time
period of @ steps.

Note that if FTG is used in the worst case new injections have more edges to traverse than packet p.
Also, if NTS is used in the worst case new injections are nearest to their source than packet p. Therefore
at most

k+b
€

kE+b k+b
E—1+(1—¢) +b< —
€
packets have priority over p during this time period. Hence, there is a contradiction. Thus, p will cross
e within the next 2 steps.

€

O
Let’s define a sequence of numbers by the recurrence k; = M7 where k; = me

Lemma 7. When a packet arrives at an edge eq—j4+1 that has distance d — j from the final edge on its
path, there are at most k; — 1 packets requiring to traverse e; with priority over p if the used queueing
policy is FTG or NTS.

Proof. Induction will be used to prove the claim of this lemma. If queue e4_;41 uses NTS then we
will prove that the claim holds for j = 1. Let’s define X;(t) the set of packets in the queue e4_ ;1 that
have crossed less than i edges at time ¢t and let’s assume that /; is (at most at any time) the number of
packets in the system that have crossed less than i edges (i = j). Let ¢ be the current time and let t be
the most recent time in which Xi(tl) was empty. Any packet in X;(t) must either have had crossed less
than ¢ — 1 edges at time ¢ or else it must have been injected after time t. But, at every step " between
times ¢ and t a packet from X;(t ) must have crossed edge es_;1. Hence,

XiO < bia + (= £)(1 =) +b— (=7
=11 — (t—tl)e-f'b
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From the above inequality, we conclude that

lizi+0
€

t—t <

Hence, because there are m queues the total number of packets in the system that have crossed less
than 7 edges is always at most M We claim that, at most M — 1 packets could have priority
over p in queue e4_j4+1 = eq, which distance from the final edge on p’s path is d — 1 when NTS is used,
because in the queue e4 packet p hasn’t crossed any edge. Therefore, no packet from the old ones have
priority over p in queue e4. So, lp = 0. Therefore, 2 — 1 < k; — 1 packets could have priority over p in
queue eg when NTS is used. Thus, the claim holds for 7 =1if NTS is used.

If queue e4—j41 uses FTG then we will prove that the claim holds for j = 1. Let’s define as Ly, (t) the
set of packets in the queue e4_ ;1 that still have to cross at least h edges at time ¢ and let’s assume that
Iy, is (at most) the number of packets in the system that still have to cross at least h edges (h = d—j+1).
Let ¢ be the current time and let ¢ be the most recent time in which Lh(t') was empty. Any packet in
Ly (t) must either have had at least h + 1 edges to cross at time ¢ or else it must have been injected
after time ¢ . But, at every step ¢ between times ¢ and ¢ a packet from L, (t”) must have crossed edge
eq—j+1- Hence,

L] < s + (6 — )1~ )+ b— (i~ 1)
=lps1 — (t—t,)6+b

From the above inequality, we conclude that

< Ihy1 +0
€

Hence, the number of packets in the system that have to cross hA or more edges is always at most
M . In the case of j =1 and FTG as used policy, we claim that k;=; = ;4 because in the queue eq4
packet p will have to cross d edges. Therefore, only packets that have to cross d + 1 edges have priority
over p in queue e4. But, no packet have to cross d + 1 edges because d is the length of the longest path
in the network. So, ;11 = 0. Therefore, 0+mb — 1 = k1 — 1 packets could have priority over p in queue
e1 when FTG is used. Thus, the claim holds for y =1 if FTG is used.

Now suppose that the clalm holds for some j. Then by lemma 5 p will arrive at the tail of eq_; in at
kj+b )k i+b
€

most another steps, during which at most (1 — € + b packets requiring edge eq_; arrive with
priority over p. Thus, when p arrives at the tail of e4_; at most

kj—1+(1—e)@+b:@—1<M—bkﬂl—l

packets requiring queue e4_; have priority over p and hence the claim holds.

O

Theorem 6. The system (G, A, FTG, NTS) is stable, there are never more than ky packets in the
system and no queue contains more than %(kd,l + b) packets in the system where d is the length of the
longest simple directed path in G.

Proof. Assume there are kg + 1 packets at some time all requiring the same edge. Then, the packet
with the lowest priority of the kg + 1 packets contradicts the claim of lemma 6. Combining both lemmas,
a packet p takes at most @ steps to cross the eq_ ;41 edge that has distance d — j from the final edge
on its path, once it is in the queue for this edge.

O

An Improved Lower Bound Using a New Adversary Construction

Theorem 7. Let r > 0.771. There is a network G and an adversary A of rate r, such that the (G, A,
FIFO) system is unstable, starting from a non-empty initial configuration.

Proof. We consider the network G in Figure 7.

Inductive Hypothesis: If at the beginning of phase j, there are s packets queued in queues eg, fz, f3
requiring to traverse edges eg, g, f2, all the packets in queue f3 want to traverse edges e, g, f2, and the
number of packets queued in queue f3 is bigger than the number of packets queued in queue f2, then at

VI



(o ——®)

; (v) e

Fig. 7. Network G

the beginning of phase 7 + 1 there will be more than s packets queued in queues fz, f3, ey requiring to
traverse edges e1,9 , f2, all the packets in queue f3 will want to traverse edges e, g , fz, and the number
of packets queued in queue f3 will be bigger than the number of packets queued in queue fo.

Remark that the inductive hypothesis claim, that if at the beginning of phase j all the packets in
queue fé want to traverse edges eg, g, f2, and the number of packets queued in queue fé is bigger than
the number of packets queued in queue f2 then at the beginning of phase j + 1 all the packets in queue
f3 will want to traverse edges ej, g , fz, and the number of packets queued in queue f3 will be bigger
than the number of packets queued in queue f5, guarantees that all the packets that want to traverse
edges ey, g, f2 at the beginning of phase j and all the packets that want to traverse edges ey, g', fé at the
beginning of phase j + 1 will manage to depart their initial edges to the symmetric part of the network
in the s and s time steps correspondingly as a continuous flow (g, fo and g' f2 correspondingly). Thus,
the inductive hypothesis can be reproduced in queues fs, f3,€1 but with a flow (in particular in queue
f2) that has packets that don’t want to traverse edges e1,g , f2 regularly spread among the packets that
want to traverse these edges.

From the inductive hypothesis, initially, there are s packets (called S — flow) in the queues e, fé, fé
requiring to traverse edges eg, g, f2.

Phase j consists of 3 rounds. The sequence of injections is as follows:

Round 1:

For s steps, the adversary injects in fé queue a set X of rs packets wanting to traverse fé, eo, f1, f2, €1, g’ , fé.
These packets are blocked by the S — flow.

Note that it has been assumed that the number of packets belonging to the S — flow that are queued
in fé queue at the beginning of this round is bigger than the number of S — flow packets queued in fé
queue.

At the same time, the S — flow is delayed by the adversary’s single injections S = rs in queue g.
The S packets get mixed with the packets in the S — flow.

Notice that because of the FIFO policy, the packets of S, S; mix in consecutive blocks according to
their initial proportion of their sizes (fair mixing property). Since |S| = s and |S1| = rs, these proportions
are T% and - +1’ respectively. Thus, during the s steps of round 1, the packets of S,.S1, which cross g
are, respectively,

1 s r TS
s = , 8 =
r+1 r+1 r+1 r+1

Therefore, the remaining packets of each type are:

_ .o _ s _ 15
for Srem: s P T 7
— cpe_ TS _ 1’5
for Si rem: rs o

Round 2:
For the next rs steps, the adversary injects a set Y of r2s packets requiring edges fé, €o, f3, €1, g', fé.
These packets are blocked by the set X. At the same time, the adversary pushes a set Sy of single

injections in the queue f;, where |Sz| = r2s and a set S3 of single injections in the queue fz, where
|95 = 7?s.

Because of the FIFO policy, the packets of X, Sy mix in consecutive blocks according to their initial
proportion of their sizes. Since |X| = rs and |Ss| = r2s, these proportions are ? and 17, respectively.
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Thus, during the rs steps of this round, the packets of X, Ss, that pass fi are, respectively,

2
rs res
— 1S -
T+17| 2,pass| T+1

Therefore, the remaining packets of each type are:

|Xpa68| =

2

— . __rs _ 178
for X,em: rs LT T

— .26 T8 _ TS
for Sy pem: 7%s — 125 = 157

Note that in queue g, there are the remaining S — flow and the remaining S; — flow packets. Since
their total number is rs (which is equal to the duration of the round), the Si yem — flow does not delay
the Syem — flow. Note also that, because the Sy ;¢ packets are absorbed after they pass only g, only
the Srem packets require edge fo. As a result the stream arriving from g to fo contains empty spaces at

the positions of the Si yem packets. Therefore, during round 2, three different flows of packets arrive to
the f2 queue:

— the Xp455s — flow, where | Xpgss| = % This flow is mixed with Sy pqss — flow. However, since their
total number is rs (that is equal to the duration of the round), S2 pess — flow does not delay the
Xpass — flow. Note also that, because the Sy p,5s — flow is absorbed after they pass edge fi, only the
Xpass — flow requires edge f>. As a result the stream arriving from f; to f» contains empty spaces
at the positions of the S5 ;455 packets.

— the Srem — flow, where |Syem| = o1

— the S3 single-injected packets, where |S3| = r?s.

Since the total number of packets in the three flows is:

s+ 12s+2rs

T| =
7] r+1

the corresponding proportions are:

Xpass _ 1

s T = r24r42
. Orem — 1

— for S’rem~ T T P¥ry2

.Sy _ _r?
— for S3: 3 = r2T+JrrJ:2

— for Xpass:

Thus, the remaining packets in fa queue from each flow at the end of round 2 are:

— for Xpass: T:__sl - r2-|7:::+2 =TS (T+1)T(27"—gi7“+2)

— for Srem: % - Tzli+2 =TS (r+1)r(r-;-}-7‘+2)

— for S3: r2s —rs TzT_T_T_T_z =7Ts r;—::——:::-2
Round 3:

For the next r?s steps, the adversary injects a set Z of r3s packets requiring edges fs,e1,9 , fé. The
set Z is mixed with the set Y in consecutive blocks according to their initial proportion of their sizes.
These proportions are Y : TI? and Z : H_Ll Thus, during the 72s steps of this round, the packets Y, Z
that pass f3 are respectively,

2. 1 7P
|Ypass| =T SH_—I = :—é-sl
T8

— 2 T
| Zpass| = 1°s77 = 737
Therefore, the remaining packets in f3 queue are:

_ . 2 _7'25_7"33
for Yyem: r°s =
- .p3g s _ rls
for Zyem: r°s T = 1

Notice that all the packets in queue f3 share the same destination path, which fulfills a part of the
inductive hypothesis.

During this period the number of Xp,ss — flow packets that traverses f; is

1"2871
r2+r+2
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Thus, the remaining X,q5s — flow and Sy, packets that are still in f> queue at the end of this round

are: 3 9 2
r°s+rs r°s rs —r°s

r+ D)2 +r+2) r24+r+2 - (r+1)(r2+r+2)
Also, the remaining S3 — flow packets that remain in fs queue at the end of this round are:

|Srem,f2| = |Xpass,f2| = (

E = rts+ris  rls+ris  r’s—ris
Breml T 2442 24742 r24r+2

Furthermore, all the X,.,, packets that are queued in f; at the beginning of this round traverse f;
and are queued in fs because the total size of packets in f; is
rZs s

|X1‘em| + |52,Tem| = m + r+1 = T23

which is equal to the duration of this round.

From the inductive hypothesis, the assumption that the number of packets requiring to traverse edges
f3,€1,9 fé is bigger than the number of packets requiring to traverse edges fa,e1,9 fé should be hold.

However in queue fs, there is a number of Syep, s, and Ss rem packets at the end of this round, that are
mixed with Xpqss, 5, packets, while the X,.,, packets are queued after Srem, S3,rem and Xpass, 7, packets
in queue f». Because of this mixture Xp,ss, s, packets are delayed in the next phase. So, we should take
them into account for the following comparison in order to guarantee that the first part of the inductive
hypothesis is met.

QS(fB) 4 > Q(fz) 2 2 2 3
= 1t 2 2 T T EEeR
—r > 0.755

where Q(f3) and Q(f2) are the number of packets in f3 and fo queues respectively. The above in-
equality has been proved using MATLAB.

Thus, for r > 0.755, we have proved the part of the inductive hypothesis, which argues that if at the
beginning of phase j, all the packets in queue fé want to traverse edges eg, g, f2 and the number of packets
queued in queue fé is bigger than the number of packets queued in queue fé, then at the beginning of
phase j + 1, all the packets in queue f3 will want to traverse edges e, gl, fé and the number of packets
queued in f3 queue is bigger than the number of packets queued in f; queue.

Now, we will find the appropriate lower bound for injection rate in order to prove that the second part
of the inductive hypothesis, which argues that the s packets queued in the queues fs, f3, e; requiring to
traverse edges eq, g', fé at the beginning of phase j + 1 are more than the s packets queued in the queues
€o, fé, fé requiring to traverse edges ey, g, fo at the beginning of phase 7, holds on.

At t,he end of the round, the number of packets that are in queues fz, f3, €1 requiring to traverse edges
e1,9 , fy is:

r 5 r?s r3s+rs 5
s =r°s+ris+ + —7r°s
r+1 (r+1){r2+r+2)

Note that in the above estimations, s counts only packets from X,Y, Z flows that remain at the
system at the end of round 3 and not packets from S — flow and single injections. In fact, we can ignore
packets causing empty spaces in the stream of fo queue, because the stream of f3 queue is continuous
and has bigger size than the stream of f» queue, even if empty spaces are included, while the packets
queued at e; at the end of this round form a stream that is continuous.

In order to have instability s > s should be hold.

Therefore,
3 2 s+
s+ g+ (r+1T)(Sr2fr+2) > s
=70+ 2% + 49t + 313 >2r 42

The above inequality has as a result r > 0.771 (it has been proved by using MATLAB). Thus, in order
to fulfill the inductive hypothesis, we take the maximum of 0.771 and 0.755. Therefore, for r > 0.771 the
network in Figure 7 is unstable. This concludes our proof.
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