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Abstract

It is a known approach to translate propositional formulas into systems of polyno-
mial inequalities and to consider proof systems for the latter ones. The well-studied
proof systems of this kind are the Cutting Planes proof system (CP) utilizing linear
inequalities and the Lovasz-Schrijver calculi (LS) utilizing quadratic inequalities. We
introduce generalizations LS of LS that operate with polynomial inequalities of degree
at most d.

It turns out that the obtained proof systems are very strong. We construct polyno-
mial-size bounded degree LS? proofs of the clique-coloring tautologies (which have no
polynomial-size CP proofs), the symmetric knapsack problem (which has no bounded
degree Positivstellensatz Calculus proofs), and Tseitin’s tautologies (which are hard
for many known proof systems). Extending our systems with a division rule yields a
polynomial simulation of CP with polynomially bounded coefficients, while other extra
rules further reduce the proof degrees for the aforementioned examples.

Finally, we prove lower bounds on Lovasz-Schrijver ranks and on the “Boolean
degree” of Positivstellensatz Calculus refutations. We use the latter bound to obtain
an exponential lower bound on the size of static LS and tree-like LS? refutations.
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1 Introduction

An observation that a propositional formula can be written as a system of polynomial
equations has lead to considering, in particular, the Nullstellensatz (NS) and the Poly-
nomial Calculus (PC) proof systems, see Subsection 2.2 below (we do not dwell much
here on the history of this rich area, several nice historical overviews one could find in e.g.,
[BIK*96, BIK*97, Raz98, IPS99, CEI96, BGIP01]).

For these proof systems several interesting complexity lower bounds on the degrees of
the derived polynomials were obtained [Raz98, IPS99, BGIP01]. When the degree is close
enough to linear (in fact, greater than the square root), these bounds imply exponential
lower bounds on the proof complexity (more precisely, on the number of monomials in the
derived polynomials) [IPS99]. If polynomials are given by formulas rather than by sums of
monomials as in NS or in PC, then the complexity could decrease significantly. Several gaps
between these two kinds of proof systems were demonstrated in [GHO1].

Systems of polynomial inequalities yield much more powerful proof systems than these
operating with equations only, such as NS or PC. Historically first such a proof system
is Cutting Planes (CP) [Gom63, Chv73, CCT87, CCH89], see also Subsection 2.3. This
system uses linear inequalities (with integer coefficients). Exponential lower bounds on proof
size were established for CP with polynomially bounded coefficients [BPR95] as well as for
the general case [Pud97].

Another family of well-studied proof systems are so-called Lovéasz-Schrijver calculi (LS)
[LS91, Lov94], see also [Pud99] and Subsection 2.3 below. In these systems one is allowed
to deal with quadratic inequalities. No non-trivial complexity lower bounds are known for
them so far. Moreover, generalizing LS to systems LS? that use inequalities of degree at most
d (rather than 2 as in LS=LS?) yields a very powerful proof system. In particular, there exists
a short LS* proof of the clique-coloring tautologies (see Section 4). On the other hand, for
these tautologies an exponential lower bound on the complexity of CP proofs was obtained
in [Pud97], relying on the lower bound for the monotone complexity [Raz85]. Furthermore,
we construct a short proof for the clique-coloring tautologies in the proof system LS + CP?
(see Section 4) that manipulates just quadratic inequalities, endowed with the rounding
rule (it generalizes directly the rounding rule for linear inequalities in CP). These results
mean, in particular, that neither LS* nor LS + CP? have monotone effective interpolation,
while for a system LS 4+ CP! where the use of rounding rule is limited to linear inequalities,
a (non-monotone) effective interpolation is known [Pud99].

An analogue of (already mentioned) non-trivial lower bounds on the degree of derived
polynomials in PC would fail in LS? as we show in Section 3, namely, every system of
inequalities of degree at most d having no real solutions posseses an LS?? refutation.

A proof system manipulating polynomial inequalities called the Positivstellensatz Calcu-
lus was introduced in [GVO01]. Lower bounds on the degree in this system were established
for the parity principle, for Tseitin’s tautologies [Gri0lb] and for the knapsack problem
[Gri0la]. Lower bounds on the Positivstellensatz Calculus degree are possible because its
“dynamic” part is restricted to an ideal and an element of a cone is obtained from an element
of ideal by adding the sum of squares to it. On the contrary, LS is a completely “dynamic”
proof system. (The discussion on static and dynamic proof systems can be found in [GV01].



Briefly, the difference is that in LS a derivation constructs gradually an element of the cone
generated by the input system of inequalities, while in the Positivstellensatz Calculus the
sum of squares is given explicitly.) We consider a static version of Lovasz-Schrijver calculi
and prove an exponential lower bound on the size of refutation of the symmetric knapsack
problem (Section 9); this bound also translates into the bound for the tree-like version of
(dynamic) LS. The key ingredient of the proof is a linear lower bound on the “Boolean
degree” of Positivstellensatz Calculus refutations (Section 8). Note that exponential lower
bounds on the size of (static!) Positivstellensatz refutations are still unknown.

Also the lower bound on the Positivstellensatz Calculus degree of the knapsack problem
[Gri0la] entails (see Subsection 7.2) a lower bound on the so-called LS-rank [LS91, Lov94].
Roughly speaking, the LS-rank counts the depth of multiplications invoked in a derivation.
A series of lower bounds for various versions of the LS-rank were obtained in the context
of optimization theory [ST99, CDO01, Das01, GT01]. For a counterpart notion in CP, the
so-called Chvétal rank [Chv73], lower bounds were established in [CCT87, CCH89]. To the
best of our knowledge, the connection between the Chvatal rank and CP proof complexity
is not very well understood, despite a number of interesting recent results [BEHS99, ES99].
As a rule, however, diverse versions of the rank grow at most linear, while we are looking for
non-linear (exponential as a dream) lower bounds on the proof complexity. It turns out that
for the latter purpose the rank is a too weak invariant. In particular, there are short proofs
for the pigeon-hole principle (PHP) in CP [CCT87] and in LS [Pud97], while we exhibit in
Subsection 7.3 a linear lower bound on the LS-rank of the PHP. Another example of this
sort is supplied by the symmetric knapsack problem for which in Section 5 we give a short
LS3-proof.

The above-mentioned LS*-proof of the symmetric knapsack follows from a general fact
that LS? systems allow to reason about integers. In Section 6 we extend this technique to
Tseitin’s tautologies (which have no polynomial-size proofs in resolution [Urq87], Polynomial
Calculus [BGIP01] and bounded-depth Frege systems [BS01]). In Section 5 we also consider
a certain extended version LS, spi¢ of LS that, apart from the issue with integers, allows one
to perform a trial of cases with respect to whether f > 0, f < 0, f = 0 for a linear
function f (similar sorts of an extension of CP were introduced by Chvétal [unpublished]
[Pud99] and Krajicek [Kra98|) and allows also to multiply inequalities. We show that LS, sy
polynomially simulates CP with small coefficients. The same effect can be achieved by
replacing the multiplication and the trial of cases by the division rule that derives g > 0
from fg > 0 and f > 0.

Finally, we formulate numerous open questions in Section 10.

2 Definitions

2.1 Proof systems

A proof system [CR79] for a language L is a polynomial-time computable function mapping
words (proof candidates) onto L (whose elements are considered as theorems).

A propositional proof system is a proof system for any fixed co-NP-complete language of
Boolean tautologies (e.g., tautologies in DNF).



When we have two proof systems II; and I, for the same language L, we can compare
them. We say that II; polynomially simulates 1l,, if there is a function g mapping proof
candidates of II, to proof candidates of Il; so that for every proof candidate =« for Il,, one
has II;(g(7)) = IIy(7) and g(7) is at most polynomially longer than 7.

Proof system II; is exponentially separated from Iy, if there is an infinite sequence of
words t1,1s,... € L such that the length of the shortest II;-proof of ¢; is polynomial in the
length of ¢;, and the length of the shortest II,-proof of ¢; is exponential.

Proof system I1; is exponentially stronger than Il,, if II; polynomially simulates I, and
is exponentially separated from it.

When we have two proof systems for different languages L; and Ly, we can also compare
them if we fix a reduction between these languages. However, it can be the case that the result
of the comparison is more due to the reduction than to the systems themselves. Therefore, if
we have propositional proof systems for languages L; and Lo, and the intersection L = L{NL,
of these languages is co-NP-complete, we will compare these systems as systems' for L.

2.2 Proof systems manipulating with polynomial equations

There is a series of proof systems for languages consisting of unsolvable systems of polynomial
equations. To transform such a proof system into a propositional proof system, one needs
to translate Boolean tautologies into systems of polynomial equations.

To translate a formula F' in k-DNF, we take its negation —F in k-CNF and translate each
clause of —=F into a polynomial equation. A clause containing variables v;,,...,v;, (t < k)
is translated into an equation

Q=0)...-(1—1) =0, (2.1)

where [; = vj, if variable v, occurs positively in the clause, and I; = (1 — vj;) if it occurs
negatively. For each variable v;, we also add the equation v? — v; = 0 to this system.

Remark 2.1. Observe that it does not make sense to consider this translation for formulas
in general DNF (rather than k-DNF for constant k), because an exponential lower bound
for any system using such encoding would be trivial (note that (1 —vy)(1 —vg)...(1 —v,)
denotes a polynomial with exponentially many monomials).

Note that F'is a tautology if and only if the obtained system S of polynomial equations
fi=0, fo=0,..., fr, = 0 has no solutions. Therefore, to prove F' it suffices to derive a
contradiction from S.

Nullstellensatz (NS) [BIK"96]. A proof in this system is a collection of polynomials
91, - - -, Gm such that

Z figi = 1.

'Tf one can decide in polynomial time for ¢ € L;, whether z € L, then any proof system for L; can be
restricted to L C Ly by mapping proofs of elements of L; \ L into any fixed element of L. For example, this
is the case for L, consisting of all tautologies in DNF and L consisting of all tautologies in k-DNF.




Polynomial Calculus (PC) [CEI96]. This system has two derivation rules:
—0;pp=0 =0
ph=5%p=" and p=v (2.2)
pLtp2=0 p-qg=0

Ie., one can take a sum? of two already derived equations p; = 0 and p, = 0, or
multiply an already derived equation p = 0 by an arbitrary polynomial q. The proof
in this system is a derivation of 1 = 0 from S using these rules.

Positivstellensatz [GV01]. A proof in this system consists of polynomials g, . .., g, and

hi,...,h; such that
D fgi=1+) B (2.3)
{ J

Positivstellensatz Calculus [GV01]. A proof in this system consists of polynomials
hi,...,h and a derivation of 1+ 3, h? = 0 from S using the rules (2.2).

2.3 Proof systems manipulating with inequalities

To define a propositional proof system manipulating with inequalities, we again translate
each formula —F" in CNF into a system S of linear inequalities, such that F'is a tautology if
and only if S has no 0-1 solutions. Given a Boolean formula in CNF, we translate each its
clause containing variables v;,, ..., v;, into the inequality

htetl>1, (2.4)

where [; = vj, if the variable v;, occurs positively in the clause, and /; = 1 — vj; if v;, occurs
negatively. We also add to S the inequalities

0, (2.5)
1

IN IV

for every variable x.

Cutting Planes (CP) [Gom63, Chv73, CCT87, CCH89], cf. also [Pud99]. In this
proof system, the system S defined above must be refuted (i.e., the contradiction
0 > 1 must be obtained) using the following two derivation rules:

fi>20; .5 >0
St Nfi >0
Dot > ¢
> airs > [l

We restrict the intermediate inequalities in a CP derivation to the ones having integer
coefficients (except the constant term).

(where X; > 0), (2.7)

(where a; € Z, and z; is a variable). (2.8)

2Usually, an arbitrary linear combination is allowed, but clearly it can be replaced by two multiplications
and one addition.



Lovasz-Schrijver calculus (LS) [LS91, Lov94]|, cf. also [Pud99]. In the weakest of
Lovasz-Schrijver proof systems, the contradiction must be obtained using the rule
(2.7) applied to linear or quadratic f;’s and the rules

f=20. f=>0

m, W (where f is linear, x is a variable). (2.9)
T > —x) >

Also, the system S is extended by the axioms
2?2 —z>0, z—2°>0 (2.10)
for every variable x.

LS, [LS91, Lov94, Pud99]. This system has the same axioms and derivation rules as LS,
and also has the axiom

>0 (2.11)
for every linear /.

LS. [LS91, Lov94, Pud99]. This system has the same axioms and derivation rules as LS,
and also the derivation rule

f>20;,9g>0

7950 (f, g are linear). (2.12)

LS. . . This system unites LS, and LS,.

LS + CP' [Pud99]. It has the same axioms and derivation rules as LS and also the round-
ing rule (2.8) of CP which can be applied only to linear inequalities.

Note that all Lovasz-Schrijver systems described in this subsection deal either with linear
or quadratic inequalities.

2.4 New dynamic systems

In this paper we consider several extensions of Lovasz and Schrijver proof systems. First,
we define system LS + CP? which is slightly stronger than Pudldk’s LS + CP'.

LS + CP2. It has the same axioms and rules as LS and also the extension of rounding rule
(2.8) of CP to quadratic inequalities:

Do G T+ 0T > ¢
Doij W%y + Y0, 4T > [l

(where a;,a;; € Z, and z; is a variable).  (2.13)

We then consider extensions of Lovasz-Schrijver proof systems allowing monomials of
degree up to d.



LS?. This system is an extension of LS. The difference is that rule (2.9) is now restricted to
f of degree at most d — 1 rather than to linear inequalities. Rule (2.7) can be applied
to any collection of inequalities of degree at most d.

Remark 2.2. Note that LS=LS?.

Similarly, we consider LS?, transforming in (2.12), the condition “f, g are linear” into
“deg(fg) < d”.

LSZ,;- This system allows not only inequalities of the form f > 0, but also of the form
f > 0. The derivation rules (2.7) and (2.9) are extended in a clear way to handle both
types of inequalities, and f > 0 can be always relaxed to f > 0. The axiom 1 > 0
is added. Also if under each of the three assumptions f > 0, f < 0 and f = 0 (a
shorthand for the two inequalities f > 0 and f < 0) there is an LSgplit derivation of
inequality A > 0, then we say that h > 0 is derived in LS;ith.

Remark 2.3. Observe the difference of splitting in LSZ;, and in Chviétal’s “CP with sub-
sumptions”, an extension of CP formulated e.g. in [Pud99]. The tautology “f >0 or f <0
or f = 0” which we consider is valid for all real f’s, while the tautology “f > 1or f <07 is

valid only for integer ones.

Remark 2.4. One can also consider a more powerful system by transforming Lsgpht into a
sequent calculus similarly to R(CP) in [Kra98].

LS¢ i is defined similarly. Note that the version of (2.12) for strict inequalities is

f>0;,9g>0
fg>0

Remark 2.5. Observe that the analogue of (2.10) (with the condition “deg(/?) < d” instead

I EPRE ” ; ; ; d : d —7Qd d —_1.Qd
of “l is linear”) can be easily derived in LS, i.e., LS (;;;=LS¢ ), and LSG | i =LS¢ .

d . . . d
LSG/1-spii¢ 18 a restricted version of LiS{

z =0,z =1 only (z is a variable).

where the splitting is made for the assumptions

LS‘/i is an extension of LS? with strict inequalities by another useful rule:

fg>0; f>0
g>0 '

LSepiits LS. spiit, €tc. are shorthands for the corresponding systems restricted to d = 2.



2.5 New static systems

Nullstellensatz is a “static” version of Polynomial Calculus; Positivstellensatz is a “static”
version of Positivstellensatz Calculus. Similarly, we define “static” versions of the new proof
systems defined in the previous subsection.

Static LS"™. A proof in this system is a a refutation of a system of inequalities S = {s; >
0}._,, where each s; > 0 is either an inequality given by the translation (2.4), an
inequality of the form z; > 0 or 1—x; > 0, or an inequality of the form x?—xj > 0. The
refutation consists of positive real coefficients w;; and multisets U:l and Ui,_l defining
the polynomials

Uy = Wiy H Zg - H (1 — k)

keU, keU;,

such that

t

> s Y ug=-L (2.14)
=1

l

Static LS’}. The difference from the previous system is that S is extended by inequalities
St41 > 0,...,s¢ > 0, where each polynomial s; (j € [t + 1..t']) is a square of another
polynomial s’. The requirement (2.14) transforms into

¢
ZSZ'ZUM =—1. (215)
1=1 l

Static LS. The same as static LS", but the polynomials s} can be only linear.

Remark 2.6. Note that static LS, includes static LS".

Remark 2.7. Note that these static systems are not propositional proof systems in the
sense of Cook and Reckhow [CR79], but are something more general, since there is no clear
way to verify (2.14) in deterministic polynomial time (cf. [Pit97]). However, they can be
easily augmented to match the definition of Cook and Reckhow, e.g., by including a proof
of the equality (2.14) or (2.15) using axioms of a ring (cf. F-NS of [GHO1]). Clearly, if we
prove a lower bound for the original system, the lower bound will be valid for any augmented
system as well.

Remark 2.8. The size of a refutation in these systems is the length of a reasonable bit
representation of all polynomials u;,, s; (for i € [1..]) and s (for j € [t + 1..']) and is thus
at least the number of u;;’s.

Example 2.1. We now present a very simple static LS, proof of the propositional pigeon-
hole principle. (It is easy to see that the same proof can be also conducted in (dynamic)
LS =LS?%; there is even a polynomial-size (dynamic) LS proof [Pud99], but it is slightly

9



longer.) The negation of this tautology is given by the following system of inequalities (later
denoted by PHP):

m—1
DT> 1<k<m (2.16)
=1

Tpe + Trre < 1 1<k<k <m 1<t<m-1. (2.17)

That says that the k-th pigeon must get into a hole, while two pigeons k& and k' cannot
( y g g g

share the same hole £.)
m—1
=1

Here is the static LS proof:

ANGE

k=1
m—1 m
E Tke —
=1 k=1
m—1 m
E E (1 — The — Thg) Tt +
=1 k=1 k#k'=1
m—1

(ke — @) (m — 1)

NE

1

I
|}—‘
=

O

3 Encodings of formulas in LS? and upper bounds on
the refutation degree

In LS? Boolean formulas are encoded as linear inequalities. However, this is not the only
possible way to encode them, since in LS? we can operate with polynomials of degree up to
d. In particular, for formulas in k-CNF, one can use the same encoding as in Polynomial
Calculus (2.1).

Consider system LS that has the same derivation rules as LS?, but uses the encoding
(2.1) instead of (2.4). It is clear that when d = n is the number of variables, LS" polynomi-
ally simulates Polynomial Calculus. Does LS™ polynomially simulate LS" (and Polynomial
Calculus)? To give the positive answer, it suffices to show that there is a polynomial-size
derivation of the encoding by polynomial equations from the encoding by linear inequalities.

Lemma 3.1. There is a polynomial-size LS* derivation of (2.1) from (2.4), (2.5)—(2.10).

Proof. We multiply (2.4) by (1 —[;), then by (1 — 1), ... , (1 = l;_1), eliminating terms
1;(1 — ;) using (2.10) and (2.7) as soon as they appear. In this way, we obtain

(1-104)...(1—=1,) <O0.
The opposite inequality of (2.1) is trivial. O

10



Corollary 3.1. LS? polynomially simulates LS¢ (and, hence, LS™ polynomially simulates
Polynomial Calculus).

Corollary 3.2. LS" polynomially simulates Positivstellensatz Calculus.

Remark 3.1. Note that there is a linear lower bound [Gri0la] on the degree of Positivstel-

lensatz Calculus refutation of the symmetric knapsack problem m —x; — 29 — ... — 2, =0
(where m ¢ Z, m > [n/4| — 2). However, by the completeness of LS [LS91, Theorem 1.4]
there is an LS (i.e., degree two) refutation of this problem.

It turns out that the converse of Lemma 3.1 is also true. In particular, that means that
for there is an LS¥ refutation of every formula in k-CNF. Below, we also show (Theorem 3.1)
that there is an LS?* refutation of any system of polynomial inequalities of degree at most

k.
Lemma 3.2. There is a polynomial-size LS* derivation of (2.4) from (2.1) and (2.5)—(2.10).

Proof. We derive
hh+...+L-—1)A=liy1)...(01=0) >0 (3.1)

inductively. The base (i = 1) is trivial. Suppose that the inequality holds for i = m. Note
that it can be rewritten as

(bl A+l — 1= lilogr — oo = blin1) (1= Ia) .. (1= 1) > 0.

We then add Il 41(1—lp+2). . .(1—1;) > 0 (which easily follows from axioms) for j = 1,...,m
obtaining (3.1) for i = m + 1. O

Corollary 3.3. LS? polynomially simulates LS.
Corollary 3.4. There is an LSF refutation of every formula in £-CNF.

Theorem 3.1. There is a polynomial-size LS?* refutation of any unsolvable system of poly-
nomial inequalities of degree at most k.

Proof. Consider an unsolvable system S of polynomial inequalities of degree at most k. We
linearize it in the following way. Consider a monomial m = uvm’ of degree at least two,
where v and v are variables (it is possible that this is the same variable). Replace uv by a
new variable x,, and add the following three inequalities to the system:

Tuy < U
Tyy < U
Ty > U+v-—1.

Note that every 0-1 solution to the new system corresponds to a 0-1 solution to the old
system, and vice versa. Therefore, the new system is unsolvable. Continue modifying the
system in this way until it becomes a system S’ of linear inequalities. Note that each new

11



variable corresponds to a monomial in the old variables of degree at most k. We denote a
variable corresponding to a monomial m by z,, (note that z,, may be not uniquely defined,
but it is not important for our argument).

By [LS91, Theorem 1.4], there is an LS (i.e., degree two) refutation of S’. For every
added variable x,,, replace x,, by m in this refutation. We thus obtain a “proof” of S using
only old variables.

We now must transform this “proof” into a valid LS?* proof. The added inequalities
become easily derivable from the axioms. The steps (2.7) remain valid steps. In (2.9),
instead of multiplying by a new variable %y, 4,. 4,, we now multiply by the (old) variables
Uy, Uy - - - Us-

We also have to replace steps (2.9) that use multiplying f > 0 by (1 — Zy,u,...u, ). Instead,
we multiply f > 0 by (1 — uy), besides multiply f > 0 by u; and by (1 — uy), besides
multiply f > 0 by wuy, uy and (1 — u3), etc. Summing all the obtained inequalities, we get
f(1 - xuluz...us) 2 0.

Since each added variable corresponds to a monomial of degree at most k£, and the LS
refutation of S’ contains only monomials of degree at most two, we thus obtain a valid LS%
refutation of the system S. O

4 Short LS+ CP? and LS* proofs of the clique-coloring
tautologies

Theorem 4.1. There is a set of inequalities that has polynomial-size refutations in LS* and
LS + CP?, but has only exponential-size refutations in CP.

The set of inequalities we use is close to the one used by Pudldk for proving an exponential
lower bound for CP [Pud97]. Pudlédk’s bound remains valid for this system. Therefore, to
achieve the result, we show that this set of inequalities has polynomial-size refutations in
LS* and LS + CP2,

Clique-coloring tautologies. Given a graph G with n vertices, we try to color it with
m — 1 colors, while assuming the existense of a clique of size m in G. Each edge (i,7) is
represented by a (0-1) variable p;;. Variables gx; encode a (possibly multivalued) function
from the integers {1...m} denoting the vertices of a m-clique to the set {1...n} of the
vertices of GG. Namely, q;; represents the i-th vertex of G being the k-th vertex of the
clique. Variables r; encode a (possibly multivalued) coloring of vertices by m — 1 colors.
The assignment of the color £ to the node ¢ is represented by a variable r;.

The following inequalities [Pud97] state that G has an m-clique and is (m — 1)-colorable.
The correctness of coloring is expressed by

Pij + Tie + 750 < 2, (4.1)

where ¢, j and £satisfy 1 <i<j7<n,f=1...m— L.

12



To make sure that each node gets colored, write

—1
rie > 1 (4.2)
1

3

~
Il

foreacht=1...n.
Then, every label of a clique is mapped to at least one vertex of G:

ZQki >1 (4.3)
i=1

foreach k =1...m.
Also, the mapping encoded by g¢y; is injective:

g <1 (4.4)
k=1

foreach 2 =1...n.
Finally, to encode that indeed one has a clique, write

Qi + Qe j < pij + 1 (4.5)
for all 4, j, k, k' satisfying k Z k" and 1 <i < j <n.
Weak clique-coloring tautologies. The inequalities (4.1)—(4.5) are the original inequal-
ities of [Pud97]. We now add one more family of inequalities to this system without affecting

applicability of [Pud97, Corollary 7], that is, any CP refutation of the new system will still
require at least 2(n/106m)'*) gstons Namely, we add

Zka‘ <1 (4.6)
i=1

for all £k = 1...m. This inequality means that the k-th vertex of the clique does not get
mapped to more than one vertex of G.

PHP interpretation of weak clique-coloring tautologies. The fact that the i-th ver-
tex of (G is the k-th vertex of the clique and is colored with the color £ is encoded as q;r;s > 1.
Then the fact that the k-th vertex of the clique has color £ is encoded as

n
Z(Jkim > 1.
i=1

Let us denote this sum by zz,. Note that zp,’s define an injective (possibly multivalued)
mapping from {1,... ,m} to {1,...,m — 1}. Below, we show that the PHP inequalities
(2.16), (2.17) hold for zy,’s, furthermore, there are short LS* as well as LS + CP? derivations
of these inequalities.
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There is a polynomial-size CP refutation for PHP [CCT87]. In our notation (note that
7 denotes a quadratic polynomial) such refutation translates into an LS + CP? refutation.
Alternatively, Pudldk [Pud99] shows that PHP also has polynomial-size refutation in LS.
In our notation, this translates into an LS* refutation. Note that both of these refutations
make use of the following technical statement.

Lemma 4.1. Given a sum of variables S = Z,ICVZI ar and inequalities a; + a; < 1 for all
1 <1< j <N, there are short proofs of S <1 in LS and in CP.

Proof. For CP, this is established in the proof of Proposition 7 in [CCT87]. (It proceeds by
induction: from a; + ), p <landay+) ,.r < 1for F C {1...N} —{1,2} one derives by
summming these two inequalities and a; + ao < 1 that a; + as + Zie 7 < 3/2. The rounding
down of the righthand side of the latter completes the proof of the induction step.)

For LS, this is Lemma 1 of [Pud99], where the case N = 3 is dealt with, and an argument
in the proof of Proposition 1 of [Pud99]. O

In what follows we show that there is a polynomial-size derivation of (2.16)—(2.17) from
(4.1)—(4.6) in LS* as well as in LS + CP?,

Deriving PHP from weak clique-coloring tautologies. Let us derive (2.16). For each
i, multiply both sides of (4.2) by gx; and sum the resulting inequalities over i. One obtains

n m—1 n
Z Z QriTie = ZQki-
i=1 (=1 i=1

Adding (4.3) to this inequality, one gets (2.16).
Deriving (2.17) is less straighforward. First, we prove an easy lemma.
Lemma 4.2. In LS, there is a short proof of (a — b)? > 0 for any variables a and b.

Proof. Multiplying both sides of @ < 1 by b, one obtains > — ab > 0. Similarly, one
derives a? — ab > 0. Summing the obtained two inequalities, one gets a® + b*> — 2ab > 0, as
required. ]

Next, note that one can eliminate p;; from (4.1) and (4.5) and obtain
Qi+ Qe +rie+re<3, 1<i<j<n 1<<m—11<k#k<m. (47)

Using ¢i; < qx; and similar inequalities for gy ;, 7 and 7;, the inequality (4.7) can be
rewritten as

(qri — rie)? + 2aririe + (qw; — 750)° + 2qw j7je < 3.
Using Lemma 4.2, the latter is simplified to
2qkiTie + 2qp 70 < 3.
Applying the rounding rule, one obtains
QriTie + Qe jTi0 < 1 1<i<j<n, 1<l<m—-1,1<k#K <m. (4.8)

Alternatively, we can derive (4.8) in LS? using the following lemma:

14



Lemma 4.3. In LS, there is a short proof that a + b < 3/2 implies a + b < 1.

Proof. Note that multiplying a < 1 by 1 —b gives a + b < 1+ ab. It remains to show that
ab < 0.

Indeed, multiplying a +b < 3/2 by a (respectively, by 1 —b) and using a = a? and b = b?
one obtains ab — a/2 < 0 (respectively, a — ab < 3/2 — 3/2b). Adding these two inequalities,
one obtains a/2 + 3b/2 < 3/2. Multiplying the latter by b and using b* = b, one obtains
ab < 0. 0

Using qxirse < qx; and (4.6), one obtains

n
(@ee=)Y qure<l 1<l<m-1,1<k<m. (4.9)
i=1

Now take (4.4) and add it to 0 < ggr; for each k" different from k£ and k. We get
Qi + qr; < 1. After multiplying the latter inequality by r; and adding r; < 1 to it, one
obtains

Qi + qeita < 1. (4.10)

Now (4.8)—(4.10) imply that any length 2 subsum of monomials in the sum

S = Z(kae + qrire) (for 1 <k # k' <m)

=1

is bounded by 1 from above.

From these inequalities, one can easily derive S < 1 either in LS?* or in LS + CP? by
using Lemma 4.1. As S = 3 + ¢, (2.17) holds, and we are done for LS + CP2.

For LS* it remains to show that all the z,’s are boolean, as follows. Multiplying both sides
of (4.9) by zy, one obtains 22, < z,. On the other hand, 2, = xx, + D isj QkiTiedrTie > The
holds, as one can derive in LS* for each ¢ and j that gx;7iqx;7je > 0.

5 Reasoning about integers

In this section we explain how versions of Lovasz-Schrijver calculi can be used for reasoning
about integers. In the following lemma the basic primitive for the latter, the family of
quadratic inequalities fy(Y) > 0, is introduced. The lemma shows that there are short
proofs of the fact that an integer linear combination of variables is either at most d — 1 or at
least d for any integer d. It follows then that there are short LS® (as well as LS, /1-split) Proofs
of the symmetric knapsack problem, and that CP with polynomially bounded coefficients
can be simulated in LS? (as well as in LS, gpit)-

Lemma 5.1. Let

n
o Y = Zz’:1 ;T
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o faV)=(Y = (d-1)(Y —d),
e @; are integers,
e 1, are variables.

Then the inequality f4(Y) > 0 has a derivation of size polynomial in d, n and max; |a;| in
the following systems:

1. LS3.
2. LSq/1-split-

Proof. W.l.o.g. rewrite Y as ZEZI s;ixy;, where s; € {—1,1} and it is possible that [; =
l;. We derive the inequalities f.(Y;) > 0 inductively for Y, = Zgzl siz;; and for each
c€ld—t+j. d+t—j]. The base (j = 1) is trivial. Suppose that such inequalities
are already derived for j < k. We now derive (Yi11 — (¢ — 1))(Yes1 — ¢) > 0 for every
celd—t+k+1..d+t—Fk—1).

1. If sy = 1, multiply f._1(Yx) > 0 by zyyq, multiply f.(Yx) > 0 by (1 — xx41), and
sum the obtained inequalities. We thus get in the left-hand side

Je1(Ye) g1 + fe(Ye) (1 — 2p41) =

(fe(Yr) +2(Yr — (c = 1)) zps1 + fe(Ya) (1 — 2p41) =
fe(Ye) +2(Ye — (¢ — 1))@p1 =

Y — (2c = )Yy + c(c — 1) 4+ 2Yizp i1 — 2(c — 1)Tpp1-

Using z}_, — zx41 = 0, we transform this into f¢(Yj11) which is (Yy + zx41)® — (2¢ — 1) (Yi +
Tt1) +c(c—1).

Else if sp11 = —1, multiply fey1(Yx) > 0 by zg41, multiply f.(Yx) > 0 by (1 — z¢41), and
sum the obtained inequalities. We thus get in the left-hand side

fer1(Ye) e + fe(Ye) (1 — 2p41) =

(fe(Yi) = 2(Yi — €))zpqr + fe(Vi) (1 — g q1) =
fe(Ye) = 2(Yy — c)zpq1 =

V2 — (2c— 1)Yy +c(c—1) — 2Yyzp 11 + 2¢Tp41-

Using 27, — 2541 = 0, we transform this into f¢(Vj11) which is in this case (Y}, — z541)* —
(2¢ —1)(Yy — zg41) + c(c — 1).

2. The proof in LSq,1-piis follows the proof in LS? given above. However, before multiply-
ing by xxy1 and 1 — 25,1, we make an assumption .1 = r for = 0,1 (and thus multiply
by constants, without increasing the degree). It is clear from the arguments above (just
substitute the value for zy.1), that both assumptions lead to f.(Yx+1) > 0 (which looks as
fe(Yx) > 0 under assumption x5y = 0, as feyr1(Yy) > 0 under assumption zg1 = sky1 and
as f.—1(Yx) > 0 under assumption Zp 3 = —Sg11)- O

Let us also note a general fact unrelated to integers: it is possible to substitute equalities
into inequalities.
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Lemma 5.2. Let f be a polynomial in variables v,...,v,, and X and Y be polyno-
mials in variables vg, ... ,v,. Let g(ve,...,v,) = f(X,ve,...,v,) and h(vy,...,v,) =
f(Y,vq,...,v,). Suppose that the degree of g and h is at most d. Then there is a polynomial-
size LS derivation of h > 0 from ¢ > 0 and X —Y = 0.

Proof. We rewrite g > 0 as

Z(pi —n) X' +¢>0, (5.1)
i>1
where p; and n; are polynomials of vy, ... v, consisting only of positive monomials, and

¢ does not depend on X. Then we multiply Y — X = 0 by p; (i.e., multiply it by its
monomials and sum with the same coefficients as in p;) and multiply X —Y = 0 by n;. The
sum of the obtained two equalities is (Y — X)(p; — n;) = 0. We then multiply it by X*~!,
again representing it as a difference of two polynomials containing only positive monomials.
Summing (5.1) with the obtained equalities for every i, we get

Z((pz‘ —n)Y)X" "+ (p1 — n1)Y + ¢ > 0.

i>2

We now represent (p;—n;)Y as a difference p,—n} of two polynomials containing only positive
monomials and repeat this procedure. Repeating it d times proves the claim. O

It follows that there are short LS* (as well as LSo/1-spiit) refutations of the symmetric
knapsack problem.

Theorem 5.1. There is a polynomial-size LS® (as well as LS/1.spit) refutation of
m-—x1—2g—...— 2, =0, (5.2)
where m ¢ Z.

Proof. Using Lemma 5.2 substitute (5.2) into fim,) (3 7 ; «;) > 0 given by Lemma 5.1. O

To show that LS, g4 and LS? polynomially simulate CP, we first (equivalently) redefine
CP so that it will manipulate linear inequalities of the form A > a, where A = a;z1 + ...+
AT, T1,...,T, are (integer) variables, and ay,... ,a,,a are integers. The rounding rule
(2.8) transforms into

>iair; > a
i Gmi > [4]

We define CP with polynomially bounded coefficients (cf. [BPR95]) if the absolute values
of a; are bounded by a polynomial in the length of a CP refutation.

(where d € N; day,...,a,). (5.3)

Theorem 5.2. The following systems polynomially simulate CP with polynomially bounded
coefficients:

1. LS>o<,sp1it-
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3
2. LSy.

Proof. We fix a CP refutation and simulate it rule by rule. Simulating the rule (2.7) goes
literally in LS, so we need to simulate just the rule (5.3). By Lemma 5.1 we can derive in
LSo/1spiis (as well as in LS?) the inequality f.(A/d) > 0 for ¢ = [a/d].

1. In LS, st we then have that A/d > c since the assumption A/d — ¢ < 0 multiplied
by A/d — (¢ — 1) > 0 contradicts f.(A/d) > 0.

2. In LSy, we get A/d > ¢ by dividing f.(A/d) > 0 by A/d - (c—1) > 0. O

Remark 5.1. In the proof of Theorem 5.2 the hypotheses f > 0, f < 0, f = 0 used for
LS. spiit derivations are just linear.

6 Short proof of Tseitin’s tautologies in LS?

We recall the construction of Tseitin’s tautologies. Let G = (V, E) be a graph with an odd
number n of vertices. Attach to each edge e € E a Boolean variable ., i.e. 22 = z,. The
negation 7' = T of Tseitin’s tautologies with respect to G (see e.g., [BGIP01, GHO1]) is a
family of formulas meaning that for each vertex v of G the sum ) . z. ranging over the
edges incident to v is odd. Clearly, T' is contradictory.

In the applications to the proof theory [BGIP01, Urq87] the construction of G is usually
based on an expander. In particularly, G is d-regular, i.e., each vertex has degree d, where
d is a constant. The respective negation 7' = T(; of Tseitin’s tautologies is given by the
following equalities (due to Lemmas 3.1 and 3.2 we give them directly in PC translation):

[z J[Q-2)=0 (6.1)

ecsS) e¢S!

esv

(for each vertex v and each subset S, of even cardinality of the set S, of edges incident to
v). There are 277! equalities of degree d for each vertex of G.

Theorem 6.1. For every constant d > 1 and every d-regular graph G, there is a polynomial-
size refutation of (6.1) in LS*H2.

Proof. Denote Y; = y,, + ...+ yy,, Where vq,... ,v; are pairwise distinct vertices of G and
Yo = D 5y Te- For every c € [0 .. i(d — 1)/2], we will prove inductively f.(Y;/2) > 0 for
odd i = n,n—2,n—4,... and f.((Y; —1)/2) > 0 for even i = n —1,n —3,.... Then

fo((Yo —1)/2) > 0 gives a contradiction.

The induction base (i = n) follows from Lemma 5.1, since ¥, =23, 5z, and therefore
Y,,/2 is an integer linear combination of variables.

To proceed from step i+1 to step ¢ of the refutation, denote Y = Y;,; and y = Zeavm Te-
We assume for definiteness that i is odd (the case of an even i is treated in a similar way).
We need to prove that f.((Y —y)/2) > 0forallce [0..i(d —1)/2].

Fix some subset S C S,,,, of odd size. Let t = |S|, ¢ = c+(t—1)/2 € [c.. c+(d—1)/2] C
[0.. (i+1)(d—1)/2]. Denote P(S) = [],cq Te [[.¢s(1—x.). Since we have fo((Y' —1)/2) >0
by the induction hypothesis,

fol(Y = 1)/2)- P(S) 2 0
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follows by (2.9), and can be rewritten as
(Y =1/2=¢)- (Y —y)/2 = (c=1))P(S) + (y/2 — t/2)P(S5)) = 0. (6.2)
Also
yP(S) = tP(S) (6.3)
follows directly from (2.10) and (2.9). Substituting (6.3) into (6.2) by Lemma 5.2 we get
(Y =1)/2-¢)- (Y -y)/2—(c—1))-P(S) >0
which can be rewritten as
(Y =9)/2=)P(S) + (y/2 = t/2)P(5)) - (Y —9)/2 = (c—1)) 2 0
Substituting (6.3) again we get
f((Y = y)/2) - P(S) = 0. (6.4)

We complete induction step by summing (6.4) for all S C S,
it remains then to prove that
1= > P(S)

5CS,
|S| is odd

of odd size. By Lemma 5.2,

i+1

This last equality is the sum of the equalities (6.1) for fixed vertex v, because one can rewrite
l=2+(1-2)=2y+(1—-2)y+2(l-y)+(1—2)(1—y) =... for any collection of variables
TyYy oo ]

Remark 6.1. Sometimes Tseitin’s tautologies are formulated in a different way. One takes
G with arbitrary (not necessarily odd) number of vertices, attaches weight w, € {0,1} to
each vertex v and writes Boolean formulas expressing @,, ze = w,. Then if @, ., w, =1,
this set of formulas is contradictory. Note that our technique works for this kind of Tseitin’s
tautologies as well.

Remark 6.2 (A. Kojevnikov). The degree of proof of Tseitin’s tautologies can be reduced
by the use of the rounding rule (2.8) applied to higher degree inequalities. For example, there
is a short proof of degree 6 tautologies in “LS® + CP?” proof system. First, one notes that
(Yo — 1) (y» — 3)(y» — 5) = 0 because it is an integer linear combination of the equalities (6.1).
Then, one sums all the obtained equalities, getting 2¢ ) ., T = 2k +1 for certain integers c
and k. Applying the rounding rule to each of the inequalities constituting this equality and
summing the results gives a contradiction.
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7 Lower bounds on Lovasz-Schrijver rank

In this section we prove two lower bounds on Lovasz-Schrijver rank. There is a series of lower
bounds on Lovész-Schrijver rank in the literature (see e.g. [CD01, GT01] and the references
there). However, these bounds are not suitable for the use in the propositional proof theory,
because these are either bounds for solvable systems of inequalities, or bounds for systems
with exponentially many inequalities.

We first prove (Subsection 7.2) a linear lower bound on the LS, -rank (and a logarithmic
lower bound on the LS, ,-rank) of symmetric knapsack problem by reducing it to a lower
bound on the degree of Positivstellensatz Calculus refutation [Gri0la]. However, this system
of inequalities is not obtained as a translation of a propositional formula, and thus lower
bounds for it cannot be directly used in the propositional proof theory.

Then in Subsection 7.3 we prove an ©(2vV™) lower bound on the LS-rank of PHP. Note
(cf. Subsection 2.5) that the LS, -rank of PHP is a constant.

7.1 More definitions

We now consider the standard geometric setting for the Lovasz-Schrijver procedures LS
and LS, [LS91]. A comprehensive explanation of its equivalence with propositional proof
complexity setting can be found in [Das01].

Given a system Ax < b of m linear inequalities in variables z1, ..., z,, we homogenize it
by adding an extra variable xy and writing the system as

20 >0, Az < zob. (7.1)

Then let K denote the set of feasible points of (7.1) and K; denote the cone generated by
all 0-1 vectors in K. Also, let ) denote the cone generated by the 0-1 vectors of length
n + 1 with the first coordinate equal to 1. In what follows, e; denotes j-th unit vector, and
Diag(Y') is the vector of the main diagonal entries of a square matrix Y. We write Y > 0 if
Y is positive semidefinite.

The set M(K) (denoted usually M (K, Q), but this generality is not needed here) consists
of (n+1) x (n+ 1) real matrices Y satisfying

() Y =Y
(17) Yeo = Diag(Y);
(17) Ye; € K and Y(eg —¢;) € K for all 0 < <n.
Also, define M, (K) :={Y € M(K) | Y > 0}.
Next, define the projections of M(K) and M, (K) onto R**! as follows.
N(K) := {Diag(Y)|Y € M(K)}
N.(K) = {Diag(y)|Y € M,(K)}.

Iterated operators N"(K) and N7 (K) are defined naturally as N("+) (K) := K and N[,,(K) :=

N (N (K)).-
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It is shown in [LS91] that

K1 € NJy(K) € NIGHEK) € - € NE(K) € - C N(K) S K. (1.2)

The LS-rank (respectively, LS, -rank) of a system of linear inequalities Az < b is the
minimal £ in (7.2) such that N*(K) = K; (respectively, N¥(K) = K), where K = K(A,b),
as above.

Alternative definitions of Lovéasz-Schrijver ranks in proof systems terms are as follows. A
proof in Lovasz-Schrijver proof system is a directed acyclic graph whose vertices correspond
to the derived inequalities, and there is an edge between f > 0 and g > 0 iff g is derived
from f (and maybe something else) in one step. We now drop the edges corresponding to the
rule (2.7). The rank of a refutation is the length of the longest path from an axiom to the
contradiction in this graph. The LS-rank of a system is the smallest rank of an LS-refutation
for it. The LS -rank is the smallest rank of an LS, -refutation. Similarly, one can define
LS,- and LS, ,-ranks. Note that this definition generalizes smoothly to LS? LS?%, LS¢ and
LS ..

7.2 LS,- and LS, ,-ranks of symmetric knapsack

The system of inequalities for the symmetric knapsack problem is given by (5.2) and usual
axioms (2.5), (2.6), (2.10). We restrict our attention to system K obtained by setting
m= 3]+ 4

Theorem 7.1.
1. LS, -rank of K is at least n/4.
2. LSy .-rank of K is at least log,n — 1.

Proof. 1. Fix an LS -refutation of K. We now modify it into a Positivstellensatz refutation
(See Subsection 2.2).

For each polynomial f derived in LS, with LS -rank at most & we construct its repre-
sentation in the form

f= Z(% -z} )u; + (m — sz’)uo + ZUJQ (7.3)

in such a way that all the degrees deg(z; —z7)u;, deg(m —3_, z;)uo, deg v} < 2k (by recursion
on k). Indeed, the recursive step is obvious for the rules (2.10), (2.11). Furthermore, we
replace the first rule of (2.9) by the multiplication by x = (z — z2) + 2?2 providing the
representation

fr= (Z(ﬂiz — 2)uz + (x — 2°) va + (m — in)uox) + Z(vjac)Q,

that gives the form of fz similar to (7.3). Similarly, we replace the second rule of (2.9) by
the multiplication by (1 — z) = (z — 2?) + (1 — z)%
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At the end of the derivation in LS, of LS -rank £, we get a representation of the form

—1:2(3: — 7 sz UO+ZUJ

where deg(z; — 2?)u;, deg(m — Y x;)ug, deg v;2 < 2k, by recursion. This provides a Posi-
tivstellensatz Calculus refutation of the knapsack problem with the degree less or equal to
2k, . Applying [Gri0la] we conclude that 2k, > n/2, thus LS -rank of K is at least n/4.

2. We fix an LS, ,-refutation of K and observe in a similar way that if two derived
polynomials f and

9= (zi—ad)u;+ (m =Y w)ug+ ) (v;)°

of LS, ,-rank at most k are already in the form (7.3) where

deg(x; — 22)u;, deg(m le uo,degvj,deg( ; u,, deg(m sz uo,deg 2 < ok

their product

fg= (Z(Iz — z})uig + Z(w, ZU + ( sz uog + ( sz Yo Z )
+Z vjlvjz

can be written again in the desired form (7.3) with the degrees of the occurring polynomials
bounded by 25, This allows one to replace the rule (2.12). By recursion at the end of the
derivation in LS, , of the LS, ,-rank £, we get a representation

—1:Z(x-—x sz uo-l—Zvj

with the degrees deg(z; — 2?)d;, deg(m — 3 ;)uo,deg 0;° < 2%. Again as above applying
[Gri0la] we conclude that 2% > n/2 and thereby, LS, ,-rank of K is at least logyn —1. O

Remark 7.1. Similarly to Theorem 7.1(2), a logarithmic lower bound on the LS, ,-rank
can be obtained for the parity principle and for Tseitin’s tautologies relying on [Gri01b).

7.3 LS-rank of PHP

Let e denote all-1 vector of length £.
Let @, C R" denote the n-dimensional 0-1 hypercube and let P,,_; be the feasible set of
the system (2.16)-(2.17). This is the well-known “PHP polytope”.

Theorem 7.2. At least m — 2 iterations of the N-operator are needed to prove that P,,_;
does not contain integer points, that is, LS-rank of P,,_; is at least m — 2.

It will fOHOYV from Lemma 7.2 below. 5
Write z € N"(m — 1) iff (1,z) € N"(P,_1). We also identify N°(m — 1) with P,,_; itself.
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Let z € No(m —1). Define w® = w%(zx) € Qmim+1), where 1 <a <m+1,1<b<m,
as follows.

'aci’j ifl<i<a, 1<j<b;

Tij—-1 ifl<i<a, b<j<m
ab_< Ti—1, 1fa<z§m+1,1§j<b,

g Ti—1,-1 ifa<i§m+1,b<j§m;
1 ifi=a, j=0
0 otherwise.

\
Lemma 7.1. Let z € N"(m — 1). Then w®(z) € N"(m).

Proof. 1t is trivial to check the statement for r = 0.

We make an induction assumption that for any x and any t < r, z € N t(m — 1) implies
w®(x) € N*(m). Without loss in generality, assume a = b = 1.

We fix a particular basis (e1, ..., €m@m—1)) in Rm(m—1).

(.’L‘Ll e xl,mfla 3}'2,1 e xm,la 372,2 e x2,m71: ,’1}'3,2 e axm,mfl)-

(it just gives a particularly nice ordering of variables for the purpose.) In such a basis,
wt(z) = (1,0...0,z).
Assume z € N"(m — 1). Thus there exists Y = (1 2}) € M(N""'(P,_1)). Define

1 1 0...0)7 zT
— 1 1 (0...0)7 o’
Y =
(0 . 0) (0 . 0) 02m—1,2m—1 02m—1,m(m—1)
Y z 0m(m—1),2m—1 Y!

where 0,, denotes the all-0 matrix of size s x g. We show that Y € M(N" 1(P,,)), implying
the statement of the le%nma. B B

By construction, Y =Y, Y, ; =Y,; and Y ,; =Y ;.

Note that if Y ; = 0 then Ye; =0, as P, 1 C Qpym—-1)- Hence YO,J- = 0 implies 76j = 0.
Thus if Ye; # 0 then we can normalize %tej. Hence, by induction assumption applied to
z = Ye;, one has %j?ej € N™"Y(P,,) for all j such that Y, # 0. Hence Ye; € N'"1(P,,)
for all j.

Similarly, as any nonzero vector of the form Y (eo —ey) satisfies Y (eg—ex)o = 1— Yo, > 0,
normalizing a nonzero Y (eg — e;) with its 0-th coordinate, one obtains, for j > 0, that either

Y(eg —e;) = 0 or 1_%0 Y(eo —€;) € N""1(P,). Hence Y(ey — ¢;) € N""}(P,,) for all

7 >0. O

Lemma 7.2. —-e,, 1) € N™ 3(m — 1) for m > 3.

m—1-"m

Proof. Trivial for m = 3. Denote z; = 1€x(e41)-
By induction, assume z; € N*~2(k) for all 1 < k < m — 1. Set the matrix Y to have
columns (1, Zm—1), == (1, W™ (Tm—2)), == (1, w'?(Tm-2)), ... , = (1, w™™  (zp_2)). Then

YT =V, Y, =Y
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By induction assumption and Lemma 7.1, Ye; € N™*(P,,_;) for each j > 0.
Next, observe that

m—1
Yeo = Z Yewp forany 1 <¢<m (7.4)
p=1

(here we use notation identifying (¢,p) = j). Hence Yeg € N™*(P,_1).
Finally, from (7.4) we have Y (eq — e(gp)) = ZT;II otq Y €(g,s)-
Thus Y € M(N™*(P,,_1)), and the statement follows. O

8 Linear lower bound on the “Boolean degree” of Pos-
itivstellensatz Calculus refutations of the knapsack

We use the following notation from [IPS99, GriOlal. For a polynomial f, its multilinearization
f is a polynomial obtained by the reduction of f modulo (x — 2?) for every variable z, i.e., f
is the unique multilinear polynomial equivalent to f modulo these (“Boolean”) polynomials.
When f = f we say that f is reduced.

For a monomial ¢ one can define its Boolean degree Bdeg(t) as deg(?), in other words,
the number of occurring variables; then one extends the concept of Bdeg to polynomials:
Bdeg(f) = max Bdeg(t;), where the maximum is taken over all non-zero monomials ¢; oc-
curring in f. Thereby, one can define Bdeg of a derivation in PC and subsequently in Pos-
itivstellensatz and Positivstellensatz Calculus as maximum Bdeg of all polynomials in the
derivation (in Positivstellensatz and Positivstellensatz Calculus, this includes polynomials
h3, cf. definition in Subsection 2.2).

The following lemma extends the argument in the proof of [IPS99, Theorem 5.1] from
deg to Bdeg.

Lemma 8.1. Let f(x1,...,%,) =121 + - + cuTp — m, Where ci,... ,¢, € R\ {0}. Let ¢
be deducible in PC from the knapsack problem f = 0 with Bdeg < [(n — 1)/2]. Then one
can represent

n

g=> (x:—x})gi+ f9, (8.1)

i=1
where deg(fg) < Bdeg(q).

Proof. Similarly to the proof of [IPS99, Theorem 5.1|, we conduct the induction along a
(fixed) deduction in PC. Assume (8.1) and consider a polynomial ¢gz; obtained from ¢ by
multiplying it by a variable ;. W.l.o.g. one can suppose that g is reduced. Then gz = fgx1;
denote h = gz7. Let d = deg(h) — 1. We need to verify that d + 2 = deg(fh) < Bdeg(gz1)-
Taking into account that

d+1 = deg(h) < deg(g) + 1 = deg(fg) < Bdeg(q) < Bdeg(gz1),
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the mere case to be brought to a contradiction is when Bdeg(gz;) = Bdeg(q) = deg(g) +1 =
d+1.

We write ¢ = p + x1p; where all the terms of g not containing x; are gathered in p.
Clearly, deg(p) < deg(g) = d. Moreover, deg(p) = d because if deg(p) < d, we would have
d + 1 = deg(h) < Bdeg(gz1) < max(Bdeg(z1p), Bdeg(z?p1)) < d.

On the other hand, d = Bdeg(q) — 1 < [(n — 1)/2] — 1. Therefore, [IPS99, Lemma 5.2]
applied to the instance coxy + ... + c,x, — 0 of symmetric knapsack states that

deg((coza + ...+ cpxn)p) = deg(p) + 1 =d +1

(one should add to the formulation of [IPS99, Lemma 5.2] the condition that p is reduced).
Hence there exists a monomial 27 = HjEJ x; occurring in p for a certain J C {2,...,n},
|J| = d, and besides, there exists i € [2..n] such that the monomial z;z”/, being of the degree
d + 1, occurs in the polynomial (cyzs + - - - + ¢, 2,)p, in particular i & J.

Because of that the monomial T = z;z7z; with deg(T) = d + 2 occurs in

P = (cowy + - -+ + CpTy )Ty

Furthermore, T' occurs in

far1 = ((c2m2 + -+ + euZp) + (171 — m)) (P + T1p1) 21

since after opening the parenthesis in the right-hand side of the latter expression we obtain
only p' and two subexpressions

(c1xr —m)(p+ z1p1)z1 = (a1 — m)gry  and  (Co%a + -+« + CpZpn)T1P1 21

of Boolean degree at most d+1 (thereby, any monomial from these subexpressions cannot be
equal to the reduced monomial T). Finally, due to the equality gz; = fgz,, we conclude that
Bdeg(gz1) > deg(gz1) = deg(fgx1) > d+ 2; the achieved contradiction proves the induction
hypothesis for the case of the rule of the multiplication by a variable (note that the second rule
in (2.2) can be replaced by the multiplication by a variable with a multiplicative constant).

Now we proceed to the consideration of the rule of taking the sum of two polynomials ¢
and r. By the induction hypothesis we have

n

r=>Y (- )u+ fu,

i=1

where u is reduced and deg(fu) < Bdeg(r). Then making use of (8.1) we get 7 + ¢ = fv
where v = g + u. The inequality

deg(v) < max{deg(g), deg(u)} < max{Bdeg(q), Bdeg(r)} =1 < [(n—1)/2] -1 < [n/2] -1

enables us to apply [IPS99, Lemma 5.2] to v, this implies that deg(fv) = deg(v) +1 =
deg(fv). Therefore, Bdeg(r + ¢) > deg(r + ¢) = deg(fv) = deg(fv). O

The next corollary extends [IPS99, Theorem 5.1].
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Corollary 8.1. Any PC deduction of the knapsack f has Bdeg greater than [(n —1)/2].

Now we can formulate the following theorem extending the theorem of [Gri0la] from deg
to Bdeg. Denote by § a stairs-form function which equals to 2 out of the interval (0,n) and
which equals to 2k + 4 on the intervals (k,k + 1) and (n — k — 1,n — k) for all integers
0<k<n/2

Theorem 8.1. Any Positivstellensatz Calculus refutation of the symmetric knapsack prob-
lem f =z + ---+ z, — m has Bdeg greater or equal to min{d(m), [(n — 1)/2] + 1}.

Proof. The proof of the theorem follows the proof of the theorem [GriOla]. First, we apply
Lemma 8.1 to the deduction in PC being an ingredient of the deduction in Positivstellensatz
Calculus (see definitions in 2.2). This provides a refutation in Positivstellensatz Calculus of
the form

n

1+ Z W= (i —a))gi+ fg. (8.2)

=1

The rest of the proof follows the idea from [Gri0la] of applying to (8.2) the linear mapping
B to both sides of (8.2), defined on the monomials z! as

B:Rzy,...,r,] - R, where B(z') = By, = ((fb)), for k = |I|, (8.3)
k
and by linearity on the rest of Rz1,... , Zy]-
It is worthwhile to mention that B is defined on the quotient algebra R[zy, ... ,z,]/(x; —

z? ..., x, —x2), thereby, the proof in [Gri0la] actually, estimates Bdeg rather than just deg.

We would like to sketch here a streamlined version of the latter proof, invoking at some
point technique from the theory of association schemes, cf. e.g. [BI84].

Lemma 8.2. (cf. [Gri0la, Lemma 1.3].) Let go € Rlzy,...,z,], and Bdeggy < n. Then
B(go) = 0.

Proof. Verity that B is vanishing on all the monomials of gy, as B satisfies the recurrence
(TL — k)Bk-H = (m — k)Bk O

Introduce on (the coefficient space of) Rz, ... ,z,]/(z1 — 22, ..., 2, — 22) a quadratic

form Q by setting Q(zf,z7) = B(z'™’) and denote by @, the restriction of ) onto the
subspace of polynomials of degree at most £. In the sequel we allow ourselves to denote by
Q¢ also the matrix of ;. It is interesting to mention that () is known as the moment matriz
of B, see e.g. [Las01, Lau01].

Lemma 8.3. (cf. [Gri0la, Lemma 1.4].) The form @) is positive semidefinite if and only
ife—1<m<n—{¢+1and < |n/2].

A proof for this lemma is given below, and this is where the promised streamlining
happens. We now demonstrate how to deduce the proof of the theorem from this lemma.

Apply B to the both sides of (8.2). The right-hand side vanishes, as B(fg) = 0 due to
Lemma 8.2, and as B((z;—x7)g;) = B(z;9;)— B(x?g;) = 0. The left-hand side then evaluates
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toC =1+ Zj h,jTQh,j, where h; stands for the vector of coefficients of the polynomials ;.
As the maximal degree of h? cannot be larger than the maximal degree of the right-hand
side of (8.2), h]Tth = hJTQghj, where ¢ falls into the range covered by Lemma 8.3. Hence
hJTth > 0 and thus C' > 0, the desired contradiction. O

Proof of Lemma 8.3. Let us order the subsets of {1,...,n} with respect to the size (i.e.
degree), and in arbitrary (but fixed) way within each size, and fix the ordering on the rows
and columns of @), accordingly. Denote by @)y the principal submatrix of (), corresponding
to the f-element subsets of {1,...,n} (so that Qg occupies the south-east corner of Q).

We show now that @, has at least T" — (’;) zero eigenvalues, where T' = Zﬁ':o (?) To
this end, let us exhibit a basis for a subspace of such a dimension of the nullspace ker @),
of Q. The coefficient vectors of fz!, lie in ker Q, as long as |I| < ¢, as can be seen by
invoking Lemma 8.2 on B(fzz”’), where |J| < £. These fz! will form the desired basis, as
these vectors are linearly independent. This can be seen by building a basis for the subspace
they generate, adding first the vector of coefficients of fz!, where I is the greatest (w.r.t.
the ordering specified above) subset of size |I| < ¢, then the second greatest I, and so on.
At each step a new, smaller, monomial of the form Dz! for D € R — {0} appears in fz!,
implying that the dimension increases, and we are done.

To this point we followed [Gri0la] quite closely. Now comes the first shortcut. Namely,
we claim that positive definiteness of () implies positive semidefiniteness of (Q,. Indeed, let
> e > B (resp. A1 > --- > Ar) be the sequence of the eigenvalues of Qg (resp., of

Q). It is well-known (the result attributed to Cauchy, and as such sometimes referred to as
Cauchy interlacing, as well as the inclusion principle for eigenvalues) that the first sequence
interlaces the second, that is, A\; > u; for 1 < ¢ < (’g), cf. e.g. [HJ90, Theorem 4.3.15] or
[Liit96, 5.3.1(11)]. Therefore the first (7) eigenvalues of Q; are not smaller than the smallest
eigenvalue of @)y, and thus positive, and we are done.

Already at this point we can prove that @, is positive semidefinite for m sufficiently close
to £, as for m = f the matrix @y is a positive scalar multiple of the identity matrix, and
as the eigenvalues of @y, depend continuously on m. (And actually, even for m sufficiently
close to £ — i, for 0 < i < ¢, as Q¢_; is a principal submatrix of Q;.)

To complete the proof for all the values of m under consideration, we show that () is pos-
itive definite. Here we invoke the theory of association schemes, see e.g. [BI84, God93], as fol-
lows. For the sake of completeness, we give few definitions first. We denote by M = M ) (©

the algebra of the (7;) x () matrices with entries in the field C of complex numbers. The cen-
tralizer Cpr(S) of an S C M in M is defined by Cp(S) = {c € M | ¢cs = sc for any s € S}.
Note that Cy(S) is a subalgebra of M.

Let p C M be the permutation representation of the symmetric group S, acting on the
subsets of size £. That is, one takes each m € S,, as a permutation 7’ in 5(7) by setting
' ({t1,...,te}) = {w(t1),...,7(t)} and then turning 7’ into a 0-1 matrix p(w) by setting
prmn(m) = 1 and prs(m) = 0 for the remaining pairs of indices (IJ), J # 7'({). Then
Qu € Cr(p). The algebra Cy(p) is known under many different names, cf. [BI84], e.g.
as the Bose-Mesner algebra of the Johnson scheme J(n, ). What is important here is that
Cu(p) is commutative of dimension £ + 1, and the 0 — 1 matrices A; defined as (4;);; =1
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iff |I — J| =i form its basis, 0 < i < /.

As the C-linear representations of finite groups are completely reducible, see e.g. [BI84,
Theorem 1.2.4], there exists an orthogonal linear transformation that decomposes p into a
direct sum of £+ 1 irreducible representations. By the Schur’s Lemma, see e.g. [BI84, Theo-
rem 1.3.2], such a transformation simultaneously diagonalizes all the A;’s, and the restriction
of any of the transformed A;’s onto the j-th irreducible constituent is a scalar matrix p;(j)/.
Thus each A; has at most £ + 1 distinct eigenvalues p;(j). This implies in particular that,
as Qu = leo By ;A; (here B is as in (8.3)), the set of eigenvalues of @y equals the set of
eigenvalues of (¢ + 1) x (¢ + 1) diagonal matrix Zf:o By idiag(pi(0), (1), ..., pi(£))-

To summarize, we state the following lemma, writing out the expressions for p;(j) from
[BI84, Corollary to Th. 3.2.9].

Lemma 8.4. The set of eigenvalues of (4 is given by

Sj = ZBéHpi (7),  where

Z_g ' . . (8.4)

(A n— -1, -], —n-— + J.

Here ,F; ( Zl’ Y cg Zt>0 ™ (Z’;t ¥ denotes the hypergeometric series and
1, ey s

(a); the ascending factorial (a); =a(a+1)...(a+t—1), (a)y = 1.
To complete the proof of Lemma 8.3, it suffices to show that s; > 0 for all j. Taking
(8.3) and (8.4) into account, we see that it remains to show that

—/ —1i -J, —n—1+4+j :

S ’ ? <3<

Z()( >3F2<_£, it 1>>0 for 0<j5<Y¢
>0

Changing the order of summation, one obtains

E T me ()

t>0 >0

- th(_t)t(f) <mt_£) oy < _m+i:t1’ =t ;1) = (8.5)

B O\ (m—0O\T(—t+1+m)t! (=g 1),
_th(_t)t<t)( ; )F(1+m—£)£!’ for e =5, Cns Oyt

The equality in the second row is obtained by applying to the inner sum in the first row the
procedure described in [PWZ98, Chaper 3| that identifies hypergeometric series. Note that
the first non-vanishing term of this sum is the ¢-th one (i.e. i = t) and it equals (—t); (f) (mt—é)-
The equality in the third row is derived using the Gauss’s identity (see [PWZ98, Sect. 3.5]).
Next, we again use the abovementioned procedure from [PWZ98 Chaper 3] to identify
the latter sum % = tho m as a hypergeometric series. Pulling the constant term

m outside, one notes that the already the 0-th term does not vanish, and equals
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['(1+m). Thus we just have to compute the ratio of the consecutive summands f;;; and f;
to arrive at

frn _ =)t =—n+j-D(=t+m-O0m-1t) (E—-j(t-n+j-1){-m+¥)

f (t—n+0t+1)C(m—t+1) B t—n+0)t+1)(t-m)

where the latter is obtained by using the identity I'(x + 1)/T'(z) = x. This readily identifies
the series and one obtains the following.
s T1+m—19)
B, T(1+m)

E!:3F2<—m+€, —n+j—1, —j;1>:(—n+m)j(£—]+1)j

e, m (et ilm—j+1);

Here the Saalschiitz’s identity (see [PWZ98, Sect. 3.5]) is applied to the second expression
for 7 > 0 to obtain the rightmost expression, that is also valid for 7 = 0 by definition of the
ascending factorial.

We should investigate the sign of R; = ((__7;:;)); :
positive. Note that the multiplicands of the denominator are always negative. On the other
hand, the numerator has all the multiplicands negative if and only if m < n — j 4+ 1 for all
j. (and in particular R; > 0.) This completes the proof of the “if” part of the lemma.

Arguing along this line it follows that if m > n — £+ 1 then there exists j such that one
gets R; < 0. Finally, observe that if m < ¢ — 1 then B, < 0. Thus if a condition on m in
the lemma is not satisfied then @y has a negative eigenvalue. This implies that (), is not
positive semidefinite, completing the proof of Lemma 8.3, and, thereby, of Theorem 8.1. [

as the remaining multiplicative term is

9 Exponential lower bound on the size of static LS.
refutations of the symmetric knapsack

In this section we apply the results of Section 8 to obtain an exponential lower bound on the
size of static LS, refutations of the symmetric knapsack. We follow the notation introduced
in Subsection 2.5 and Section 8. The Boolean degree of a static LS (LS. ) refutation is the
maximum Boolean degree of the polynomials u;; in Subsection 2.5.

Let us fix for the time being a certain (threshold) d.

Lemma 9.1. Denote by M the number of u;;’s occurring in (2.15) that have Boolean degrees
at least d. Then there is a variable z and a value a € {0, 1} such that the result of substituting
in (2.15) £ = a contains at most M (1 — d/(2n)) non-zero polynomials u;;|,—, of Boolean
degrees at least d. (Note that by substituting in (2.15) a value a for z we obtain a valid
static LS, refutation of the system S|;—,).

Proof. Since there are at least Md polynomials u;; of Boolean degrees at least d containing
either z or 1 — z, there is a variable z such that either z or 1 — z occurs in at least Md/(2n)
of these polynomials. Therefore, after substituting the appropriate value for z, at least
Md/(2n) polynomials u;; vanish from (2.15). O
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For the symmetric knapsack problem (5.2), we can rewrite its static LS, refutation in
the following way. Denote

fo = @i+t az,—m,
fi = zi—x7 (1<i<n),
fo= ) (+l<i<n)

(m is not an integer). The refutation can be represented in the form

t n' n'!
DD g+ D fiti+ D =1, (9.1)
i=0 1

j=n+1 j=n'+1

where

gip = ii- H T - H (1 — ),

+ —
keGi,  keGj
t; = T;- H Tg - H(l—xk)
+ —
keET; kET;

for appropriate multisets G, G-

— + .o, .
i Gipy T and T, positive real 7; and arbitrary real ;.

Lemma 9.2. If n/4 < m < 3n/4, then the Boolean degree D of any static LS, refutation
of the symmetric knapsack problem is at least n/4.

Proof. Replacing in t; each occurrence of z; by f; + 22 and each occurrence of 1 — z; by
fi + (1 — z;)* and subsequently opening the parentheses in ¢;, one can gather all the terms
containing at least one of f; and separately the products of squares of the form z?, (1 — ;)%
As a result one gets a representation of the form

n n'"
Zfigi + Zh§ =-1
i=0 j=1

for appropriate polynomials g;, h; of Boolean degrees Bdeg(gi),Bdeg(hi) < D, thereby a
Positivstellensatz (and Positivstellensatz Calculus) refutation of the symmetric knapsack of
Boolean degree at most D+2. Then Theorem 8.1 implies that D > [(n—1)/2]—1>n/4. O

Theorem 9.1. For m = (2n + 1)/4 the number of g;;’s and ¢;’s in (9.1) is exp(2(n)).

Proof. Now we set d = [n/8] and apply Lemma 9.1 consecutively k = |n/4]| times. The
result of all these substitutions in (9.1) we denote by (9.1'), it contains n—  variables; denote
by u;,l the polynomial we thus get from wu;;. We denote by f; the result of substitutions
applied to fo. Note that after all substitutions we obtain again an instance of the knapsack
problem. Taking into account that the free term m’ of f} ranges in the interval [m — k, m]
and since (n — k)/4 <m — k < m < 3(n — k)/4, we are able to apply Lemma 9.2 to (9.1').
Thus, the degree of (9.1') is at least (n — k)/4 > d.
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Denote by M, the number of u;;’s of the degrees at least d in (9.1). By Lemma 9.1 the
refutation (9.1') contains at most My(1 —d/(2n))* < My(1 — 1/16)™* non-zero polynomials
u;, of degrees at least d. Since there is at least one polynomial u;; of such degree, we have
My(1 —1/16)"* > 1,i.e. My > (16/15)"/*, which proves the theorem. O
Corollary 9.1. Any static LS, refutation of (5.2) for m = (2n + 1)/4 must have size
exp(Q(n)).

Corollary 9.2. Any tree-like LS, (or LS") refutation of (5.2) for m = (2n+1)/4 must have
size exp(£2(n)).
Proof. The size of such tree-like refutation (even the numer of instances of axioms f; used

in the refutation) is at least the number of polynomials u,. O

Remark 9.1. The value m = (2n + 1)/4 in Theorem 9.1 and its corollaries above can be
changed to any non-integer value between [n/4] and |3n/4| by tuning the constants in the
proofs (and in the Q(n) in the exponent).

10 Open Questions

1. What is the proof complexity of the symmetric knapsack problem in (dag-like dynamic)
LS (cf. Sections 5, 7 and 9)? We conjecture it (or the general knapsack problem) as a
candidate for a lower bound.

2. Prove an exponential lower bound on the size of Positivstellensatz refutations.

3. Prove an exponential lower bound for a static semi-algebraic propositional proof sys-
tem. Note that we have only proved an exponential lower bound for static LS, as
a proof system for the co-NP-complete language of systems of 0-1 linear inequalities,
because the symmetric knapsack problem is not obtained as a translation of a Boolean
formula in DNF.

4. Suggest a candidate for a lower bound in LS? for (arbitrarily large) constant d.

5. How precise is the logarithmic lower bound on the LS,-rank for the knapsack problem
from Subsection 7.27

6. Can one relax in Theorem 5.2 the condition on the polynomial growth of the coeffi-
cients?

7. Is it possible to simulate LS (or static LS™) by means of a suitable version of CP (e.g.
by the R(CP) introduced in [Kra98|)? In other words, does there exist an inverse to
Theorem 5.27
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