Electronic Colloquium on Computational Complexity, Report No. 101 (2001)

A Lower Bound Technique for Restricted
Branching Programs and Applications

Philipp Woelfel*

FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany
woelfel@Ls2.cs.uni-dortmund.de

Abstract. We present a new lower bound technique for two types
of restricted Branching Programs (BPs), namely for read-once
BPs (BP1s) with restricted amount of nondeterminism and for
(1, 4+k)-BPs. For this technique, we introduce the notion of (strictly)
k-wise l-mized Boolean functions, which generalizes the concept
of [-mixedness defined by Jukna in 1988 [3]. We prove that if a
Boolean function f € B, is (strictly) k-wise [-mixed, then any non-
deterministic BP1 with at most £ — 1 nondeterministic nodes and
any (1,+k)-BP representing f has a size of at least 2?(). While
leading to new exponential lower bounds of well-studied functions
(e.g. linear codes), the lower bound technique also shows that the
polynomial size hierarchy for BP1s with respect to the available
amount of nondeterminism is strict. More precisely, we present a
class of functions g¥ € B, which can be represented by polynomial
size BP1s with k nondeterministic nodes, but require superpoly-
nomial size if only & — 1 nondeterministic nodes are available (for
k = o(n'/3/10og?/® n)). This is the first hierarchy result of this kind
where the BP1 does not obey any further restrictions. We also ob-
tain a hierarchy result with respect to k for (1,+k)-BPs as long as
k = o(y/n/logn). This extends the hierarchy result of Savicky and
Zék [9], where k was bounded above by & n'// log!/® n.

* Supported in part by DFG grant We 1066/10-1.

ISSN 1433-8092

1 Introduction and Results

Branching Programs (BPs) or equivalently Binary Decision Diagrams (BDDs)
belong to the most important nonuniform models of computation. Deterministic
and nondeterministic BPs can be simulated by the corresponding Turing ma-
chines, and the BP complexity of a Boolean function is a measure for the space
complexity of the corresponding model of sequential computation. Therefore,
one is interested in large lower bounds for BPs.

Definition 1. A (deterministic) Branching Program (short: BP) on the vari-
able set X,, = {z1,...,z,} is a directed acyclic graph with one source and
two sinks. The internal nodes are marked with variables in X,, and the sinks
are labeled with the Boolean constants 0 and 1. Further, each internal node
has two outgoing edges, marked with 0 and 1, respectively. A nondeterministic
(short: n.d.) Branching Program is a BP with some additional unmarked nodes
with out-degree two, called nondeterministic nodes. The size of a (possibly n.d.)
Branching Program G is the number of its nodes, and ist denoted by |G|.

Let G be a (possibly n.d.) BP on X,, and a = (ai,...,a,) € {0,1}" an
assignment to the variables in X,,. A source-to-sink path in G is called com-
putation path of a, if it leaves any node marked with z; over the edge labeled
with a;. Note that an input may have multiple computation paths if G is non-
deterministic.

Let B,, denote the set of Boolean functions {0,1}" — {0,1}. The BP G
represents the function f € B, for which f(a) = 1 if and only if there exists a
computation path of a leading to the 1-sink.

Until today, no superpolynomial lower bounds for general BPs representing
an explicitly defined function are known. Therefore, various types of restricted
BPs have been investigated, and one is interested in refining the proof tech-
niques in order to obtain lower bounds for less restricted BPs. For this paper,
the following two common types of restricted BPs are most important (for an
in-depth discussion of other restricted BP models we refer to [14]).

Definition 2.

(i) A (n.d.) read-k-times BP (short: BPk) is a (n.d.) BP where each variable
appears on each computation path at most k times.

(ii) A (n.d.) (1,+k)-BP is a (n.d.) BP where for each computation path p there
exist at most k variables appearing on p more than once.

Especially deterministic BP1s have been studied to a great extent. The first
exponential lower bounds date back to the 80s [13, 15], and today, lower bounds
for explicitly defined functions in P are as large as 270008 n) [1].

If one considers BPs which allow multiple tests of the same variable during
a computation, then one has to distinguish between syntactic and semantic re-
strictions. The restrictions given in the definition above are semantic, because

they have to hold on each computation path. But since graph theoretical paths
may be inconsistent, one may obtain BPs with less computational power if the
restriction has to hold even on each graph theoretical path. Such restrictions
are called syntactic, and the BPs corresponding to Definition 2 but with syn-
tactic restrictions are called syntactic BPks and syntactic (1,+k)-BPs, respec-
tively. Note that the class of functions computable by polynomial size syntactic
(1,+k)-BPs is in fact a proper subclass of the class of functions computable by
polynomial size (1,4k)-BPs (for k < n'/2/(61logn)) [11].

Besides the general interest in finding exponential lower bounds for less
and less restricted BP-models, much of the research on Branching Programs
has focused on separating the power of different types of Branching Programs.
Similarly, it has been of considerable interest, how the computational power
of BPs is influenced by e.g. the available amount of nondeterminism or the
multiplicity of variable tests (i.e. the term k in BPks or (1,+k)-BPs).

Results on the influence of the available amount of nondeterminism have so
far been obtained only for n.d. BP1s with additional restrictions.

Definition 3.

(i) An (V,k)-BP1 is a family of k deterministic BP1s and represents the func-
tion f1 V...V fk, where f; is the function represented by the sth BP1.

(i) A BP1 is called Ordered Binary Decision Diagram (short: OBDD), if the
nodes can be partitioned into levels such that all edges point only from lower
to higher levels and all internal nodes of one level are marked with the same
variable. A k-Partitioned Binary Decision Diagram (short: k-PBDD) is an
(V, k)-BP1 whose BP1s are in fact OBDDs.

Note that we can regard an (V,k)-BP1 as a n.d. BP1 having a binary tree of
exactly £ — 1 n.d. nodes at the top such that the outgoing edges of the leaves
lead to the sources of k disjoint BP1s. Hence, the set of functions which can be
represented in polynomial size by (V, k)-BP1s is a subset of the functions which
can be represented in polynomial size by BP1s with at most £ — 1 n.d. nodes.
Although not yet proven, the results of [5] indicate that (V, k)-BP1s might be
in fact less powerful than n.d. BP1s with £ — 1 nondeterministic nodes.

Bollig and Wegener [2] have proven the first hierarchy result for k&-PBDDs
with respect to k, which has been extended later by Sauerhoff [6]. He presented
functions being representable by polynomial size (k + 1)-PBDDs but requiring
superpolynomial size k-PBDDs if k = O((n/log!*¢n)'/*) for arbitrary e > 0.
This means that for these k, the polynomial size hierarchy of k&-PBDDs with
respect to k is strict. A generalization of this result was obtained by Savicky
and Sieling [7], who proved that the polynomial size hierarchy of (V, k)-BP1s
with respect to k ist strict for k& < 2/3+/logn.

One of the main contributions of this paper is a hierarchy result for n.d.
BP1s without any restrictions except on the number of n.d. nodes. We present a
class of multipointer functions g¥ € B,,, which can be represented by polynomial

size n.d. BP1s having k n.d. nodes, but require superpolynomial size if at most
k — 1 n.d. nodes are available (for k = o(n/3/1log??n)).

The other main contribution of this paper is an improved hierarchy result
for (1,+k)-BPs with respect to k. For syntactic (1,+k)-BPs, the first hierar-
chy result was obtained by Sieling in 1996 [10] and later improved as well as
generalized for the semantic restriction by Savicky and Zik [9]. They showed
that the polynomial size hierarchy with respect to k is strict for (1, +k)-BPs if
k< %nl/ﬁ/ log'/? n and for syntactic (1,+k)-BPs if k < +y/n/log n. We extend
their result for both types of restrictions by presenting a class of functions for
which polynomial size syntactic (1, +k)-BPs but no polynomial size (semantic)
(1,+(k — 1))-BPs exist if £ = o(+/n/logn).

The hierarchy results for n.d. BP1s and (1,+k)-BPs are possible because
of a new lower bound technique. Interestingly enough, this technique can be
equivalently applied for both types of BPs. It mainly consists of introducing the
notion of strictly k-wise [-mixed functions, and of proving for such functions a
lower bound of 2! + 1 for n.d. BP1s with at most k£ — 1 n.d. nodes and a lower
bound of 2/2 for (1,4k)-BPs. This will be done in Section 2. In Section 3,
we will show how to prove the k-wise [-mixedness of functions. As an easy
example, we show that d-rare m-dense functions, investigated e.g. by Jukna
and Razborov [4], are in fact k-wise l-mixed for [< min {d, m/k}. We obtain as
a corollary exponential lower bounds for linear codes in the (1,+k)-BP model,
which have already been proven in [4], and new exponential lower bounds in the
n.d. BP1 model with restricted amount of nondeterminism. We also show how
to construct easily from a 1-wise [-mixed function in B, a k-wise [/k-mixed
function in By,. This construction helps us in Section 4 to obtain the hierarchy
result for (1, +k%)-BPs. The hierarchy result for n.d. BP1s will finally be stated
in Section 5.

2 The Lower Bound Technique

2.1 Notation

In the following text, we consider functions defined on the n Boolean variables in
X, ={x1,...,2,}. A partial input is an element o = (a!,...,a") € {0,1,*}".
While a position o with value 0 or 1 means that the input variable z; is fixed to
the corresponding constant, a value of * means that the input variable remains
free. If f € By, is a Boolean function and « is a partial input, then f|, means
the subfunction of f obtained by restricting all inputs to «. For a partial input
a € {0,1,%}", we denote the support of a by S(a) := {wz | o # *} The
empty partial input, i.e. the partial input with support (, is written as e. For
two partial inputs «, 8 with the same support, we let D(«, 3) be the set which
contains all variables z; € X,, for which o # £°. If « and 8 are partial inputs

with disjoint supports, then we denote by a8 the partial input defined by

o ifz; € S(a)
(aB) = (B ifz; € S(B)

* otherwise.

2.2 The Concept of k-wise [-mixed Functions

Our lower bound technique relies mainly on a generalization of the following
property of Boolean functions, which was defined by Jukna in 1988 [3].

Definition 4. Let [€ N. A function f € B, is called [-mized, if for all V C X,
such that |V| = [, any two distinct partial inputs «, 8 with support V yield
different subfunctions, i.e. f|o # f|s-

Many exponential lower bound proofs for BP1s use the well known fact, that
l-mixed functions have a BP1 complexity of £2(2!).

Proposition 1. The size of any BP1 for an l-mized function is at least 2' + 1.

In the literature, usually a lower bound of 2! — 1 is stated (see e.g. [14]). But
since we use this bound later in an induction hypothesis, we give here a slight
modified proof.

Proof. In [14] it is shown that each BP1 for an [-mixed function starts with a
complete tree of depth I — 1, and thus has a size of at least 2! — 1. But if one
of the nodes of this complete tree is a sink, then the sink can be reached by
testing at most [— 1 nodes. Thus, there exists a partial input « with support
of size [— 1 such that f|, = ¢ for some ¢ € {0,1}. Then for any variable z;
not in the support of «, it holds that f|q z,=0 = f|a,z;=1 = ¢. This contradicts
the [-mixed assumption. Therefore, there is no sink embedded in the complete
binary tree described above, and counting both sinks (an /-mixed function is
obviously not constant) we get a lower bound of at least 2 + 1. O

The following definition generalizes the above definition of [-mixed functions
and is fundamental for our lower bound technique.

Definition 5. Let kI < n. In the following formula, we restrict the choices of
Wi, ..., Wi, V1,...,V; to disjoint subsets of X, such that |V;| =1 (1 < j <k).
The choices of the partial inputs A;, c;, 8; are restricted in such a way that
S(Aj) = Wj and S(«j) = S(B;) = V;. Below, we allow for each 1 < j < k the
choice of a partial assignment v; € {e;, 8;}. We then denote by 7; the element
in {aj,B8;} \ v; and let ¢ = Ayy1... Ay, and ¢; be the partial assignment
obtained from ¢ by replacing v; with ;.
A Boolean function f € B,, is called k-wise [-mized if

AW, MYV, a1 # B3I € {ag, B} -0 IWi, A Vi, a # Bk vk € {a, Be}
k
Wil <n—kl A F@VI<i<k: fl(z*) # flg,@),
=1

where z* is an input for the subfunction f|. (and f|), ie.

S(*) =X, \(W1uViuU...UW,UV,). If in the above formula we
even have f|.(z*) > flc;(z*) (instead of “#”), then f is called strictly k-wise
l-mized.

Remark 1. Any strictly k-wise [-mixed function is k-wise [-mixed. Furthermore,
any (strictly) (k+1)-wise ({4 1)-mixed function is (strictly) k-wise ({4 1)-mixed
and also (strictly) (k + 1)-wise [-mixed. Finally, a function f is 1-wise [-mixed
if and only if there exists an [-mixed subfunction of f.

2.3 Lower Bounds for BP1ls with Restricted Amount of
Nondeterminism

The property k-wise I-mixed of a Boolean function implies lower bounds for n.d.
BP1s with limited amount of nondeterminism. In order to measure the amount
of nondeterminism in BPs, we need an appropriate measurement. Here, we
choose the number of n.d. nodes, but another possibility would be to count the
maximum number of n.d. nodes on any computation path. The proof of the
following theorem though, can be adapted in order to obtain similar results for
other measures of nondeterminism.

Theorem 1. If f € B, is a strictly k-wise [-mized function and G is a n.d.
BP1 with at most k — 1 n.d. nodes representing f, then |G| > 2! + 1.

In order to prove the theorem, we make use of the notion of filters and
of the idea behind a lower bound technique of Simon and Szegedy [12] for
deterministic BP1s. A filter of a set X is a closed upward subset of 2% (i.e.
if S € F, then all supersets of S are in F). Let F be a filter of X,,. A subset
B C X, is said to be in the boundary of F if B ¢ F but BU {z;} € F for some
z; € Xp.

Let p be a path starting at the source of a n.d. BP1 and leading to an
arbitrary edge e = (v, w). We say that a partial input « induces the path p, if

no variable in S(«) is tested on any path from w to a sink and if « is consistent
with p (i.e. for any c-edge of p, c € {0, 1}, leaving a node marked with z;, either
o' =cor o’ = x).

Lemma 1. Let G be a (possibly n.d.) BP1 on X,. For each filter F of Xy
there ewists a set B in the boundary of F for which at least [2'B1/(|G| - 1)]

different partial assignments with support B (= X, \ B) induce paths leading
to the same edge.

Proof. A filter F defines in the following way a cut, called frontier, through
the edges of G. For a node v except the root let v™ be the set of all variables
that are assigned with a node reachable from v (including v). For the root r
let 7™ = X,,. An edge (v, w) is in the frontier, and thus called frontier edge, if
vt € F but wt € F. Note that each source-to-sink path passes through exactly
one frontier edge, because r* = X, for the root r, s* =) for each sink s and
wt C vT for each edge (v,w). Furthermore, we may associate each frontier
edge (v,w) with an arbitrary set B C X,, in the boundary of F for which
wt C B C vt \ {z;} if v is marked with z; and wt C B C v if v is a n.d.
node. Obviously, the inputs z € {0,1}" reaching this edge are characterized
exactly by their assignments to B := X, \ B.

Since each source-to-sink path of G contains exactly one frontier edge, we
can embed a binary tree into G by letting each frontier edge point to a unique
leaf. This tree has at most |G| — 2 inner nodes (not counting the two sinks of
G) and therefore at most |G| — 1 leaves. Therefore, G contains at most |G| — 1
frontier edges. Hence, there exists a frontier edge e, associated with a set B in
the boundary of F, through which at least [2"/(|G| — 1)| inputs pass through.
Since the inputs reaching e are characterized exactly by their assignment to

B, there are at least [2|E| /(G| - 1)-| assignments to B leading to this frontier
edge. O

We use this lemma in the following proof of Theorem 1.

Proof (of Theorem 1). In the following, we write f < g for two functions f,g
defined on the same domain, if f(z) < g(z) for all inputs z.

The proof is by induction on k. If K = 1, then G contains no n.d. nodes and is
deterministic. Then, upon choosing Wi and A\, appropriately, f|y, is an [-mixed
subfunction of f (see Remark 1) and the claim follows from Proposition 1.

Let now k > 1 and G be a n.d. BP1 consisting of L < 2! nodes, of which
at most £ — 1 are nondeterministic. We assume w.l.o.g. that each n.d. node in
G has two different successors (if this is not the case, we may replace the n.d.
node with its successor). We show that if G computes the function f, then

VWi, A3V, a1 # By € {an, B} ... VWi, M Vi, g # B Vi € {o, Br} -

k k
il >n—ki v fle <\ fly (1)
j=1

i=1

where ¢ and c; are defined as in Definition 5. Hence, f is not strictly k-wise
[-mixed.

Let first W1 C X,, as well as a partial input A\; with support Wy be chosen
arbitrarily. We may assume that |W7| < n — kl, since otherwise there is nothing
to prove. Consider the restricted n.d. BP1 G|, representing the function f|y,
on the variables in X' = X,, \ W7 and note that n’ := |X'| > kl. We define a
filter F on X'.

F={vcX||V|>n -1}

Each set B in the boundary of F has a cardinality of n’ — [, and hence |§| =1
(note that B = X'\ B in this case). Because of Lemma 1, there exists a set
B in the boundary of F such that at least [2‘B|/(L -] > [2Y/@2 -1)] =2
distinct partial assignments with support B induce paths leading to the same
edge (v,w). We let V; = B and a1 # 1 be two such partial assignments with
support V7. Note that |V;| = [. Finally, let ;1 be chosen arbitrarily among «;
and S;. Let f,, be the subfunction defined by the (possibly n.d.) BP1 rooted
at node w. All 1-inputs for f,, obviously are also 1-inputs for fx,, and fy,:,
because the inputs ; and] both induce paths leading to the edge (v,w) in
G|y, - Hence,

fw < f‘)\l’na f|)\17i‘- (2)

Now let p be the path induced by the partial input -1, leading from the
source of G|y, to the edge (v, w). If there is no n.d. node on p, then f| , = fu
and thus f[yy < flxq; by (2). No matter how the choice of the remaining
Wi, iy Vi, o, Bi, i will be, statement (1) is fulfilled.

Therefore, we assume that there is at least one n.d. node on the path p.
Let u be the last n.d. node on this path and let (u,u) and (u,u1) be the two
outgoing edges of u, where (u,ug) is the edge on p. We replace the n.d. node
u with the node u; by redirecting all edges pointing to u in such a way that
they point to u;. Let f' (= f’[n,) be the function computed by the resulting
Branching Program. Obviously

fl‘)\l < f|>\17 (3)

because following the (u,ug)-edge in the original BP1 G|, might only allow
additional inputs to lead to the 1-sink. Furthermore, since u was the last n.d.
node on the path from the source to (v, w) induced by the partial input 7,

(2)
f|)\1’71 = fl‘)\l’)’l Vifw < fll)\l’h Vfb\l’ﬁ‘ (4)

As a last step, we restrict the so obtained n.d. BP1 for the function f'[,, to
an.d. BP1 G for the function f’|5,,,. Note that G is of size smaller than 2! and
that f'[,, is a function on n" = n—1—|W;| > (k—1)! variables. Furthermore,
since we have removed the n.d. node u from G|),, G’ contains at most k—2 n.d.

nodes. This means by the induction hypothesis that the subfunction f|,,, is
not strictly (K — 1)-wise /-mixed. In other words

VWa, Ao Vo, a0 # foVy2 € {ag, Ba} ... YWy, Ay IV, ou # B Yy € {ow, Br}
k

k
Z |WZ| >n' — (k-1 vV (f,|/\1’71)|c’ < \/ (fl|z\171)|c;a
=2

j=2

where ¢’ is the partial input Aoz . .. Agyx and ¢} is obtained from ¢ by replacing
7v; with 7.

Assume first that Zf:z |[W;| > n" — (k —1)l. Because n"” equals n — [— |Wq]|
it follows that Zle |W;| > n — kl, and property (1) is fulfilled. Therefore, we
assume ELQ |[W;| <n" — (k —1)] and hence

k
(f,|)\1’71) |C’ < \/ (fl|)\1’71) |c§ (5)
j=2
Altogether we obtain
f|c = f|>\1’71...)\k7k = (f|>\1’71)|)\2’72---)\k7k

4)
S (f,|’\171)|/\272---/\k7k \% (f|>‘17f)|)‘272---)‘k7k
k

(5) ,
< \/ (f ‘)\1;'71)|)\2---)\k’72---’7j—1’)’;’)/j+1---’Yk \ (f')\yyf)‘)\g'yg...,\k'yk
j=2
® /*
S (\/ (f|)\1'71)|)\2---)\k'72---’)’jI’Y;’)’j+1---’7k> V (f|)\1’7f)|)\2’72...)\k’7k
j=2
k k
= V f|A1)\k’)’1’)’J_1’y]*’yj+1’yk = v flC]
Hence, we have proven (1) O

2.4 Lower Bounds for (1,+k)-BPs

The following theorem shows that the k-wise [-mixed property yields also lower
bounds for deterministic (1,+k)-BPs. Note that the (1,+k)-restriction is se-
mantic in this case.

Theorem 2. Any (1,+(k — 1))-BP computing a k-wise I-mized function has
a size of at least 2V/2.

The rest of this section is devoted to the proof of this theorem.
Jukna and Razborov [4] have used in their lower bound proofs a definition
of so-called “forgetting pairs” with the intention that different pairs of partial

inputs may “forget” the input bits in which they differ if their computation
paths reach the same node. Although slightly different, the following definition
uses a similar idea.

Let in the following for a deterministic BP G the unique computation path
of an input a be denoted by comp(a).

Definition 6. Let v be a node of a BP G. The set L(v) consists of all pairs
(a, B) of partial inputs for which the following three conditions are fulfilled.

1. S(a) = S(B) and a # B.

2. If ¢ is a complete input consistent with « or 3, then comp(c) passes through
.

3. If v is an internal node, then all variables in D(c«, §) are tested on comp(c)
before v is reached.

The set L(G) is the union of all L(v).

The idea behind the set L(v) is that a computation reaching a node v cannot
distinguish two partial inputs «, 8 with (a, 8) € L(v). In other words, the BP
“forgets” at the node v that o and S are different. The following fact is obvious.

Fact 1. Let G be a deterministic BP computing f € By, (o, 8) € L(G) and z*
an assignment to the variables in X, \ S(a). Then either f|o(z*) = f|g(z*) or
there exists a variable x; € D(a, B) which is tested more than once as well on
comp(az*) as on comp(Sz*).

Lemma 2. Let G be a deterministic BP marked with variables in X,, and let
I1>2|log|G|] +1 and 1 <k <n/l. In the following formula we make the same
restrictions on Wj, A\;, Vj, o, B as in Definition 5. Then

VWi, M Vi, a0 # iV € {a1, B} -0 VWi, M3 Vi, g # B Vv € {a, Br} -

k
YN IWil >n—kl v V1<j<k: (cc) € L(G),
i=1

where c is the partial input A\i7y1 ... Ay, and c; is obtained from c by replacing
v with ;.

Proof (of Lemma 2). Let first W7 C X, as well as an assignment A; with
support Wi be chosen arbitrarily. Assume further that |W;| < n — kl, since
otherwise there is nothing to show. We restrict G with respect to A; and obtain
a BP @G, representing the subfunction f|), (note that G|, is not larger than
G). We show now for G|y, how to find a set V1, |V1| <1, as well as two distinct
partial inputs a1, 31 having both support V; such that (a1, 51) € L(G|,,). Note
that if |V1| < [, then we may add arbitrary new variables to V; until |V;| = [,
and obtain new partial inputs a1, 1 by assigning the constants 0 to the new
variables. Clearly, after that it still holds (a1,51) € L(G|x,)-

10

Assume first that there exists a computation path reaching a sink s by test-
ing less than r = |log|G|y,|| + 1 different variables and let « be the partial
assignment inducing this computation path (|S(a)| < r). We choose an arbi-
trary variable z; € S(a) and let Vi = S(a)U{x;}. Then we let «; and /3 be the
partial inputs which extend a by the additional assignment z; = 0 and x; = 1,
respectively. Obviously, (a1,81) € L(s), a1 and $; both have support V; and
Vil <r <L

Assume now that on each computation path at least r variables are tested.
Then we obtain 2" computation paths of length r by following each path until
exactly r variables have been tested. Since 2" > |G|, |, there exist two different
such paths, induced by two partial inputs o # (3, that lead to the same node v.
We extend a and S to a1 and 31 with support V4 = S(a) U S(B) in such a way
that oy and 3y differ at most on the variables in S(a) N S(S3). Clearly, it holds
again (a1,01) € L(v) and |V;1| < 2r — 1 < (this is because |S(a)| = |S(B)| =7
and because S(a) and S(3) share at least the variable which marks the source).

So far, we have constructed upon arbitrary given Wy, A1 two distinct inputs
a1, 41 with support Vi, |Vi| = [, such that (a1,81) € L(G|z,). Thus, for G it
holds ()\1(,!1, Alﬁl) € L(G)

Now let 1 € {a1,01} be chosen arbitrarily. We restrict G|, with respect
to 1 and obtain V3, ao, B2 for the restricted BP G‘)\l’)’l in the same way as
above. This procedure can be repeated k times, because by the requirement
that |Wi|+ ...+ |Wg| < n — kl it is assured that even after the choice of A
there are still [variables not fixed by the assignment A1y ... g 171 g. O

We can finally proof the lower bound technique for (1,+k)-BPs.

Proof (of Theorem 2). Let f € B,, and assume that there exists a (1, +(k — 1))-
BP G for f such that |G| < 2//2. We show that f is not k-wise [-mixed. By
the assumption, we have [> 2|log |G|] + 1 and may apply Lemma 2. Thus, in
order to show that f is not k-wise [-mixed it suffices to show

(V1<j<h: (o) eLG) = (Va3 e{l,.. .k} flela’) = fley(&")),

where ¢ and ¢; have the same properties as in Lemma 2. Let (c, ¢;) € L(G) for
all 1 < j < k. We choose an arbitrary assignment z* to the variables not in
S(c) and let p denote the source-to-sink path induced by the complete input
cz*. Note that by the assumptions of Lemma 2 the sets V; (1 < j < k) are
disjoint and D(c, ¢;) C V;. Hence, the sets D(c, c¢;) are disjoint, too. This means
that since at most k£ — 1 variables are tested more than once on the path p,
there exists by the pigeon hole principle a set D(c,c;) such that no variable
in this set is tested more than once on p. This finally implies by Fact 1 that

fle(@®) = fle; (&7)- :

11

3 Applications

3.1 Linear Codes and d-rare m-dense Functions

As a first application of our lower bound technique, we consider d-rare m-
dense functions, which have been investigated e.g. by Savicky and Zak [8] and
by Jukna and Razborov [4]. Such functions have been known to be hard for
(1,4+%) BPs and our proof method now demonstrates that they are also hard
for n.d. BP1s, if not enough nondeterminism is available.

Definition 7. A function f € B, is called d-rare if any two different inputs
a,b € f~1(1) have a Hamming distance of at least d (i.e. |[D(a,b)| > d). The
function f is called m-dense if |S(«)| > m for any partial input o with f|, = 0.

Theorem 3. Any d-rare m-dense function is strictly k-wise [-mized for
! < min{d, m/k}.

Proof. This proof is simple, because we do not need to bother about the choice
of W;, \; or ; for 1 <4 < k. We simply choose W; = (), A\; = ¢ and upon some
arbitrarily given a; # (; with support V;, |V;| = [, we choose 7; = ;. Then
we consider the partial input ¢ = Ayy1... Mgy, and the inputs c¢; which are
obtained from ¢ by replacing v; with «;. Since f is m-dense and S(c) < kl <m
by construction, we know that the subfunction f|. has an input z* such that
fle(z*) = 1. For this z* on the other hand, the complete inputs cz* and c¢jz*
have a Hamming distance of |D(c,¢;)| < I < d. Therefore, the d-rareness of f
implies f|c;(z*) # 1 for all 1 < j < k. O

Corollary 1. Any n.d. BP1 with at most k n.d. nodes or any (1,+k)-

BP representing a d-rare m-dense function has a size of at least
min{Z(dfl)/Q’ 2|_(m71)/(k—|—1)J/2}'

Note that the same result for (1,+k)-BPs was already obtained by Jukna
and Razborov [4] with a different technique. The result for n.d. BP1s is new
though. The authors of [4] also show that if C' is a linear code over GF'(2) with
minimal distance d; and if C* is its dual with minimal distance do, then the
characteristic function of C' is di-rare and do-dense. This leads to a lower bound
of min {2(41=1)/2 2l(d2=1)/(k+1)]/2} for n.d. BP1s with at most k n.d. nodes and
for (1,+k)-BPs representing such a linear code. We only state one corollary for
Reed-Muller codes, which follows instantly from the discussion in [4] and was
stated there for (1,+k)-BPs.

Corollary 2. Let R(r,£) be the rth order binary Reed-Muller code of length
n = 2¢. Let further 0 < k < n and r = |1/2(£ + log(k + 1))|. Then any (1, +k)-
BP and any n.d. BP1 with at most k n.d. nodes representing the characteristic

function of R(r,£) has size at least ZQ(W)

12

3.2 Disjoint Conjunctions

We state now a theorem which describes how to obtain k-wise I-mixed functions
from [-mixed ones. Let f be a function on variables in X,,. We consider the
disjoint conjunction f* with respect to f on the variables in X},, which is
defined as follows. For = = (z1,...,z,) € {0,1}¥" let f¥(z) = fi(z) A... A
fr(), where f;(z) = f(x(i—l)n—l—la ey Tin)-

Theorem 4. If f is (kl)-mized, then f* is strictly k-wise [-mized.

The [-mixedness of a function f implies that f is hard to compute by BP1s or
equivalently by (1, 40)-BPs. Hence, the above theorem leads to a generalization
of this fact in the sense that the disjoint conjunction f* of a (kl)-mixed function
f is hard to compute for a (1,+(k — 1))-BP.

Proof. Let N = kn and let X; be the set of variables on which f; may depend,
ie. Xi = {Z(i—1)ynt1--->Tin}- We first choose Wi = @ and A; = e. Then we
consider a k-round game in which we play against an adversary who starts the
1th round by choosing V;, oy, B;, after which we are allowed to choose Wi 1, Ai41.
We show that we can influence the game by our choices in such a way that after
r < k rounds the following situation is obtained for any j € {1,...,r}.

(I1) The set Wj1 only consists of variables in X;; for some i; € {1,...,k} and
the indices i1,...,1, are all different.

(I2) All variables in X;,...,X; are fixed by A7yi...A\7%A41, le
XU UuX;, CWiuWu...UuW, UV, UW,41.

(I3) In each X;, 4 & {i1,...,4,}, there are at most 7l variables fixed.

(14) fijamenmro =1 and iy xyin0 =0

Assume that we have played the game k rounds in such a way that (I1)-(14)
are fulfilled for » = k. Because all indices %1, ...,%; are different (I1), and all
variables in X ,..., X;,_ are fixed (I2), the assignment A;7y; ... AgygAg41 forms
a complete input for f¥. We let z* = A\p4; and c, ¢; as in Definition 5. Then
property (I4) implies on one hand that f*|.(z*) = 1, while on the other for each
1 < j <k it follows from f;|c;(z*) = O that fk|cj (z*) = 0. Furthermore, by
property (I1) each of the sets Ws, ..., Wy contains at most n variables. Since
in addition W; = (), we have Zle [Wi| < (k—1)n=N —n < N —Ekl. For the
last inequality we have used kI < n, which follows from the (kl)-mixedness of
f. Altogether, the conditions of Definition 5 showing that f* is strictly k-wise
[-mixed are fulfilled.

Therefore, it suffices to show that we can play the game for k rounds such
that after each round (I1)-(I4) hold. This is trivially true after 0 rounds, and
we show now the claim for the (r 4+ 1)th round (1 <r+1 < k).

Let the adversary choose V41 and a1 # Br+1. Then there exists a variable
z; € Vy41 which is fixed to different constants by a,41 and B,41. Let 4,41 be
the index for which z; € X;,,,. Note that 4,1 & {71,...,%,}, because by (12)

13

all variables in the sets X;,,...,X;, had been fixed in previous rounds and are
therefore not contained in V, ;.

Now we restrict the partial input A17y1 ... A\ YrAr+1041 to the variables in
X, ., and obtain a partial input . In the same way, we obtain 3 by restrict-
ing A\1y1 ... Ar¥rArg18r41 to the variables in X; .. Obviously, S(a) = S(B)
and by our choice of X; ,,, it is @ # B. Furthermore, using the fact that
|Vr+1] = [, we know by (I3) that not more than (r + 1)/ variables are fixed
in X;,,,, hence |S(a)| = |S(B)| < kl. Using the assumption that f is (ki)-
mixed, this implies by Proposition 1 that f|, # f|g (we assume here that
the input variables for f are in X; , instead of in X,,). Thus, there exists
an assignment y to the free variables in X, , as well as a choice v € {a, 8}
such that f|,(y) = 1 and f|,«(y) = 0. We finally let 7,1 be the element
in {ay41,0Br+1} which corresponds to the above choice of . Then obviously
fir+1|)\1’71---)\r’yr)\r+1’7r+1(y) = 1 and fiT+1|)\171---A7"Y’7'A7‘+1’Y7.*+1(y) = 0. Hence, if
we let A\rjo := y and W49 = S(Ar42), then (I4) is fulfilled. Furthermore,
by construction W; 2 only consists of variables in X; ., and all variables in
Xiyy.--,Xj,,, are fixed. Therefore also (I1) and (I2) hold. Condition (I3) fol-
lows already from (I1) and (I2), because each of the assignments 7, ... ,~, fixes
at most [variables and the assignments Aj,..., Ar4+1 fix only variables in Xj,
i € {i1,-..,ir}. We have shown therefore, that there exists a playing strategy
such that for any 0 < r < k after the rth round the conditions (I1)-(I4) are
fulfilled. This proves the claim. O

4 Improving the Hierarchy for (1,+k)-BPs

We consider now the function weighted sum, which was used by Savicky and
Z3k [9] in order to prove a hierarchy for (1,+k)-BPs.

Definition 8. For any positive integer n let p(n) be the smallest prime greater
than n. The function WS,, € B,, (called weighted sum) is defined by

WS,(@) — {x itse{l,.,np Sz(z":m) mod p(n).

x1 otherwise, =

Savicky and Zak have shown that WS,, is I-mixed for large [, and have used
this function in order to obtain a hierarchy for (1,+k)-BPs.

Theorem 5 ([9]). For any 6 > 0 and any large enough n, the function WS,
is l-mized for l =n — [(2+ 0)y/n| — 2.

Theorem 6 ([9]). There exists a class of functions hyj € By representable
by polynomial-size (1, +k)-BPs but not by polynomial-size (1,+(k — 1))-BPs as
long as k < n'/8/(log'/ n).

14

It is obvious how to construct a syntactic (1,+1)-BP representing the func-
tion WS,, with at most O(n?) nodes. On the other hand, Theorem 5 implies that
any (1,40)-BP (or equivalently any BP1) for WS,, has exponential size. We may
now look at the disjoint conjunction fy j := (WS,)* with respect to WS,,. Note
that fxx is a function in N = kn variables. Furthermore, it is easy to see that
fnk can be computed by a syntactic (1,+k)-BP of size O(kn?) = O(N?/k).
But by Theorem 1 and Theorem 4 we know that any (1,+(k — 1))-BP for fy
has a size of at least 2//(%%) where | = n — [(2 4 0)\/n] — 2 = 2(n) = 2(N/k).
(for any ¢ and sufficiently large n). Hence, we get an improved hierarchy as
described by the following corollary.

Corollary 3. The function fyj € By can be represented by polynomial size
syntactic (1,+k)-BPs but not by polynomial size (1,4+(k —1))-BPs for k =

o(VATIog).

5 A Hierarchy for BP1s with Restricted Amount of
Nondeterminism

We finally develop a family of multipointer functions g%, which can be easily
computed in polynomial size by (k + 1)-PBDDs. On the other hand, for any
BP1 having at most £ — 1 n.d. nodes, an exponential size is required. Recall
that a (k + 1)-PBDD can be regarded as a restricted n.d. BP1 having exactly
k n.d. nodes at the top.

The idea behind the following definition of gf is inspired by the func-
tions used by Savicky and Sieling [7] for their hierarchy result for (V, k)-BP1s.
Let n and k be arbitrary integers such that k(k + 1) < n/[logn], and let
b = |n/(k(k+1))] and s = |b/[log(kb)]|. We partition the n variables in
X, into k(k + 1) consecutive blocks B;; of size b, where i € {0,...,k} and
j € {0,...,k— 1}, and possibly one block of the remaining variables. Each
block B; ; is then partitioned into [log(kb)] subblocks, each having either size
s or size s + 1. The set of the input variables in the blocks B;g,...,B;_1 is
called the sector S; (0 < i < k) of the input and has cardinality kb. For the
ease of notation, we enumerate the variables in such a way that the sector S;
contains the variables x;,...,Z; kp—1-

The function value of the function g¥ is determined as follows. The majority
of the setting of the s variables in each subblock of a block B; ; determines a
bit. The [log(kb)] bits obtained this way for a block B; ; are interpreted as an
integer in {0, ..., 2Mogkb)] _ 1}, which is taken modulo kb such that a value
pi; €{0,...,kb— 1} is obtained. This value p; ; points to the variable Tigj,p;
in the sector Sjg;, where i®j := (i+j+1) mod (k+1). Let h; ; be the function
which computes the value of the input variable the pointer p; ; points to, i.e.

15

hi,j(:(;) = wi@j,pi,]" Then

k—1 k
hi = /\hi,j and gz = Vh,
7=0 =0

Since the function g is the disjunction of k£ + 1 functions h;, a correct
(k + 1)-PBDD may consist of kK + 1 OBDDs, each representing a function h;
(0 < i < k). The idea behind constructing an OBDD which represents h; is that
the OBDD reads a block B; ; of the sector S;, determines the corresponding
pointer p; ; and finally may obtain the value of the function h; ;. Depending on
whether this value is 0 or 1, the OBDD stops with output 0 or continues this
proceeding with the next block B; ;i1 in the sector S;. Before we make this
idea more precise, we note a simple fact about the functions g£.

Fact 2. For any i, the pointers p; g, ..., p;r—1 all point to variables in different
sectors in {So,..., Sk} \ {Si}.

This is clear from the definition of ¢ @ j.
Theorem 7. There ezxists a (k + 1)-PBDD for gk of size O(n?/k?).

Proof. We describe for arbitrary 7 € {0, ...,k} the construction of a BP G; of
size O(n3 / k4) representing the function h;. We argue that each G; is in fact an
OBDD such that the desired (k + 1)-PBDD consists of Gy, ..., G.

In order to evaluate h; for an input z, the BP G; first tests all variables
in the block B; and computes the value of the pointer p; o € {0,...,kb— 1}.
The majority of each subblock can be computed with 0(32) nodes by simply
counting the number of variables which are set to 1. In order to compute the
pointer p; ;, the BP reads a subblock, stores the resulting majority and continues
reading the next subblock until all [log kb] bits are stored. It is easy to verify
that this can be done with

0(52(1 +244+...+ 2(1"%’“*’1)) = O(s%kb)

nodes. After that, the value of p;o is uniquely defined by the bits computed
this way, and the BP may finally read in sector S;go the variable to which this
pointer points to. If this variable is set to 0, then h;o(z) = 0, and the BP
reaches the 0-sink. Otherwise, the BP repeats the procedure described above
with the blocks B;1,...,B;k_1, and returns 1 if no 0-sink is reached in this
proceeding.

It is clear from the description that G; computes the function h;. Note that
by Fact 2 the sectors S, Sigo, - - -, Sig (k1) are all different such that no variable
needs to be tested more than once. Furthermore, the sectors Sigo, - - -, Sig k1)
are read in this order, and each sector S;q; is read right after the block B; ;.
Thus, the variable ordering can be fixed in advance and G; is an OBDD. Since
the processing of one block in the sector S; requires at most O(s2kb) nodes,
the BP G; may be constructed out of O(s%k2b) = O(n?/k*) nodes. 0

16

As we have shown above, it is easy for (k + 1)-PBDDs to compute the
functions g¥, and therefore also for n.d. BP1s with k n.d. nodes. We prove now
that g¥ is k-wise [-mixed for large [, and hence is hard to compute for n.d. BP1s
with at most k¥ — 1 n.d. nodes.

Theorem 8. Any n.d. BP1 computing gk has a size of at least 92 (n/(k? log")),

if the BP1 contains at most k — 1 n.d. nodes. This is not polynomial for k =
o(n'/3/ log?/® n)

Before we prove the theorem, we state another simple fact about the func-
tions gk.

Fact 3. Let V C X,,. Then for any block B;j such that |B;;NV| < s/2 -1
and any variable T;q;q in the sector Sig;, there exists an assignment X to the
variables in B; j\V such that independently of any assignment to V', the pointer
Dij points to Tigjq (i-€. hij|x = Tigjq)

Proof. Recall that each subblock of B; ; consists of either s or s + 1 variables.
Since at least s/2 + 1 variables are available in B; ; \ V, the majority in each
subblock of B;; can be influenced by assigning appropriate values to these
variables independently from any setting to V. This way, the value of the pointer
pi; can be set to all possible integers in {0,...,kb— 1}. O

Let in the rest of this section

L= 5 = 2 (rgm)

We show below that gF is strictly k-wise I-mixed.

Similar to the proof of Theorem 4, we play a k-round game against an
adversary. Before the game starts, we choose A1 in such a way that it fixes
the first variable of each sector (i.e. z;9 for 0 < i < k) to the constant 0.
Then k rounds are played where the adversary starts the sth round by choosing
Vi, @i # B; upon which we are allowed to choose v; € {a;, 8} and Wit1, Aiy1.

Claim 1. Let W1, A1 be chosen as described above before the game starts. There
is a playing strategy for the game guaranteeing that the following situation is
obtained after r < k rounds for allt € {1,...,r}.
(I1) For some iy € {0,...,k} and j; € {0,...,bk}, there is a variable z;, j, such
that the assignment ~y; sets the variable x;, j, to 1 and the assignment v}
sets it to 0.
(12) The indices i1,...,i, are all different.
(18) All variables in the sectors S;,,...,S;, are fized by My1 ... \pYrApy1, i-e.

S, U...US;, CWiUViU...UW, UV, UW,1.

(I4) In each sector S;, i & {i1,...,ir}, there are at most rl + 1 variables fized.
(I5) Each pointer p;, ; (0 < j <k — 1) of the sector S;, points to x;,q;0 (which
is the first variable in the sector Sj,q;).

17

Proof. For r = 0, the claim is trivially fulfilled. Assume therefore that (I1)-(I5)
hold after r — 1 rounds. We describe the strategy in the rth round.

Let V., o # B, be chosen by the adversary and let %,, j, be arbitrary indices
for which o, and f, differ in their assignment to z;, ;.. Choose v, € {a;, 3, } to
be the assignment which sets z;, j, to 1. This choice already fulfills (I1). Since

by (I3) after the previous round all variables in the sectors S;,,...,S; _, had
been fixed, we know that i, is different from iy,...,4,_1, and thus (I2) holds,
too.

Now we choose W, to contain all variables in the sector S;, which have
not yet been fixed (we determine the choice of A, later). This satisfies (I3).
Furthermore, by (I4), after the previous round there have been in any sector S;,
i ¢ {i1,...,ir} at most (r — 1)l + 1 variables been fixed. But W, ;1 contains by
definition no variables in any of these sectors and V; contains only [variables
at all. Hence, (I4) also holds after this round.

We finally have to show that (I5) can be fulfilled by the appropriate choice
of Ary1, where S(A\,41) = Wy41. Let V' be the variables being fixed by the
assignments in the previous rounds as well as by the assignment 7,. We know
— because (I4) was fulfilled after the previous round and because -y, fixes [
variables — that for any block B;, ; (0 < j <k —1) it holds

VB, | <rl+1 < r(s/2-2)/k+1 < s/2-1.

Hence, by Fact 3 we may choose A,y1 in such a way that all pointers p;, ; point
to Zj,@;,0- Therefore, also (I5) is satisfied. O

This k-round strategy allows us finally to prove Theorem 8.

Proof (of Theorem 8). Assume that we have played the game k rounds and
that w.l.o.g. iy = ¢ for 1 < ¢ < k. Le., 0 is the only index in {0,...,k} that
is not contained in {i1,...,7;}. Note that by our choice of A\; before the game
started, we know that all the first variables of each sector are set to 0. Property
(I5) means that all pointers determined by the sectors Si, ..., S point to these
variables and hence all subfunctions obtained from hy, ..., h; by the restriction
A1V - - AV Ak+1 equal 0. Since hg is the only function that is not degenerated
to 0 by this restriction, this means that for 1 < j7 < k and for ¢,¢; as in
Definition 5,

gmc)\k_,_l = h’0|C)\k+1 a‘nd gfl|cj)\k+1 = h‘O|Cj)\k+1' (6)

Note that by (I4) there are in each subblock of the sector Sy at most kl+1 <
s/2 — 1 variables fixed. Hence, by Fact 3 we may find an assignment y to the
free variables in such a way that each of the pointers pg , (0 < z < k—1) points
to one of the variables x;, j,, for t = 1,..., k. Then we know that hq ;|c,,, (¥) =
Tiyjilene, = 1 because of (I1). Therefore, holcy,,,(y) = 1. On the other hand,

18

foreach1 < j <k

k
ho‘c‘j)\k+1(y) = /\wit,jt‘CjAkH =0,
t=1

which is because by (I1) z;, j, |7; = 0 for 4y = j. Thus, letting z* = yA\t,1 and in-

voking (6) shows that gf|c(2*) = glene, (¥) = 1 and gile; (%) = gRle;nepa () =
0 for each 1 < j < k. Further, the sets Wa,..., W) contain no variables in S
and Wi contains only one variable in Sy. Hence,

k
S Wil < n—[Sol+1 = n—kb+1<n—kL
i=1
Altogether we have shown that g% is k-wise I-mixed. O

Obviously, the Theorems 7 and 8 yield a polynomial size hierarchy for non-
deterministic BP1s with respect to the number of nondeterministic nodes. We
summarize this result by the following corollary.

Corollary 4. Let NPy (BP1) be the class of Boolean functions which can be
represented in polynomial size by n.d. BP1s with at most k n.d. nodes. Then
NP (BP1) G NP, 1(BP1) if k = o(n!/3/1og?3n).

Acknowledgment

I thank Beate Bollig, Martin Sauerhoff, Detlef Sieling and Ingo Wegener for
proofreading and helpful comments.

19

References

1.

10.

11.

12.

13.

14.

15.

A. Andreev, J. Baskakov, A. Clementi, and J. Rolim. Small pseudo-random sets
yield hard functions: New tight explict lower bounds for branching programs. In
Proceedings of the 26th International Colloquium on Automata, Languages, and
Programming, vol. 1644 of Lecture Notes in Computer Science, pp. 179-189. 1999.

B. Bollig and I. Wegener. Complexity theoretical results on partitioned (nonde-
terministic) binary decision diagrams. Theory of Computing Systems, 32:487-503,
1999.

S. Jukna. Entropy of contact circuits and lower bounds on their complexity. The-
oretical Computer Science, 57:113-129, 1988.

. S. Jukna and A. Razborov. Neither reading few bits twice nor reading illegally

helps much. Discrete Applied Mathematics, 85:223-238, 1998.

M. Sauerhoff. Computing with restricted nondeterminism: The dependence of
the OBDD size on the number of nondeterministic variables. In Proceedings of the
19th Conference on Foundations of Software Technology and Theoretical Computer
Science, vol. 1738 of Lecture Notes in Computer Science, pp. 342-355. 1999.

M. Sauerhoff. An improved hierarchy result for partitioned BDDs. Theory of
Computing Systems, 33:313-329, 2000.

P. Savicky and D. Sieling. A hierarchy result for read-once branching programs
with restricted parity nondeterminism. In Mathematical Foundations of Computer
Science: 25th International Symposium, vol. 1893 of Lecture Notes in Computer
Science, pp. 650-659. 2000.

P. Savicky and S. Zdk. A lower bound on branching programs reading some bits
twice. Theoretical Computer Science, 172:293-301, 1997.

P. Savicky and S. Zdk. A read-once lower bound and a (1,+k)-hierarchy for
branching programs. Theoretical Computer Science, 238:347-362, 2000.

D. Sieling. New lower bounds and hierarchy results for restricted branching pro-
grams. Journal of Computer and System Sciences, 53:79-87, 1996.

D. Sieling. A separation of syntactic and nonsyntactic (1, +k)-branching programs.
9:247-263, 2000.

J. Simon and M. Szegedy. A new lower bound theorem for read-only-once branching
programs and its applications. In Advances in Computational Complexity Theory,
vol. 13 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pp. 183-193. AMS, 1993.

I. Wegener. On the complexity of branching programs and decision trees for clique
functions. Journal of the ACM, 35:461-471, 1988.

1. Wegener. Branching Programs and Binary Decision Diagrams - Theory and
Applications. Siam, first edition, 2000.

S. Zak. An exponential lower bound for one-time-only branching programs. In
Mathematical Foundations of Computer Science: 11th International Symposium,
vol. 176 of Lecture Notes in Computer Science, pp. 562—566. 1984.

20

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

