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Abstract

We show that the Minimum Vertex Cover problem is NP-hard to approximate to within
any factor smaller than 10

√
5− 21 ≈ 1.36067, improving on the previously known hardness

result for a 7
6 factor.

1 Introduction

The complexity of many approximation problems is by now settled and a tight bound on the
ratio to within which they can be approximated efficiently has been obtained. That is, it has
been shown that it is NP-hard to approximate these problems to within a factor even marginally
better than the one achieved by the best known polynomial-time algorithm. Therefore, unless
P=NP, there is no hope of coming up with an efficient improved approximation scheme.

Hardness results for approximation problems, almost without exception, build on the PCP
characterization of NP. The fundamental insight of the PCP characterization of NP is that it
is NP-hard to distinguish between SAT formulas that are completely satisfiable, and those that
are extremely non-satisfiable, or, in particular, that gap-SAT is NP-hard

A gap-SAT instance is a set of local-constraints over values assigned to some variables. These
are referred to as local-constraints since whether each is satisfied depends only on a constant
number of variables. An algorithm for gap-SAT has to distinguish, given such an instance,
between the case there is an assignment satisfying all local-constraints, and the case in which
no assignment satisfies even a small fraction of those constraints. For cases falling in the in-
between gap, where some sizeable fraction, but not all, are satisfied, the algorithm may return
an arbitrary result, which attributes to the use of the term gap.

This problem was proved to be NP-hard [AS92, ALM+92], showing that local constraints
can imply global consistency for NP membership proofs. PCP characterizations of NP have
served very well in resolving the complexity of approximation problems, leaving only a handful
of classical optimization problems with the complexity of their approximation unsettled. One
of those problems, and maybe the one that most captures the limitations of current technique
for proving hardness of approximation, is Vertex-Cover.
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In this paper we try to extend current technique, and show it is hard to approximate Vertex-
Cover to within a factor larger than the known 7

6 . More specifically, a corollary of our analysis
is the following:

Corollary 4.3 Given a graph G, it is NP-hard to approximate the minimum Vertex-Cover
to within any factor smaller than 10

√
5− 21.

Background. Let us now very briefly describe the background related to PCP, hardness of
approximation, and reductions utilizing one to obtain the other.

Vertex-Cover is in fact APX-complete [PY91], namely, it belongs to a class of problems whose
hardness of approximation is interrelated. Therefore, the PCP theorem entails hardness of
approximation, to within some constant factor, for this whole class of problems. This, however,
is far from providing a tight bound for approximation problems, as the constant factor of
approximation whose hardness is thus obtained, is usually quite far from the known upper-
bound. For tight bounds one is required to work a little harder, and sometimes devise ingenious
reductions and elaborate analysis.

One of the most successful recipes for such reductions, is the scheme of [BGS98, H̊as99, H̊as97],
whose rough sketch is as follows.

The starting point is the parallel repetition lemma of [Raz98], applied to the gap-SAT of
[AS92, ALM+92]. This demonstrates that, given a gap-SAT instance Φ, consisting of local-
constraints, each over two variables whose range is R; it is NP-hard to decide whether (i) Φ is
a ’yes’ instance and has a satisfying assignment, or (ii) Φ is a ’no’ instance and not even an
arbitrarily small ε = 1

|R|O(1) fraction of the local-constraints of Φ can be satisfied.

The next step calls for applying a version of the Composition technique of [AS92], as proposed
in [BGS98], to this specific setting. Namely, one replaces each of the variables with a set of
variables representing its encoding, and each local-constraint ϕ ∈ Φ with constraints that both
verify the consistency of the encoding of ϕ’s variables, and that their encoded values satisfy ϕ.

This new set of constraints may take different form according to the problem one intends to
show hard. The next step of the reduction, if necessary, translates those local-constraints to an
instance of the problem at hand, whose solution, even if only approximates the best solution,
implies a satisfying assignment for Φ.

The encoding utilized in that scheme, as proposed in [BGS98], is the long-code, the most
extensive binary code, whose bits correspond to all possible Boolean functions over the code’s
domain. Alternatively, the long-code can be represented as a sequence of subsets ofR, specifying,
for each bit of the encoding, which of the elements of R has 1 on that bit of their legal code-word.
The long-code is extremely inefficient in size, however, since the range R of values variables of
Φ can take is rather small, this poses no problem.

Numerous tight bounds for approximation problems, such as Max-3-Sat, Linear Equations,
Max-Clique, have been thus obtained. Some of these involve an extensive analysis of consistency
tests over long-codes, using Fourier analysis [H̊as99, H̊as97], showing it suffices, for example, to
probe the value of only three bits of the long-codes of x and y to be assured, with high probability,
of the consistency within the encoding of x and y as well as the consistency between the two.

Vertex Cover. Nevertheless, where other open questions regarding the hardness of approx-
imation problems rise and fall, Vertex-Cover has stood still, leaving its best hardness result
nowhere higher than the 7

6 factor of [H̊as97], which is still far from the best known upper
bound [Hal00, BYE85, MS83] of a factor 2− o(1).
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Our analysis herein amends the [BGS98, H̊as99] scheme in several places, most notably by
introducing a generalized manner by which to probe the bits of a long-code – imposing a non-
uniform probability distribution over the long-code bits – a construct which we refer to as the
biased-long-code. Hence, each bit has a probability attached to it, and, given an assignment A
to the bits of a biased–long-code, the weight of A, namely, the fractional size of the set of bits
assigned 1 by A, is determined according to the probability distribution. The original long-code
is a special case of this construct, in which the distribution over the bits is uniform.

Another important aspect by which our proof differs from the above scheme is in a pre-
processing stage preceding the application of the Composition technique. This results in an
instance of the Max-Independent-Set problem, much like the one resulting by the reduction
of [FGL+91], namely, a co-partite graph (a graph whose complement is partite). The graph
constructed herein, however, satisfies some further specific structural properties, whereby, cer-
tain pairs of parts in this graph, impose a subgraph in which the maximal co-degree of the
vertices is extremely small, in particular, half of the vertices are of co-degree 1, while the other
half is of co-degree 2.

This additional structural property of the graph is significant in the analysis of the soundness
of this construction - proving a non-satisfiable gap-SAT instance results in a graph with a large
Vertex-Cover – which by itself is quite elaborate. It incorporates techniques and extensive
studies carried out in several areas of combinatorics, in particular, the influence of variables on
Boolean functions and Erdős-Ko-Rado theorems.

Overview of the Proof. The starting point of our proof is a variant of the gap-independent-
set problem shown NP-hard in [FGL+91, AS92, ALM+92]. This problem is referred to as
hIS(r, ε, h), and is shown NP-hard by applying the [FGL+91] reduction to the strong PCP
characterization of NP of [Raz98, RS97]. Given a graph G = (M ×R,E) consisting of m cliques
of size r (i.e. a complement of an m-partite graph with r vertices in each part) the problem
is to distinguish between the ’yes’ case, in which G has an independent-set of size m, denoted
IS(G) = m; and the ’no’ case, in which any εm vertices must contain an h-clique, denoted
ISh(G) ≤ εm. The rest of the proof avoids any further PCP considerations, and is in fact a
reduction of the hIS(r, ε, h) problem to the Vertex-Cover problem.

Given such a graph G, we consider what we refer to as blocks, namely, all l-sets B =
(
M×R
l

)
=

{F ⊆M ×R | |F | = l} of vertices in G, and construct another, intermediate, co-partite graph
GB, with a clique for each block B ∈ B. The vertices in a clique of a block B ∈ B, which are
referred to as block-assignments, correspond each to an assignment a : B → {T,F}. Consider an
independent-set I of G consisting of one vertex in each clique, and let IB be the set of vertices
of GB consisting, for each block B, of the block-assignment aB being the characteristic function
of I ∩B. The edges of GB are constructed so that IB is an independent-set in GB. On the other
hand, if G contains no set of size εm with no h-clique, so does GB, furthermore, GB satisfies
some additional structural properties that allow the next step of the reduction.

An independent-set in GB, of size appropriate to the ’yes’ case, has exactly one vertex in
(almost) every clique of GB. Our final graph G

�L
B , replaces each clique in GB with a set of vertices

that correspond to the bits of an encoding, via the p-biased–long-code, of this representative
of I in that clique. We establish the completeness of the reduction rather easily, showing
that if G had an independent-set of size m then G

�L
B has an independent-set whose weight is

p − ε. The heart of our proof is to establish soundness, i.e. that if every εm vertices of G
contain an h-clique, then the weight of the largest independent-set in G

�L
B is at most roughly

max(p2, 4p3 − 3p4), provided p < 3−
√

5
2 . While the first (completeness) part follows directly
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from the definition of the p-biased–long-code, the soundness part requires deeper analysis of
assignments to the p-biased–long-code, and relies heavily on an extensive study of the influence
of variables on Boolean functions. This study has been carried out for quite a while, in an
impressive sequence of papers [BL89, BLS88, KKL88, BK97, FK96, BKS99], one of the outcomes
of which is the insightful Friedgut Lemma [Fri98] (Theorem 5.2) which we make a good use of
herein. The Friedgut Lemma essentially asserts that Boolean functions of low average-sensitivity
(namely Boolean functions that infrequently change value when one of their variables is flipped
at random) are almost entirely determined by the values of only a small set of variables.

An independent-set in G
�L
B would correspond, in each block, to an encoding with the biased

long-code supposedly representing the legal codeword of a single block-assignment. The Friedgut
Lemma allows us to ’list-decode’ this encoding, showing that it is a combination of a small
number of legal codewords, which would be considered as permissible decodings of that encoding.
To apply the Friedgut Lemma, we must first utilize additional combinatorial properties of the
graph G

�L
B , so as to show that the encoding obtained from an independent-set in G

�L
B has low

average-sensitivity.
Having a small set of permissible values for large enough set of blocks in B, is only the

first step towards showing soundness, as these values yield insufficiently weak consistency be-
tween the blocks, such that can be attained even when IS(G) � m. We next venture into

the field of extremal set theory to show that if the independent-set in G
�L
B is larger than

p• + ε = max(p2, 4p3 − 3p4) + ε, a sufficiently large set of blocks in B each distinguish one

block-assignment. Furthermore, provided p < 3−
√

5
2 ≈ 0.382, these block-assignments are con-

sistent, that is, correspond to a large set of vertices in G that contains no h-clique.

Outline. We begin in Section 2 with some preliminaries, introducing the biased long-code. In
Section 3 we define the hIS problem and show it NP-hard, thereby encapsulating all one needs
to know – for the purpose of our proof – of the PCP theorem. In section 4 we describe our
reduction from an instance of hIS to Vertex-Cover, beginning with an (m, r)-co-partite graph

G and constructing from it a weighted graph G
�L
B whose independent set is either large, in

particular roughly p, in case IS(G) = m; or small, that is < p• + ε, in case ISh(G) ≤ εm. We
also immediately show the completeness of the reduction.

Section 5 surveys the necessary combinatorial background for the proof of Soundness; and
Section 6 contains the proof of soundness – the major technical proof – showing that if every
εm vertices in G have an h-clique then IS(G

�L
B ) < p• + ε.

2 Preliminaries

Codes – Long and Biased

The long-code over a domain R encodes each element of R by the longest possible (without
repetition) sequence of binary bits, corresponding to all possible Boolean functions over R.
Each bit can be canonically identified with the subset of all elements of R whose encoding is 1

on that bit. Thus, the bits of the long-code become the power set of R, P (R)
def
= {F ⊆ R}.

Let us formally define the long-code of R,

Definition 2.1 The long-code of R, consists of all subsets of R, P (R). A codeword E:P (R)→
{0, 1} of P (R) – assigning 0 or 1 to each bit of the code – determines a family of subsets of R,
FE = E−1(1) ⊆ P (R).
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Notational Remark: We denote, adopting notation from extremal set theory, a family of
subsets of R by F ⊆ P (R), and one subset of R, in or out of F , by F ∈ P (R).

We do not distinguish between the codeword E and the family determined by it. Thus we
may say that the codeword encoding an element e ∈ R, is

Fe = {F ∈ P (R) | F 3 e} .

Long-Code for Hardness Proofs – Linearity-Test. The Long-Code has been utilized
in hardness of approximation proofs, to obtain global consistency by testing local-constraints,
as can be demonstrated by the canonical example of linearity-testing [BLR93, H̊as97]. Given
an encoding F ⊂ P (R), consider the following random process: Choose two random subsets
F1, F2 ∈ P (R), and a third subset H ∈ P (R) by taking each e ∈ R to be in H indepen-
dently with probability ε. Now, accept only if an even number (0 or 2) of the three subsets
F1, F2, F1∆F2∆H are in F . If F is the legal-codeword Fe of an element e ∈ R, this test accepts
with probability 1− ε. Moreover, H̊astad proved [H̊as97], applying Fourier analysis, that if this
test accepts with probability 1

2 + ε, then F must distinguish, in some sense that would become
clear later, a small set C ⊂ R of permissible elements of the domain R. Another way of viewing
this, is that these elements are the result of list-decoding the encoding F .

The distribution, according to which the subsets F1, F2 are chosen, is uniform, implicitly im-
plying that their size is, most probably, roughly 1

2 ·|R|. (The third subset, H, is chosen according
to a distribution that highlights subsets of size εR.) One may consider other distributions by
which to choose these subsets, leading to our generalized version of the long-code, as follows.

The p-Biased Long-Code. Let us consider distributions that highlight subsets of size roughly
p · |R|. One such natural class of distributions, is the p–product-distribution over P (R), denoted
µRp , where, independently for each element e ∈ R, e is in a set with probability p and out of it
with probability 1− p. More precisely,

Definition 2.2 (µp) Let 0 < p < 1. µRp is a distribution over P (R) according to which, every
subset F ∈ P (R) occurs with the following probability:

µRp (F )
def
= p|F | · (1− p)|R\F |

In some cases, when the set R is clear from the context, we may omit R and refer to µRp (F )
simply as µp(F ).

For p = 1
2 , µp is simply the uniform distribution. For other values of p, this distribution

highlights sets whose cardinality is roughly p · |R|, and turns out to be useful especially for
p < 1

2 . Let us now introduce the p-biased long-code,

Definition 2.3 (The p-Biased Long-Code CL) The p-biased long-code over R,
〈
P (R) , µRp

〉
,

assigns the distribution µp to P (R).

We will construct, in the following sections, a weighted graph whose vertices are partitioned
into blocks, the vertices in each block corresponding to subsets F ∈ P (R) in the long-code of
a domain R. An independent-set in this graph would correspond, in each block, to a family
F ⊆ P (R) satisfying some combinatorial properties, supposedly encoding an element e ∈ R.
The weight of an encoding Fe = {F ∈ P (R) |F 3 e} of an element e ∈ R in the p-biased–long-
code, is µRp (Fe) = p. This will allow the independent-set in our constructed graph to have large
≥ p− ε weight in case of a ’yes’ instance. The hard part will be to construct a graph for which
we can show that a ’no’ instance has an independent-set of weight no more than roughly p•.
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PCP characterization of NP

Our proof relies on the PCP characterization of NP of [Raz98, RS97]. PCP characterizations
of NP in general state that given some SAT instance, namely, a set of Boolean-functions Φ =
{ϕ1, ..., ϕn}, it is NP-hard to distinguish between the case where there is an assignment A to
Φ’s variables that satisfies all Φ, and the case where any assignment A satisfies at most a small
fraction of Φ.

The FGLSS [FGL+91, Kar72] reduction, applied to the PCP characterization of NP of either
[Raz98] or [RS97], shows the Independent-Set problem on a co-partite graph to be NP-hard.
We introduce a slightly stronger version of that gap-Independent-Set problem – in which in the
’no’ case there is not even a sizeable set that does not contain a clique of size h – and show it
NP-hard (Section 3). We then proceed to reduce this problem to Vertex-Cover.

Weighted Graphs

Our analysis is more naturally presented over weighted graphs, where the size of a set of vertices
is the sum of their weights. Hardness results for these graphs easily translate to hardness for
graphs with equal weight.

A weighted-graph G = (V,E,Λ) is an undirected graph with vertices V and edges E, and a
probability distribution Λ over the vertices V . In other words, G is a graph with normalized
weights.

Independent-Set. An independent-set in G is a set I ⊆ V such that G restricted to I is the
empty graph. Let us denote by IS(G) the maximum, over all independent-sets I in G, of Λ(I).

Vertex Cover. A vertex-cover of G is a set S ⊆ V whose complement V \S is an independent-
set. Let us denote by IS(G) the minimum, over all vertex-covers S, of Λ(S).

It is clearly the case that IS(G)+IS(G) = 1. Hence, computing the one determines the other.
When approximation is concerned, however, since IS(G) may be much smaller than IS(G), a
good approximation of IS(G) does not entail a good approximation for IS(G). Consequently,
hardness results for approximating IS(G) [H̊as99, EH00, Kho01, Tre01] do not necessarily im-
ply hardness results for large factors for IS(G). (In particular, it is hard to approximate IS(G)
to within n1−o(1) yet easy to approximate IS(G) to within factor of 2).

3 Co-partite Graphs and h-Clique-Independence

The purpose of this section is to define a gap variant of the Independent-Set problem and prove
it is NP-hard. This encapsulates all one needs to know about PCP for our proof, as the rest of
the paper starts off with this problem and reduces it to the appropriate gap-Independent-Set
problem, one which implies hardness of Vertex-Cover.

First, let us consider the following type of graphs,

Definition 3.1 An (m, r)-co-partite graph G = 〈M ×R,E〉 is a graph constructed of m = |M |
cliques each of size r = |R|, hence the edge set of G satisfies

∀i ∈M, j1, j2 ∈ R, (〈i, j1〉 , 〈i, j2〉) ∈ E
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This graph is the complement of an m-partite graph, whose parts have r vertices each.
The FGLSS [FGL+91] reduction applied to a gap-SAT problem with constant ’depend’

(namely, where each local-constraint depends on a constant number of variables) and arbi-
trarily small error-probability (see [Raz98, RS97]), results in an (m, r)-co-partite graph G, for
which it is NP-hard to distinguish between the case where IS(G) = m and the case IS(G) < εm.
We define the following generalization:

Definition 3.2 For any graph G = (V,E), define

ISh(G)
def
= max {|I| | I ⊆ V contains no clique of size h}

The gap-h-Clique-Independent-Set Problem (or hIS(r, ε, h) for short) is as follows:
Instance: An (m, r)-co-partite graph G.
Problem: Distinguish between the following two cases:

• IS(G) = m.

• ISh(G) ≤ εm.

Note that IS2(G) = IS(G) and this becomes the usual gap-Independent-Set problem. Neverthe-
less, one can show that this problem is still hard, as long as r is large enough compared to h:

Theorem 3.1 For any h, ε > 0, the problem hIS(r, ε, h) is NP-hard, as long as r ≥ ( hε )c for
some constant c.

Proof Sketch: Take a gap-SAT instance Φ, consisting of local-constraints, over variables
whose range is R, such that each local-constraint depends on a constant number D = O(1) of
the variables. It is NP-hard [Raz98, RS97] to decide whether

Yes: Φ has a satisfying assignment.

No: Not even an arbitrarily small ε = 1

|R|O(1) fraction of the local-constraints of Φ can be

satisfied.

Next, apply the FGLSS [FGL+91] reduction on this gap-SAT, to obtain an (m = |Φ| , r ≤
|R|D)-co-partite graph G where each clique corresponds to a local-constraint, and its vertices
to all possible satisfying assignments to that local-constraint. If there is a set I in G that
contains no clique of size h, there must be an assignment to Φ’s variables satisfying |I| /hD of
the constraints, as one can randomly choose for each variable one out of at most h plausible
values.

For a complete proof of this theorem, see Appendix B.

4 Reducing hIS to Vertex-Cover

In this section we present our reduction from hIS(r, ε0, h) to Vertex-Cover by constructing, from

any given (m, r)-co-partite graph G, a graph G
�L
B . Our main theorem is as follows,
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Theorem 4.1 For any ε > 0, and p < pmax = 3−
√

5
2 , for large enough h, lT and small enough ε0

(see Definition 4.1 below): Given an (m, r)-co-partite graph G = (M×R,E), one can construct,

in polynomial time, a graph G
�L
B so that:

IS(G) = m =⇒ IS(G
�L
B ) ≥ p− ε

ISh(G) < ε0 ·m =⇒ IS(G
�L
B ) < p• + ε = max(p2, 4p3 − 3p4) + ε

As an immediate corollary we obtain,

Corollary 4.2 (Independent-Set) Let p < pmax = 3−
√

5
2 . For any constant ε > 0, given a

weighted graph G, it is NP-hard to distinguish between:

Yes: IS(G) > p− ε

No: IS(G) < p• + ε

In case p ≤ 1
3 , p• reads p2 and the above asserts that it is NP-hard to distinguish between

I(G
�L
B ) ≈ p = 1

3 and I(G
�L
B ) ≈ p2 = 1

9 and the gap between the sizes of the minimum vertex

cover in the ’yes’ and ’no’ cases approaches 1−p2

1−p = 1 + p, yielding a hardness-of-approximation

factor of 4
3 for Vertex-Cover. In general,

Corollary 4.3 (Vertex Cover) Given a graph G, it is NP-hard to approximate the minimum
Vertex-Cover to within any factor smaller than 10

√
5− 21 ≈ 1.3606.

Proof: (of corollary:) For 1
3 < p < pmax, p• = 4p3 − 3p4, thus it is NP-hard to distinguish

between the case G
�L
B has a vertex cover of size 1 − p + ε and the case G

�L
B has a vertex cover

of size at least 1 − 4p3 + 3p4 − ε for any ε > 0. Minimum Vertex-Cover is thus shown hard to
approximate to within a factor approaching

1− 4(pmax)3 + 3(pmax)4

1− pmax
= 1 + pmax + (pmax)2 − 3(pmax)3 = 10

√
5− 21 ≈ 1.36068...

Before we turn to the proof of the main theorem, let us begin by setting the parameters. It is
worthwhile to note here that the particular values chosen for these parameters are insignificant.
They are merely chosen so as to satisfy some assertions through the course of the proof, never-
theless, most importantly, they are all independent of r = |R|. Once the proof has demonstrated

that assuming an ε-size independent-set in G
�L
B , there must be a set of size ε0 in G that contains

no h-clique, one can set r to be large enough so as to imply NP-hardness of hIS(r, ε0, h), which
thereby implies NP-hardness for the appropriate gap-Independent-Set problem. This argument
is valid due to the fact that none of the parameters of the proof is related to r.

Definition 4.1 (Parameter Setting) Given ε > 0 and p < pmax, let us set the following
parameters:

• Let 0 < γ < pmax − p be such that, (p+ γ)• − p• < 1
4ε.
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• Choosing h: We choose h to accommodate applications of the Friedgut Lemma, a Sunflower
Lemma and a pigeon-hole principle. Let Γ(p, δ, k) be the function defined in the Friedgut-
Lemma (Theorem 5.2), and let Γ∗(k, d) be the function defined in the Sunflower Lemma
(Theorem 6.8). Set

h0 = sup
q∈[p,pmax]

(
Γ(q, 1

16ε,
2
γ )
)

and let η = 1
16h0
· p5h0, h1 = d 2

γ·η e+ h0, hs = 1 + 22h0 ·∑h0
k=0

(h1

k

)
, and h = Γ∗(h1, hs).

• Fix ε0 = 1
32 · ε.

• Fix lT = max(4 ln 2
ε , (h1)2).

Remarks. The value of γ is well defined because the function taking p to p• = max(p2, 4p3−
3p4) is a continuous function of p. The supremum supq∈[p,pmax]

(
Γ(q, 1

16
ε, 2

γ )
)

in the definition

of h0 is bounded, because Γ(q, 1
16
ε, 2

γ ) is a continuous function of q, see Theorem 5.2. Both r
and lT remain fixed while the size of the instance |G| increases to infinity, so without loss of
generality we can assume that lT · r � m.

Proof: (of main theorem:) Let us denote the set of vertices of G by V = M ×R.

The constructed graph G
�L
B will depend on a parameter l

def
= 2lT · r.

Consider the family B of all sets of size l of V :

B =

(
V

l

)
= {B ⊂ V | |B| = l}

Let us refer to each such B ∈ B as a block. The intersection of an independent-set IG ⊂ V in G
with any B ∈ B, IG ∩B, can take 2l distinct forms, namely all subsets of B. If |IG| = m then
expectedly |IG ∩B| = l · mmr = 2lT hence for almost all B it is the case that |IG ∩B| > lT. Let
us consider for each block B its block-assignments,

RB
def
=
{

a:B → {T,F}
∣∣ |a−1(T)| ≥ lT

}
.

Every block-assignment a ∈ RB supposedly corresponds to some independent-set IG, and assigns
T to exactly all vertices of B that are in IG, that is, where a−1(T) = IG ∩B.

Note that |RB | is the same for all B ∈ B, so for r′ = |RB | and m′ = |B|, the graph GB is
(m′, r′)-co-partite. For a block-assignment for B, a:B → {T,F}, and any B̂ ⊆ B, let us denote
by a|B̂: B̂ → {T,F} the restriction of a to B̂, namely, where ∀v ∈ B̂, a|B̂(v) = a(v). Given a

pair of blocks B1, B2 that intersect on B̂ = B1 ∩B2 with |B̂| = l− 1, every block-assignment to
B1 is consistent with (i.e. has a non-edge to) at most two block-assignments to B2.

Let us construct the block graph of G, GB = (VB, EB)

Definition 4.2 Define the graph GB = (VB, EB), with vertices for all block-assignments to every
block B ∈ B,

VB =
⋃

B∈B
RB

and edges for every pair of block-assignments that are clearly inconsistent,

EB =
⋃

〈v1,v2〉∈E, B̂∈( V
l−1)

{
〈a1, a2〉 ∈ RB̂∪{v1} ×RB̂∪{v2}

∣∣∣ a1|B̂ 6= a2|B̂ or a1(v1) = a2(v2) = T
}

9



If 〈a1, a2〉 ∈ EB, we say that the block assignments a1, a2 ∈ VB are inconsistent.
Furthermore the (almost perfect) completeness of the reduction from G to GB, can be easily

proven:

Proposition 4.4 IS(G) = m =⇒ IS(GB) ≥ m′ · (1− ε).

Proof: Let IG ⊂ V be an independent-set in G, |I| = m = 1
r |V |. Let B′ consist of all l-sets

B ∈ B =
(V
l

)
that intersect IG on at least lT elements |B ∩ IG| ≥ lT. The probability that this

does not happen is (see Proposition E.1) PrB∈B [B 6∈ B′] ≤ 2e−
2lT
8 ≤ ε. For a block B ∈ B′, let

aB ∈ RB be the characteristic function of IG ∩B:

∀v ∈ B aB(v)
def
=





T v ∈ IG

F v 6∈ IG

The set I = {aB |B ∈ B′} is an independent-set in GB, of size m′ · (1− ε).

The Final Graph

We now define our final graph G
�L
B , consisting of the same blocks as GB, where the vertices in

each block of G
�L
B represent the long-code of the vertices of that block in GB.

Vertices and Weights: G
�L
B =

〈
V

�L
B , E

�L
B ,Λ

〉
has a block of vertices V

�L
B [B] for every B ∈ B,

where vertices in each block B correspond to the p-biased–long-code applied to RB

V
�L
B [B] = P (RB)

that is, one vertex for each subset F ⊆ RB of B’s block-assignments. V
�L
B consists of one such

block of vertices for each B ∈ B
V

�L
B =

⋃

B∈B
V

�L
B [B]

Note that we take the block-assignments to be distinct, hence, subsets of them are distinct, and
V

�L
B is a disjoint union of V

�L
B [B] over all B ∈ B.

Let ΛB , for each block B ∈ B, be the distribution assigning each vertex F , a probability
according to µp, namely

ΛB(F ) = µRBp (F )

The block of vertices V
�L
B [B] superimposed with ΛB therefore comprise a p-biased–long-code

over RB (see Section 2).

The probability distribution Λ assigns equal probability to every block: For any F ∈ V
�L
B [B]

Λ(F )
def
= |B|−1 · ΛB(F )

10



Edges. We have edges between every pair of F1 ∈ V
�L
B [B1] and F2 ∈ V

�L
B [B2] if in the graph

GB there is a complete bipartite graph between these sets, i.e.

E
�L
B =

{
〈F1, F2〉 ∈ V

�L
B [B1]× V

�L
B [B2]

∣∣∣ EB ⊇ F1 × F2

}

In particular, there are edges within a block, i.e. when B1 = B2, iff F1 ∩ F2 = φ (formally, this
follows from the definition because the vertices of RB form a clique in GB, and GB has no self
edges).

This completes the construction of the graph G
�L
B . We have,

Proposition 4.5 For any fixed p, l > 0, the graph G
�L
B is polynomial-time constructible given

input G.

A simple-to-prove, nevertheless crucial, property of G
�L
B is that every independent-set can be

monotonely extended,

Proposition 4.6 Let I be an independent-set of G
�L
B : If F ∈ I∩V

�L
B [B], and F ⊂ F ′ ∈ V

�L
B [B],

then I ∪ {F ′} is also an independent-set.

We conclude this section by proving completeness of the reduction:

Lemma 4.7 (Completeness) IS(G) = m =⇒ IS(G
�L
B ) ≥ p− ε.

Proof: By proposition 4.4, if IS(G) = m then IS(GB) ≥ m′(1 − ε). In other words, there is
an independent-set IB ⊂ VB of GB whose size is |IB| ≥ m′ · (1 − ε). Let I0 = {{a} | a ∈ IB} be
the independent-set consisting of all singletons of IB, and let I be I0’s monotone closure. The
set I is also an independent-set due to Proposition 4.6 above. It remains to observe that the
weight within each block of the family of all sets containing a fixed a ∈ IB, is p.

5 Families of Subsets

Our eventual goal, which will be completed in the next section (Section 6), is to show that an

independent-set in G
�L
B , if large enough, corresponds to a significant subset of G’s vertices that

is h-clique-free, so G must be a ’yes’ instance. Specifically, we will show that an independent-set
corresponds, in each block B ∈ B, to a family F ⊆ P (RB) that can be ’list-decoded’ into a
small set of permissible values in RB . We would then distinguish, assuming the independent-set
is large enough, one block-assignment per block, for a significant portion of the blocks. We
finally translate these block-assignments into a large subset of V that contains no h-clique.

This analysis utilizes two different combinatorial aspects of families of subsets. First, we
employ some theorems from the field of influences of variables on Boolean functions, to deduce
that a family F ⊆ P (R) as above has a core, namely, a small set C ⊂ R of elements of R that
are, in a sense, permissible decodings of it.

Next, we turn to extremal set theory to show that if F is also of large weight according to
µp, and if it is intersecting, it must distinguish, in a specific sense to be defined, one element
in its core. This element will be important for asserting consistency between blocks, as it will
consequently be shown to be consistent with the distinguished elements of other blocks.

Recall that we denote a family of subsets of R by F ⊂ P (R), and one of its member-subsets
usually by F,H ∈ F .
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5.1 A Family’s Core

Let F ⊂ P (R) be a family of subsets of R. We would be interested in finding when this family
is, in a sense, close to an encoding of an element e ∈ R. For starters, we would be satisfied in
finding a small set of permissible elements in R, henceforth referred to as a core, such that F is
roughly a combination of the codewords of these values.

A family of subsets F ⊂ P (R) is said to be determined by C ⊂ R, if a subset F ∈ P (R) is
determined to be in or out of F only according to its intersection with C (no matter whether
other elements are in or out of F ). Formally, F is determined by C if,

{F ∈ P (R) |F ∩C ∈ F} = F

Denote by F1 tF2 the family consisting of the pairwise union of all subsets of F1 with all those
of F2,

F1 t F2
def
= {F1 ∪ F2 |F1 ∈ F1, F2 ∈ F2} .

If C ⊂ R determines F , then there is a family FC ⊆ P (C), such that F = FC t P (R \ C).
A given family F , is not necessarily determined by any small set C. However, there might

be another family F ′, that is determined by some small set C, and that approximates F quite
accurately, up to some δ:

Definition 5.1 (Core) A set C ⊆ R is said to be a (δ, p)-core of the family F ⊆ P (R), if
there exists a C-determined family F ′ ⊆ P (R) such that µp(F 4 F ′) < δ.

As to the family of subsets that best approximates F on its core, it consists of the subsets
F ∈ P (C) whose extension to R intersects more than half of F ,

[F ]
1
2

C

def
=

{
F ∈ P (C)

∣∣∣∣∣ Pr
F ′∈µR\Cp

[
F ∪ F ′ ∈ F

]
>

1

2

}
.

Consider the Core-Family, defined as the family of all subsets F ∈ P (C), for which 3
4 of their

extension to R, i.e. 3
4 of {F ′ |F ′ ∩ C = F}, reside in F :

Definition 5.2 (Core-Family) For a set of elements C ⊂ R, define,

[F ]
3
4

C

def
=

{
F ∈ P (C)

∣∣∣∣∣ Pr
F ′∈µR\Cp

[
F ∪ F ′ ∈ F

]
>

3

4

}

By simple averaging, it turns out that if C is a (δ, p)-core for F , this family approximates F
almost as well as the best family C.

Lemma 5.1 If C is a (δ, p)-core of F , then µCp

(
[F ]

3
4

C

)
≥ µRp (F)− 4δ.

Proof: Let F ′ = [F ]
1
2

C t P (R \ C). Since C is a (δ, p)-core of F , µRp (F ′ 4 F) < δ. Hence,

µCp

({
F ∈ P (C)

∣∣∣∣∣ Pr
F ′∈µR\Cp

[
F ∪ F ′ ∈ F

]
≤ 3

4

})
< 4δ
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Influence and Sensitivity

Understanding the conditions for a family of subsets to have a small core, has been pursued for
some years. This has to do with the probability of every element e ∈ R to take subsets in or
out of F when flipped, which is referred to as the influence of that element. This notion, and
its relations with various properties of F , have been the subject of an extensive analysis [BL89,
KKL88, Fri98]. Let us now introduce this notion and assert some theorems to be available for
good use later.

Assume a family of subsets F ⊆ P (R). The influence of an element e ∈ R,

influenceep(F)
def
= Pr

F∈µp
[ exactly one of F ∪ {e}, F \ {e} is in F ]

The average sensitivity1 of F with respect to µp, denoted asp(F), is the sum of the influences
of all elements in R,

asp(F)
def
=
∑

e∈R
influenceep(F)

A truly fundamental relation between the average sensitivity of a family F ⊆ P (R) and the
size of its (δ, p)-core is the following theorem of Friedgut [Fri98]:

Theorem 5.2 (Friedgut) Let 0 < p < 1 be some bias, and δ > 0 be any approximation
parameter. Consider any family F ⊂ P (R), and let k = asp(F). There exists a function
Γ(p, δ, k) ≤ (cp)

k/δ, where cp is a constant2 depending only on p, such that F has a (δ, p)-core
C, with |C| ≤ Γ(p, δ, k).

Hence, the number of elements that are necessary in order to approximate F up to δ depends only
on δ and the average sensitivity of F . In particular, if a family F has low (say, constant) average
sensitivity, then it has a (δ, p)-core whose size is merely exponential in 1

δ , and is independent of
|R|.

The next step would be to find sufficient conditions for a family to have low average sensitivity.
As it turns out, this is the case with monotone families (defined next) assuming we allow some
slight shift in p.

Definition 5.3 (Monotone Family) A family of subsets F ⊆ P (R) is monotone if for every
F ∈ F , for all F ′ ⊃ F , F ′ ∈ F .

Such a family is sometimes called in the literature an ’upset’.
Being monotone restricts a family in certain ways, forcing it, for example, to have relatively

more large subsets than it does small subsets. This can be formalized as follows,

Proposition 5.3 For a monotone family F ⊆ P (R), µp(F) is a monotone non-decreasing
function of p.

For a simple proof of this proposition, see Appendix C.
Interestingly, for monotone families, the rate at which µp increases with p, is exactly equal

to the average-sensitivity:
1The name average-sensitivity is derived from defining the sensitivity of a subset F ∈ F as the

number of elements whose removal from or addition to F takes F in or out of F : sensitivity(F ) =
|{ e ∈ R | exactly one of F ∪ {e}, F \ {e} is in F}|. The above definition is then equivalent to the average, over
F , of sensitivity(F ).

2It follows directly from Friedgut’s proof that cp is a continuous function of p.
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Theorem 5.4 (Russo-Margulis Identity [Mar74, Rus82]) Let F ⊆ P (R) be a monotone
family. Then,

dµp(F)

dp
= asp(F)

For a simple proof of this identity, see Appendix C.
This means, that the average sensitivity asp(F) of a monotone family F , cannot remain very

high for very long. In other words,

Corollary 5.5 Let F ⊆ P (R) be a monotone family, and let 0 ≤ p < p+ γ ≤ 1. There must
be some q ∈ (p, p+ γ) such that

asq(F) ≤ 1

γ

Proof: With the above identity, and a standard application of Lagrange’s Mean-Value Theorem,
there exists some q ∈ (p, p+ γ),

asq(F) =
dµq(F)

dq
=
µp+γ(F) − µp(F)

γ
≤ 1

γ

as µp+γ(F) ≤ 1.
We have now reached the main point of this discussion. A monotone family F , supposedly

representing an encoding with the p-biased long code of an element in R, always has low average
sensitivity for some value of q ∈ [p, p+ε]. For this q we can apply the Friedgut Lemma to deduce
a small core C ⊂ R, |C| = O(1), for F , on which it is well-approximated according to µq. The
elements in this core would serve as a set of permissible values, that are the ’list-decoding’ of
F , in the rest of the proof. That these decoded values indeed represent F , and that consistency
of families F1 and F2 constitute some form of consistency of their cores C1 and C2, is the task
we face in the next section.

5.2 Maximal Intersecting Families

We have seen that a monotone family distinguishes a small core of elements, that almost deter-
mine it completely. Next, we will show that a monotone family that is of large enough weight,
and is also intersecting, must exhibit one distinguished element in its core. This element is a
stricter ’decoding’ of the family than is the core, and will consequently serve for establishing
consistency between distinct families.

Definition 5.4 A family F ⊂ P (R) is t-intersecting, for t ≥ 1, if

∀F1, F2 ∈ F , |F1 ∩ F2| ≥ t

for t = 1 such a family is referred to simply as intersecting.

Let us first consider the following natural generalization for a pair of families,

Definition 5.5 (Cross-Intersecting) Two families F1,F2 ⊆ P (R) are cross-intersecting if
for every F1 ∈ F1 and F2 ∈ F2, F1 ∩ F2 6= φ.

Two families cannot be too large and still remain cross-intersecting,
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Proposition 5.6 For any bias parameter p ≤ 1
2 , two families of subsets F1,F2 ⊆ P (R), for

which µp(F1) + µp(F2) > 1 are not cross-intersecting.

Proof: We can assume that F1,F2 are monotone, as their monotone closures must also be
cross-intersecting. Since µp, for a monotone family, is non-decreasing with respect to p (see
Proposition 5.3), it is enough to prove the claim for p = 1

2 . If for all F ∈ P (R) contained in
both families – that is, so that F ∈ F1 and F ∈ F2 – it were the case that its complement
F c = R \ F would be contained in none of the families – namely, F c 6∈ F1, F

c 6∈ F2 – the sum
of sizes would be at most 1. There must therefore be one such pair, F and F c, contained one
in F1 and the other in F2.

It is now easy to prove that if F is monotone and intersecting, then the same holds for the

core-family [F ]
3
4

C that is (see Definition 5.2) the threshold approximation of F on its core C,

Proposition 5.7 Let F ⊆ P (R), and let C ⊆ R.

• If F is monotone then [F ]
3
4

C is monotone.

• If F is intersecting, and p ≤ 1
2 , then [F ]

3
4

C is intersecting.

Proof: The first assertion is immediate. For the second assertion, assume by way of contradic-

tion, a pair of non-intersecting subsets F1, F2 ∈ [F ]
3
4

C and observe that the families

{F ∈ P (R \ C) |F ∪ F1 ∈ F1} and {F ∈ P (R \ C) |F ∪ F2 ∈ F2}

both have weight > 3
4 , and by Proposition 5.6, cannot be cross intersecting.

An intersecting family whose weight is larger than that of a maximal 2- intersecting family,
must contain two subsets that intersect on a unique element e ∈ R. This family behaves in
some respects as if it is Fe, a fact that will be critical for our proof.

Definition 5.6 (Distinguished Element) For a monotone and intersecting family F ⊆ P (R),
an element e ∈ R is said to be distinguished if there exist F [, F ] ∈ F such that

F [ ∩ F ] = {e}

Clearly, an intersecting family has a distinguished element if and only if it is not 2-intersecting.
We next establish a weight criterion for an intersecting family to have a distinguished element.
For each p < pmax, define p• to be

Definition 5.7
∀p < pmax, p•

def
= max(p2, 4p3 − 3p4)

This maps each p to the size of the maximal 2-intersecting family, according to µp. For a proof of
such a bound we venture into the field of extremal set theory, where maximal intersecting families
have been studied for some time. This study was initiated by Erdős, Ko, and Rado [EKR61],
and has seen various extensions and generalizations. The corollary above is a generalization to
µp of what is known as the Complete Intersection Theorem for finite sets, that was proven by
[AK97]. Frankl [Fra78] defined the following families:

Ai,t def= {F ∈ P ([n]) |F ∩ [1, t+ 2i] ≥ t+ i}

which are easily seen to be t-intersecting for 0 ≤ i ≤ n−t
2 ; and conjectured the following theorem

that was finally proven by Ahlswede and Khachatrian [AK97]:
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Theorem 5.8 ([AK97]) Let F ⊆
([n]
k

)
be t-intersecting. Then,

|F| ≤ max
0≤i≤n−t

2

∣∣∣∣Ai,t ∩
(

[n]

k

)∣∣∣∣

Our analysis requires the extension of this statement to families of subsets that are not restricted

to a specific size k, and where t = 2. Let us therefore denote Ai def= Ai,2:

Corollary 5.9 Let F ⊂ P ([n]) be 2-intersecting. For any p < 1
2 ,

µp(F) ≤ max
i
{µp(Ai)}

Furthermore, when p ≤ 1
3 , this maximum is attained by µp(A0) = p2, and for 1

3 < p < pmax by
µp(A1) = 4p3 − 3p4. Having defined p• = max(p2, 4p3 − 3p4) for every p < pmax, we thus have

Corollary 5.10 If F ⊂ P (R) is 2-intersecting, then µp(F) ≤ p•, provided p < pmax.

The proof of these two corollaries can be found in Appendix D.

6 Soundness

This section is the heart, and most technical part, of the proof of correctness, proving the
construction is sound, that is, that if G

�L
B has a large independent-set, then G has a large

h-clique–free set.

Lemma 6.1 (Soundness) IS(G
�L
B ) ≥ p• + ε =⇒ ISh(G) ≥ ε0 ·m.

Proof Sketch: Assuming an independent-set I ⊂ V
�L
B of weight Λ(I) ≥ p•+ ε, we consider for

each block B ∈ B, its supposed long-code: the family I[B] = I ∩ V
�L
B [B].

The first step (Lemma 6.2) is to find, for a non-negligible fraction of the blocks Bq ⊆ B, a
small core of permissible block-assignments, and in it, one distinguished block-assignment to
be used later to form a large h-clique–free set in G. This is done by showing that for every
B ∈ Bq, I[B] has both significant weight and low average-sensitivity. This, not necessarily true
for p, is asserted for some slightly shifted value q ∈ (p, p+γ). Utilizing the Friedgut Lemma, we
deduce the existence of a small core for I[B]. Then, utilizing an Erdős-Ko-Rado-type bound on
the maximal size of a 2-intersecting family, we find a distinguished block-assignment for each
B ∈ Bq.

The next step is to focus on one (e.g. random) l − 1 sub-block B̂ ∈
(
V
l−1

)
, and consider its

extensions B̂ ∪ {v} for v ∈ V = M × R, that represent the initial graph G. The distinguished
block-assignments of those blocks that are in Bq will serve to identify a large set in V .

The final most delicate part of the proof, is Lemma 6.6, asserting that the distinguished
block-assignments of the blocks extending B̂ must identify an h-clique–free set as long as I
is an independent-set. Indeed, since they all share the same (l − 1)-sub-block B̂, the edge
constraints these blocks impose on one another will suffice to conclude the proof. Let us turn
then to the proof of Lemma 6.1.
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Proof: Let then I ⊂ V
�L
B be an independent-set of size Λ(I) ≥ p• + ε, and denote, for each

B ∈ B,

I[B]
def
= I ∩ V

�L
B [B] .

The fractional size of I[B] within V
�L
B [B], according to ΛB , is ΛB(I[B]) = µp(I[B]).

Assume w.l.o.g. that I is maximal,
Observation. I[B], for any B ∈ B, is monotone and intersecting.

Proof: It is intersecting, as G
�L
B has edges connecting vertices corresponding to non-intersecting

subsets, and it is monotone due to maximality (see Proposition 4.6).
The first step in our proof is to find for a significant fraction of the blocks, a small core, and

in it one distinguished block-assignment. Recall from Definition 5.6, that an element a ∈ C

would be distinguished for a family [I[B]]
3
4

C ⊆ P (C) if there are two subsets F [, F ] ∈ [I[B]]
3
4

C

whose intersection is exactly F [ ∩ F ] = {a}.
The Friedgut Lemma asserts the existence of a small core only for families with low average-

sensitivity. We overcome this by slightly increasing p,

Lemma 6.2 There exists some q ∈ [p, pmax), and a set of blocks Bq ⊆ B whose size is |Bq| ≥
1
4ε · |B|, such that for all B ∈ Bq:

1. I[B] has an ( 1
16ε, q)-core, Core[B] ⊂ RB, of size |Core[B]| ≤ h0.

2. The core-family [I[B]]
3
4

Core[B]
has a distinguished element ȧ[B] ∈ Core[B].

Proof: We will find a value q ∈ [p, pmax) and a set of blocks Bq ⊆ B such that for every B ∈ Bq,
I[B] is of large weight and low average sensitivity, according to µq. We will then proceed to
show that this implies the above properties. First consider blocks whose intersection with I has
weight not much lower than the expectation,

B′ def=

{
B ∈ B

∣∣∣∣ ΛB(I[B]) > p• +
1

2
ε

}

By a simple averaging argument, it follows that |B ′| ≥ 1
2ε · |B|, as otherwise

Λ(I) · |B| =
∑

B∈B
ΛB(I[B]) ≤ 1

2
ε |B|+

∑

B 6∈B′
ΛB(I[B]) <

1

2
ε |B|+

∑

B 6∈B′
(p• +

1

2
ε) ≤ (p• + ε) · |B|

Since µp is non-decreasing with p (see Proposition 5.3), and since the value of γ was chosen so
that for every q ∈ [p, p+ γ], p• + 1

4ε > q•, we have for every block B ∈ B′,

µq(I[B]) ≥ µp(I[B]) > p• +
1

2
ε > q• +

1

4
ε (1)

The family I[B], being monotone, cannot have high average sensitivity according to µq for many
values of q, so by allowing an increase of at most γ, the set

Bq
def
=

{
B ∈ B′

∣∣∣∣ asq(I[B]) ≤ 2

γ

}

must be large for some q ∈ (p, p+ γ):

Proposition 6.3 There exists q ∈ (p, p+ γ) so that |Bq| ≥ 1
4ε · |B|.
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Proof: Consider the average, within B ′, of the size of I[B] according to µq

µq[B′] def=
∣∣B′
∣∣−1 ·

∑

B∈B′
µq(I[B])

and apply a version of Lagrange’s Mean-Value Theorem: The derivative of µq[B′] as a function
of q is

dµq[B′]
dq

=
∣∣B′
∣∣−1 ·

∑

B∈B′

dµq
dq

(I[B]) =
∣∣B′
∣∣−1 ·

∑

B∈B′
asq(I[B])

where the last equality follows from the Russo-Margulis identity (Lemma 5.4). Therefore, there

must be some q ∈ (p, p+γ) for which
dµq [B′]
dq ≤ 1

γ , as otherwise µp+γ [B′] > 1 which is impossible.

It follows that at least half of the blocks in B ′ have asq(I[B]) ≤ 2
γ . We have |Bq| ≥ 1

2 |B′| ≥ 1
4ε |B|.

Fix then q ∈ (p, p + γ), to be as in the proposition above, so that |Bq| ≥ 1
4ε · |B|. We next

show that the properties claimed by the lemma, indeed hold for all blocks in Bq. The first
property, namely that I[B] has an ( 1

16ε, q)-core, denoted Core[B] ⊂ RB , of size |Core[B]| ≤ h0,
is immediate from the Friedgut Lemma (see Theorem 5.2), plugging in the average sensitivity
of I[B], and by definition of h0 = supq∈[p,pmax] Γ(q, 1

16 ε,
2
γ ), see Definition 4.1.

Having found a core for I[B], consider the core-family approximating I[B] on Core[B], (see
Definition 5.2), denoted by

CFB def
= [I[B]]

3
4

Core[B]
=

{
F ∈ P (Core[B])

∣∣∣∣∣ Pr
F ′∈µR\Core[B]

p

[
F ∪ F ′ ∈ I[B]

]
>

3

4

}

By Proposition 5.7, since I[B] is monotone and intersecting, so is CFB . Moreover, Corollary 5.1
(a corollary of the Friedgut Lemma) asserts that

µq(CFB) > µq(I[B])− 4 · ε
16

> q•

where the second inequality follows from inequality (1), stating that µq(I[B]) > q• + 1
4ε for

any B ∈ Bq. We can now utilize the bound on the maximal size of a 2-intersecting family
(see Corollary 5.10), to deduce that CFB is too large to be 2-intersecting, and must distinguish
an element ȧ ∈ Core[B], i.e. contain two subsets F ], F [ ∈ CFB that intersect on exactly that
block-assignment, F ] ∩ F [ = {ȧ}. This completes the proof of Lemma 6.2.

Let us now fix q as guaranteed by Lemma 6.2 above. The following implicit definitions
appeared in the above proof, and will be used later as well,

Definition 6.1 (Core, Core-Family, Distinguished Block-Assignment) Let B ∈ Bq.
• B’s core, denoted Core[B] ⊂ RB, is an arbitrary smallest ( 1

16ε, q)-core of I[B].

• B’s core-family, is the core-family on B’s core (see Definition 5.2), denoted CFB =

[I[B]]
3
4

Core[B]
.

• B’s distinguished block-assignment, is an arbitrary distinguished element of CFB, denoted
ȧ[B] ∈ Core[B].

Let us further define for each block B ∈ Bq, the set of all block-assignments of B that have
non-negligible influence (i.e. larger than η = 1

16h0
· p8h0):
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Definition 6.2 (Extended Core) For B ∈ B, let the extended core of B be

ECore[B]
def
= Core[B] ∪

{
a ∈ RB

∣∣ influencea
q(I[B]) ≥ η

}

The extended core is not much larger than the core, because the total sum of influences of
elements in RB, is bounded for every B ∈ Bq, by asq(I[B]) ≤ 2

γ ,

|ECore[B]| ≤ h0 +
asq(I[B])

η
≤ h0 + d 2

γ·η e = h1

The next step in our proof, is to identify for every (l−1)-sub-block B̂ ∈
(
V
l−1

)
a subset VB̂ ⊂ V

that is h-clique–free. The members of VB̂ will be selected according to the distinguished block-

assignments of the blocks extending B̂. Analyzing the consistency between the distinguished
block-assignments of distinct blocks, is complicated by the fact that families encoding distinct
blocks consist of subsets of distinct domains (RB1 6= RB2 for B1 6= B2). Considering only the
blocks that extend a specific sub-block B̂ ∈

( V
l−1

)
, yields a nice 2-to-2 correspondence between

their block-assignments. The block-assignments of blocks B = B̂ ∪ {v} are paired according
to their restriction to B̂, such that all the pairs whose restriction is mapped to the same sub-
block-assignment naturally correspond to each other.

It would be undesired to have both block-assignments in a given pair influential in I[B] for
this would mean that the structure of I[B] is not preserved when reduced to B̂. Thus, besides
requiring that many of the blocks B̂∪{v} extending B̂ reside in Bq, we need them to be preserved
by B̂:

Definition 6.3 (Preservation) Let B ∈ B, and let B̂ ⊂ B, |B̂| = l− 1. Let us denote by a|B̂
the restriction to B̂ of a block-assignment a ∈ RB. We say that B̂ preserves B, if there is no
pair of block-assignments a1 6= a2 ∈ ECore[B] with a1|B̂ = a2|B̂.

It is almost always the case that B̂ preserves B̂ ∪ {v}:
Proposition 6.4

∀B ∈ B |{v ∈ B |B \ {v} does not preserve B}| < (h1)2

2
.

Proof: Each pair of block-assignments a1, a2 ∈ ECore[B] can cause at most one B̂ to not
preserve B, and for any block B ∈ Bq , |ECore[B]| ≤ h1; consequently, the number of B̂ not

preserving B is at most
(h1

2

)
< (h1)2

2 .

The last step before identifying the required B̂ is to note that a distinguished block-assignment
for a block B̂ ∪ {v} is useful for constructing an h-clique–free subset in G, if it assigns T to v.
Hence, for each B̂ we consider the following set VB̂ ⊂ V :

Definition 6.4 Let VB̂ ⊆ V be:

VB̂
def
=
{
v ∈ V \ B̂

∣∣∣B = B̂ ∪ {v} ∈ Bq and B̂ preserves B and ȧ[B](v) = T
}

It follows from the definition of VB̂ , that if v1, v2 ∈ VB̂ are connected by an edge in G, then the

distinguished block-assignments of B1 = B̂ ∪ {v1} and B2 = B̂ ∪ {v2} are connected by an edge
in the graph GB, 〈ȧ[B1], ȧ[B2]〉 ∈ EB (see Definition 4.2). Finally, let us identify a sub-block B̂,
for which VB̂ is large:
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Proposition 6.5 There exists B̂ ∈
( V
l−1

)
, with

∣∣VB̂
∣∣ ≥ ε0 ·m.

Proof: Observe that

Pr
B̂, v∈V \B̂

[
v ∈ VB̂

]
≥ 1

4
ε · Pr

B, v∈B

[
v ∈ VB\{v}

∣∣B ∈ Bq
]
≥ 1

4
ε · 1

4r

where the first inequality follows from Proposition 6.3 asserting Bq ≥ 1
4ε |B|. The second

inequality is a consequence of the fact that for any a ∈ RB, there are at least lT = l
2r elements

v ∈ B with a(v) = T; and at most (h1)2

2 (l − 1)-blocks B̂ ⊂ B not preserving B; hence,

conditioned on B ∈ Bq, the probability of v ∈ VB̂ is at least 1
2r −

(h1)2

2l ≥ 1
4r as l ≥ 2(h1)2 · r.

This inequality shows that there is at least one B̂ for which Prv∈V \B̂
[
v ∈ VB̂

]
≥ ε

16r , hence,
∣∣VB̂

∣∣ ≥ 1
16r ε ·

∣∣∣V \ B̂
∣∣∣ ≥ 1

32ε ·m, as
|V \B̂|
r > 1

2m, because |B̂| = l− 1� 1
2 |V |, see Definition 4.1.

Finally, we establish ISh(G) ≥ ε0 ·m by proving,

Lemma 6.6 The set VB̂ contains no clique of size h.

Proof: (of Lemma 6.6) Assume, by way of contradiction, that there exists a clique over
vertices v1, . . . , vh ∈ VB̂. We will show that, for Bi = B̂ ∪ {vi}, the set ∪i∈[h]I[Bi] is not an
independent-set. In fact, we will find two of these blocks, Bi1 , Bi2 , such that I[Bi1 ] ∪ I[Bi2 ] is
not an independent set.

Analyzing consistency between blocks B̂ ∪ {vi} leads us to consider the mutual sub-block
B̂, and the sub-block-assignments that are restrictions of block-assignments in RBi to B̂. The
(l − 1)-block-assignments of B̂ ∈

(
V
l−1

)
, are defined to be

RB̂
def
=
{

a: B̂ → {T,F}
}

A block-assignment a ∈ RBi has a natural restriction to B̂, denoted a|B̂ ∈ RB̂, where ∀v ∈
B̂, a|B̂(v) = a(v).

For the remaining analysis, let us name the three important entities regarding each block Bi,
for i ∈ [h]: Bi’s distinguished block-assignment, the core of Bi, and the extended core of Bi,

ȧi
def
= ȧ[Bi] Ci

def
= Core[Bi] Ei

def
= ECore[Bi]

and their natural restrictions to B̂ (where the natural restriction of a set is the set comprising
the restrictions of its elements),

âi
def
= ȧi|B̂ Ĉi

def
= Ci|B̂ Êi

def
= Ei|B̂

Now, recall the core-family CFBi , which is the family of subsets, over the core of each Bi, each
of which extension is of 3

4 weight in I[Bi]. For each block Bi, i ∈ [h], ȧi being distinguished
implies a pair of subsets

F [i , F
]
i ∈ CFBi so that F [i ∩ F ]i = {ȧi}

Let their natural restriction to B̂ be

F̂ [i
def
= F [i |B̂ F̂ ]i

def
= F ]i |B̂
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and note that, as B̂ preserves every Bi, it follows that, for all i ∈ [h],

F̂ [i ∩ F̂ ]i = {âi} (2)

Our first goal is to identify two blocks Bi1 and Bi2 that are extremely inconsistent:

Proposition 6.7 There exist i1 6= i2 ∈ [h], such that, denoting ∆ = Êi1 ∩ Êi2 ,

1. Ĉi1 ∩∆ = Ĉi2 ∩∆

2. F̂ [i1 ∩∆ = F̂ [i2 ∩∆

3. F̂ ]i1 ∩∆ = F̂ ]i2 ∩∆

Proof: Our proof begins by applying the following Sunflower-Lemma over the sets Êi:

Theorem 6.8 ([ER60]) There exists some integer function Γ∗(k, d) (not depending on |R|),
such that for any F ⊂

(
R
k

)
, if |F| ≥ Γ∗(k, d), there are d distinct sets F1, . . . , Fd ∈ F , such that,

let ∆
def
= F1 ∩ . . . ∩ Fd, the sets Fi \∆ are pairwise disjoint.

The sets F1, .., Fd are called a Sunflower, or a ∆-system. This statement can easily be extended
to families in which each subset is of size at most k.

We apply this lemma for R = RB̂, and F = {Ê1, .., Êh}. Recall (definition 4.1) we have fixed
h > Γ∗(h1, hs), hence Theorem 6.8 implies there exists some J ⊆ [h], |J | = hs, such that

{
Êi \∆

}
i∈J

are pairwise disjoint for ∆
def
=
⋂

i∈J
Êi

Consider, for each i ∈ J , the triplet
〈
Ĉi ∩∆, F̂ [i ∩∆, F̂ ]i ∩∆

〉
, and note that, since

F̂ [i , F̂
]
i ⊆ Ĉi the number of possible triplets is at most

∣∣∣
{〈

Ĉ ∩∆, F̂ [ ∩∆, F̂ ] ∩∆
〉 ∣∣∣ |Ĉ| ≤ h0, F̂

[, F̂ ] ⊆ Ĉ
}∣∣∣ ≤

h0∑

k=0

(
h1

k

)
· 2h0 · 2h0

< hs = |J |

(recall we have set (definition 4.1) hs = 1 + 22h0 ·∑h0
k=0

(
h1
k

)
). Therefore, by the pigeon-hole

principle, there must be some i1, i2 ∈ J for which

〈
Ĉi1 ∩∆, F̂ [i1 ∩∆, F̂ ]i1 ∩∆

〉
=
〈
Ĉi2 ∩∆, F̂ [i2 ∩∆, F̂ ]i2 ∩∆

〉

From now on let us assume w.l.o.g. that i1 = 1, i2 = 2, and continue to denote ∆ = Ê1 ∩ Ê2.
We will arrive at a contradiction by finding an edge between the blocks B1, B2, specifically,
by finding two extensions, one of F [

1 in I[B1], and another of F ]
2 in I[B2], all of whose block-

assignments are pairwise inconsistent.
As a first step, let us prove that the block-assignments in F [

1 and F ]2 are pairwise inconsistent:

Proposition 6.9
〈
F [1 , F

]
2

〉
∈ E

�L
B .
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Figure 1: Block Assignments of B1, B2 and sub-block-assignments of B̂.
RB1 (resp. RB2) is represented by the two upper (resp. two lower) horizontal lines labelled by T and F
to indicate the value assigned to v1 (resp. v2) by block-assignments on that line. Each circle represents
a single block assignment. On the left a column (highlighted as a light gray vertical line) consists of
four block assignments and a sub-block assignment which is their mutual restriction to B̂. All block
assignments in the same column agree on their restriction to B̂, depicted as a gray circle on the middle
horizontal line that represents RB̂ . Two block assignments are consistent only if they are in the same
column and are not both T. The blackened circles represent members of the core of B1 and the block-
assignments in F [1 and F ]1 are labelled [ and ]. The distinguished block-assignment – marked by a white
dot – is labelled by both [ and ], and assigns T to v1. The dashed vertical lines border the intersection
of Ĉ1 with Ĉ2, which is equal to Ĉ1 ∩ Ĉ2 = Ĉ1 ∩∆ = Ĉ2 ∩∆ and is where the restrictions of F ]1 , F

[
1 are

equal to those of F ]2 , F
[
2 . This also implies that (D̂1 \ Ĉ1) ∩∆ ⊆ (D̂1 \ Ĉ1) ∩ Ê1 = φ.

Proof: We need to prove that for all a1 ∈ F [1 , a2 ∈ F ]2 , 〈a1, a2〉 ∈ EB. If 〈a1, a2〉 6∈ EB, it must

be that a1|B̂ = a2|B̂ ∈ F̂ [1 ∩ F̂
]
2 ⊆ Ê1 ∩ Ê2 = ∆. B1 and B2 are chosen in Proposition 6.7 so that

F̂ [1 ∩∆ = F̂ [2 ∩∆ and F̂ ]1 ∩∆ = F̂ ]2 ∩∆. Consequently a1|B̂ = a2|B̂ ∈ F̂ [1 ∩ F̂
]
1 ∩∆ = F̂ [2 ∩ F̂ ]2 ∩∆,

however (2) asserts that the only block-assignment in these two intersections is the distinguished
one, hence â1 = a1|B̂ = a2|B̂ = â2. Since B̂ preserves both B1 and B2, a1 = ȧ1 and a2 = ȧ2.
However, 〈ȧ1, ȧ2〉 ∈ EB (recall Definition 4.2), as both ȧ1, ȧ2 assign T to v1, v2 respectively and
〈v1, v2〉 ∈ E.

It may well be that F [
1 6∈ I[B1] and F ]2 6∈ I[B2], thus the proposition above is only a first step

towards a contradiction. Nevertheless, we know that F [
1 ∈ CFB1 = [I[B1]]

3
4

Core[B1]
means that

3
4 of

{
F ∈ P (RB1) |F ∩ Core[B1] = F [1

}
are in I[B1]; and likewise for F ]

2 . In what follows, we
utilize this large volume of 3

4 to find extensions of these sets, that are in I, yet are connected

by an edge in E
�L
B .
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Let us partition the set of (l − 1)-block assignments of RB̂ into the important ones, which
are restrictions of block-assignments in the cores of B1 or B2, and the rest,

D̂ = Ĉ1 ∪ Ĉ2 and R̂ = RB̂ \ D̂

which immediately partitions the block-assignments of RB1 and RB2 , according to whether their
restriction falls within D̂:

D1 =
{

a ∈ RB1

∣∣∣ a|B̂ ∈ D̂
}

and R1 = RB1 \D1

and similarly for RB2 ,

D2 =
{

a ∈ RB2

∣∣∣ a|B̂ ∈ D̂
}

and R2 = RB2 \D2

Proposition 6.10 |D1| ≤ 4h0 and |D2| ≤ 4h0.

Proof: Simply note that |D1|, |D2| ≤ 2|D̂| ≤ 2(|Ĉ1|+ |Ĉ2|) ≤ 2(|C1|+ |C2|) = 4h0.

Notice that F [1 ∈ P (C1) ⊆ P (D1) and F ]2 ∈ P (C2) ⊆ P (D2), hence it suffices to exhibit two
subsets H1 ∈ P (R1) and H2 ∈ P (R2) all of whose block-assignments are pairwise-inconsistent,

and so that F [1 ∪H1 ∈ I[B1] and F ]2 ∪H2 ∈ I[B2].

Let us prove this by showing first that the families of subsets extending F [
1 and F ]2 within I

are large; and then proceed to show that this large volume implies the existence of two subsets,
H1 and H2 as required.

Let us first name these two families of subsets extending F [
1 and F ]2 within I:

I1 =
{
F ∈ P (R1)

∣∣∣ (F [1 ∪ F ) ∈ I[B1]
}

and I2 =
{
F ∈ P (R2)

∣∣∣ (F ]2 ∪ F ) ∈ I[B2]
}

and proceed to prove they are large:

Proposition 6.11

µR1
q (I1) >

1

2
and µR2

q (I2) >
1

2

Proof: Let us prove the first case; the second one is proven by a symmetric, but otherwise

identical, argument. By definition of CFB1 = [I[B1]]
3
4

C1
, it is the case that

Pr
F∈µq

[
F ∈ I[B1]

∣∣∣ F ∩ C1 = F [1

]
>

3

4

Note that the only difference between this event and

µR1
q (I1) = Pr

F∈µq

[
F ∈ I[B1]

∣∣∣ F ∩D1 = F [1

]

is the conditioning on F to not contain any block-assignment in D1 \ C1. Simplistically, if the
elements in D1 \C1 have tiny influence, then removing them from a subset does not take it out
of I[B1]. Hence, it suffices to prove that this family, of extensions of F [

1 within I[B1], is almost
independent of the set of block-assignments D1 \C1, that is, that one can extract a small (< 1

4 )
fraction of I1 and make it completely independent of the block-assignments outside R1 ∪C1.

Let us first observe that block-assignments in D1 \ C1 indeed have tiny influence,
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Proposition 6.12
(D1 \ C1) ∩E1 = φ

Proof: There are two cases to consider for a ∈ D1 \ C1: Either a|B̂ ∈ Ĉ1 and in that case,

since B̂ preserves B1 and since a 6∈ C1, we deduce a 6∈ E1; or, a|B̂ ∈ Ĉ2 \ Ĉ1 and since the first

condition on B1 and B2 in Proposition 6.7 is that Ĉ1 ∩∆ = Ĉ2 ∩∆, we deduce a|B̂ 6∈∆. Now

a|B̂ ∈ Ĉ2 ⊆ Ê2, implies a|B̂ 6∈ Ê1, thus a 6∈ E1.
By definition of the extended core Ei (Definition 6.1), it follows that for every a ∈ D1 \ C1,

influencea
q(I[B1]) < η. Since |D1 \ C1| < 4h0 (Proposition 6.10) we can deduce that I[B1] is

almost independent ofD1\C1, utilizing a relatively simple, general property related to influences.
Namely, that, given any monotone family of subsets of a domain R, and a set U ⊂ R of elements
of tiny influence, one has to remove only a small fraction of the family to make it completely
independent of U , i.e. determined by R \ U . More accurately, we prove the following simple
proposition in Appendix C,

Proposition 6.13 Let F ⊂ P (R) be monotone, and let U ⊂ R be such that for all e ∈ U ,
influenceep(F) < η. Let

F ′ = {F ∈ F |F \ U ∈ F}
then,

µR
p

(
F \ F ′

)
< |U | · η · p−|U |

Proof: See Appendix C.
Substituting D1 \ C1 for U and 1

16h0
· p5h0 for η (see Definition 4.1), this proposition asserts

that the weight of the subsets that have to be removed from I[B1] to make it independent of
D1 \ C1,

I[B1]′
def
= {F ∈ I[B1] | (F \ (D1 \ C1)) 6∈ I[B1]} ,

is bounded by

µ
RB1
q (I[B1]′) < 4h0 · η · q−4h0 ≤ 1

4
qh0 .

Now, even if all I[B1]′ is concentrated on F [
1 , since F [1 ’s weight in P (C1) is at least q|C1| ≥ qh0 ,

µC1
q

(
F [1
)
≥ qh0 . It follows that (using Pr(A |B) ≤ Pr(A)/Pr(B)),

Pr
F∈µR1

q

[
F ∈ I[B1]′

∣∣F ∩ C1 = F [1

]
≤ Pr

F∈µR1
q

[
F ∈ I[B1]′

]
· 1

µC1
q

(
F [1
) < 1

4

Formally, we write

3

4
< Pr

[
F ∈ I[B1] |F ∩ C1 = F [1

]
=

= Pr
[
F ∈ I[B1] \ I[B1]′

∣∣F ∩ C1 = F [1

]
+ Pr

[
F ∈ I[B1]′

∣∣F ∩ C1 = F [1

]

< Pr
[
F ∈ I[B1] \ I[B1]′

∣∣F ∩D1 = F [1

]
+

1

4

Implying that µR1
q (I1) = Pr

[
F ∈ I[B1] |F ∩D1 = F [1

]
> 1

2 , and completing the proof of Propo-
sition 6.11.

We complete the proof of the Soundness Lemma, by deducing from the large volume of
I1, I2, the existence of two subsets H1 ∈ I1 and H2 ∈ I2 so that 〈H1,H2〉 ∈ E

�L
B , implying〈

F [1 ∪H1, F
]
2 ∪H2

〉
∈ E

�L
B , which is the desired contradiction.
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Proposition 6.14 Let I1 ⊂ P (R1) , I2 ⊂ P (R2). If (1 − q)2 ≥ q and µR1
q (I1) + µR2

q (I2) > 1,

there exist H1 ∈ I1 and H2 ∈ I2 such that 〈H1,H2〉 ∈ E
�L
B .

Proof: This proposition is proven by modifying the proof for the case of cross-intersecting
families (Proposition 5.6). In that proof, we bounded the size of a pair of cross-intersecting
families by pairing each subset with its complement, noting that at p = 1

2 their weights are
equal.

In this case, we focus on the value q = pmax = 3−
√

5
2 for which (1− q)2 = q, noting that since

q ≤ pmax, the monotonicity of I1, I2 (see Proposition 5.3) yields µpmax(I1) +µpmax(I2) > 1. Here
let us partition both P (R1) and P (R2), and define an appropriate ’complement’ for each part,
rather than for each subset.

Our partition is defined according to a ’representative mapping’ mapping each F ∈ P (R1)
to a function Π[F1] : R̂→

{
TF,TF,F

}
defined as follows:

∀â ∈ R̂, Π[F1](â)
def
=





TF â(z1←T), â(z1←F) 6∈ F1

TF â(z1←T) ∈ F1, â(z1←F) 6∈ F1

F â(z1←F) ∈ F1

(symmetrically, we define Π[F2] for each F2 ∈ P (R2)). This mapping is natural when considering
the characteristic function of F1 and asking, for every â ∈ R̂, the value of that function on the
two extensions of â in R1, â(z1←T) and â(z1←F).

Additionally, for a function Π : R̂→
{

TF,TF,F
}

, let its complement be Πc : R̂→
{

TF,TF,F
}

defined as follows:

∀â ∈ R̂, Πc(â)
def
=





TF Π(â) = F

TF Π(â) = TF

F Π(â) = TF

Observe that this is indeed a perfect matching of the possible functions Π : R̂→
{

TF,TF,F
}

,

and that Π[H1] = Πc[H2] implies 〈H1,H2〉 ∈ E
�L
B .

Next, observe that for a fixed Π0 : R̂→
{

TF,TF,F
}

,

Pr
F1∈µR1

q

[Π[F1] = Π0] =
∏

â: Π0(â)=TF

(1− q)2 ·
∏

â: Π0(â)=TF

q(1− q) ·
∏

â: Π0(â)=F

q

Now if q = pmax, i.e. (1 − q)2 = q, we have PrF [Π[F ] = Π0] = PrF [Π[F ] = Πc
0]. Since

µq(I1) + µq(I2) > 1, there must be a pair Π,Πc such that

{F1 ∈ P (R1) | Π[F1] = Π} ∩ I1 6= φ and {F2 ∈ P (R2) | Π[F2] = Πc} ∩ I2 6= φ

providing the necessary pair of H1 ∈ I1,H2 ∈ I2 with 〈H1,H2〉 ∈ E
�L
B .

Lemma 6.6 is thereby proved.
This completes the proof of the soundness of the construction (Lemma 6.1).
The main theorem (Theorem 4.1) is thereby proven as well.
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7 Tightness

In this section we show our analysis of G
�L
B is tight in two respects. First, we show that for any

value of p there is always an independent set I in G
�L
B whose size is almost p•, regardless of G

being a ’yes’ or a ’no’ instance. Next, we show that if p > (1− p)2 (this happens for p ≥ 3−
√

5
2 ),

then a large independent set can be formed in G
�L
B , again, regardless of the size of IS(G).

The 2-intersecting bound. We will exhibit an appropriate choice of maximal 2-intersecting
families for almost all of the blocks B, that constitutes an independent set in G

�L
B .

Let Vred ∪Vgreen∪Vblue∪Vyellow be a partition of V into roughly equal sizes. For every block
B ∈ B, define four special block-assignments, aBred, a

B
green, a

B
blue, a

B
yellow defined as being true on

their color, and false elsewhere, e.g.

∀v ∈ B, aBred(v)
def
=





T v ∈ Vred

F otherwise

Of course, not all four are defined for every block, as a block-assignment a ∈ RB must contain
at least t T’s, and there is a negligible fraction of the blocks B ′ ⊂ B that intersect at least one
of Vred∪Vgreen∪Vblue∪Vyellow with less than t values. Neglecting these, we take for each block,
the following set of vertices

I[B] =
{
F ∈ V [B]

∣∣ ∣∣F ∩
{

aBred, a
B
green, a

B
blue, a

B
yellow

}∣∣ ≥ 3
}

and let I def
=
⋃
B∈B\B′ I[B].

Let B̂ ∈ V (l−1), and let B1 = B̂∪{v1}, and B2 = B̂∪{v2}. Assume v1 ∈ Vred (symmetrically
for any other color), and observe the following,

1. aB1
green, a

B1
blue, a

B1
yellow are respectively consistent with aB2

green, a
B2
blue, a

B2
yellow.

2. For any F1 ∈ I[B1],
∣∣∣F1 ∩

{
aB1
green, a

B1
blue, a

B1
yellow

}∣∣∣ ≥ 2, and similarly for F2 ∈ I[B2],

therefore, these vertices are consistent.

Thus, I is an independent set.

The bound p < (1−p)2. Assume p > 3−
√

5
2 . We construct an independent set by selecting an

arbitrary block assignment for each block, and taking all subsets containing it. By removing a
negligible fraction of the vertices (subsets) in each block, we eliminate all edges between blocks.

Consider two blocks B1, B2 ∈ B, such that B1 = B̂ ∪ {v1}, B2 = B̂ ∪ {v2}. Denote by R̂
the set of sub-block assignments for B̂ that are restrictions of RB1 and of RB2 , and assume for
simplicity that every sub-block assignment in R̂ has two extensions (to F and to T) in both RB1

and RB2 .
A random subset F ∈µp P (RB1), has expectedly p · |RB1 | block-assignments. Moreover, there

are expectedly (1 − p)2 · |R̂| sub-block-assignments in R̂ for which a(v1←F), a(v1←T) 6∈ F , and
expectedly p · |R̂| sub-block-assignments for which a(v1←F) ∈ F .

For two vertices F1 ∈ V [B1] and F2 ∈ V [B2] to be inconsistent, one of them must deviate
from the expectation, due to the following. Every â ∈ R̂ for which a(v1←F) ∈ F1 must have both
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a(v2←F), a(v2←T) 6∈ F2. If both F1, F2 are near their expectation, there are roughly (1− p)2 · |R̂|
sub-block-assignments in R̂ for which a(v2←F), a(v2←T) 6∈ F2, and since (1 − p)2 < p, this is not
enough to meet the expected p · |R̂| sub-block-assignments for which a(v2←F) ∈ F1.

Standard Chernoff bounds imply that we need to remove only a tiny fraction of the vertices
of each block, so as to eliminate all subsets that deviate from the expectation according to at
least one sub-block B̂.

8 Discussion

The construction presented herein, as is, cannot be utilized to prove stronger hardness results
for Vertex-Cover. Nevertheless, an amendment to the structure of the graph GB, on which
the biased long-code is applied, might disqualify independent-sets consisting of 2-intersecting
families of subsets in the ’no’ case where ISh(G) < εm, and maybe even allow increasing the
bias parameter so that p = 1

2 − ε. An amendment which would allow a proof for the following
conjecture:

Conjecture 8.1 Given a graph G, it is NP-hard to distinguish between

Yes: IS(G) ≥ 1
2 − ε.

No: IS(G) ≤ ε.

for any ε > 0.

Thereby showing Vertex-Cover to be hard to approximate to within a factor even slightly smaller
than 2.

Let us note that our result also implies, by direct reduction, a hardness of approximation
factor of 1.3606 for the 2-CNF clause deletion problem: the problem of finding the minimum
weight set of clauses in a 2-CNF formula whose deletion makes the formula satisfiable. The best
approximation algorithm for this problem guarantees only a factor of log n log log n [KPRT97].

The framework for proving hardness results suggested herein can be tried on other problems
for which the known hardness result does not match the best upper-bound. In essence one
has to consider variations on G

�L
B and show that if some constraints are satisfied, a sizeable

fraction of GB’s blocks must have a core, and in fact a distinguished assignment, that imply
global-consistency, i.e. consistency between the blocks.
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A Weighted vs Unweighted

Given a graph G = (V,E,Λ), we construct, for any precision parameter % > 0, an unweighted

graph G% = (V%, E%) with
∣∣∣ IS(G%)
|V%| − IS(G)

∣∣∣ ≤ %, and whose size is polynomial in |G| and 1
% .

Let n = |V | · 1
% . We replace each v ∈ V with nv = dn · Λ(v)c copies (dxc denotes the integer

nearest x), and set

V%
def
= {〈v, i〉 | v ∈ V, 1 ≤ i ≤ nv }

E%
def
= { {〈v1, i1〉 , 〈v2, i2〉} | {v1, v2} ∈ E, i1 ∈ [nv1 ], i2 ∈ [nv2 ]}

If C ⊆ V is a vertex cover for G, then C% =
⋃
v∈C {v}× [nv] is a vertex cover for G%. Moreover,

every minimal vertex cover C% ⊆ V% is of this form. Thus we show
∣∣∣ IS(G%)
|V%| − IS(G)

∣∣∣ ≤ % by the

following proposition,

Proposition A.1 Let C ⊆ V , and let C% =
⋃
v∈C {v} × [nv]. Then

∣∣∣ |C%||V%| − Λ(C)
∣∣∣ ≤ %.

Proof: For every C,C% as above,

|C%| =
∑

v∈C
nv =

∑

v∈C
dn · Λ(v)c = n · Λ(C) +

∑

v∈C
(dn · Λ(v)c − n · Λ(v)).

For any v, |dvc − v| ≤ 1
2 , and so

∣∣∣∣
|C%|
n
− Λ(C)

∣∣∣∣ ≤
1

2

|C|
n
≤ %

2
(3)

To complete our proof we need to replace
|C%|
n by

|C%|
|V%| in (3). Indeed, taking C = V in (3), yields∣∣∣ |V%|n − 1

∣∣∣ ≤ %
2 , and multiplying by

|C%|
|V%| ≤ 1, we obtain

∣∣∣ |C%|n −
|C%|
|V%|

∣∣∣ ≤ %
2 .

B Proof of Theorem 3.1

In this section we prove Theorem 3.1 which encapsulates our use of the PCP theorem. PCP
characterizations of NP in general state that given some SAT instance, namely, a set of Boolean-
functions Φ = {ϕ1, ..., ϕn} over variables W , it is NP-hard to distinguish between ’yes’ instances
where there is an assignment A to Φ’s variables that satisfies all Φ, and ’no’ instances where
any assignment to A satisfies at most a small fraction of Φ.

Definition B.1 Let us denote by Υ(Φ) the maximum, over all assignments to Φ’s variables
A : W → {0, 1}, of the fraction of ϕ ∈ Φ satisfied by A, namely

Υ(Φ) = max
A

Pr
ϕ∈Φ

[ϕ is satisfied by A]

The basic PCP theorem showing hardness for gap-SAT states that,

Theorem B.1 ([AS92, ALM+92]) There exists some constant β > 0 such that given a set
Φ = {ϕ1, .., ϕn} of 3-CNF clauses over Boolean variables W (each clause is the OR of exactly
3 variables), it is NP-hard to distinguish between the two cases:
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Yes: Φ is satisfiable (Υ(Φ) = 1).

No: Υ(Φ) < 1− β.

Let us now turn to the proof of Theorem 3.1.
Theorem 3.1 For any h, ε > 0, the problem hIS(r, ε, h) is NP-hard, as long as r = ( hε )c for
some constant c.

Proof: Our proof proceeds by reduction from the PCP theorem. Let Φ be as above, and
define the parallel repetition version of Φ,

Definition B.2 (Par [Φ, k]) Let 〈Φ,W 〉 be a 3-CNF instance, with 3-CNF clauses Φ over vari-
ables W . For any integer k > 0, let

Par [Φ, k]
def
= 〈Ψ, X, Y 〉

be a SAT instance with Boolean functions Ψ over two types of variables: X
def
= Φk and Y

def
= W k.

The range of each variable x ∈ X, is RX = [7]k, corresponding (by enumerating the 7
satisfying assignments of each 3-CNF clause ϕ ∈ Φ) to the concatenation of the satisfying
assignments for Φ’s clauses in x. The range of each variable y ∈ Y , is RY = [2]k, corresponding
to all possible assignments to W ’s variables in y.

For y = (w1, .., wk) and x = (ϕ1, .., ϕk), denote y v x if for all i ∈ [k], wi is a variable in ϕi.
The Boolean-functions in Φ are as follows:

Ψ =
{
ψx→y

∣∣∣ y ∈W k, x ∈ Φk, y v x
}

where ψx→y is T if the assignment to y is the restriction to y of the assignment to x, and F
otherwise. Since each test ϕ ∈ Φ has exactly 3 variables, each variable x ∈ X appears in exactly
3k tests in ψx→y ∈ Ψ.

Clearly, if Υ(Φ) = 1, then Υ(Ψ) = 1. For the converse,

Theorem B.2 (Parallel Repetition, [Raz98]) There exists some constant c > 0, such that
the following holds. Let 〈Φ,W 〉 be a 3-CNF-instance, and let 〈Ψ, X, Y 〉 = Par [Φ, k],

Υ(Ψ) ≤ Υ(Φ)c·k .

Therefore, one may choose k for which (1− β)c·k ≤ ε/h3 and |RY | , |RX | ≤ ( εh)−O(1), hence it is
NP-hard to distinguish whether Υ(Ψ) = 1 or Υ(Ψ) < ε/h3.

The FGLSS Construction. We next apply the FGLSS [FGL+91, Kar72] construction to Ψ.
Let G[Ψ] be the (m, r)-co-partite graph, with m = |X| and r = |RX |,

G[Ψ] = 〈V,E〉 where V
def
= (X ×RX)

that is, where G[Ψ]’s vertices is the set of pairs consisting of a variable x in X and a value
a ∈ RX for x. For the edge set E of G[Ψ], let us consider all pairs of vertices whose values
cannot possibly correspond to the same satisfying assignment:
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E = {{(x1, a1), (x2, a2)} | ∃y, ψx1→y, ψx2→y ∈ Φ, ψx1→y(a1) 6= ψx2→y(a2)}
Therefore, an independent-set in G[Ψ] cannot correspond to an inconsistent assignment to Φ.

If Ψ is satisfiable, let A : X ∪ Y → {T,F} be a satisfying assignment for it, and observe that
the set { (x,A(x)) |x ∈ X} ⊂ V is an independent-set of size |X| = m.

Otherwise, let us assume that I ⊂ V contains no clique of size h, and that |I| > ε ·m, and
show that Υ(Ψ) > ε

h3 . Let AI map to each variable a subset of its range, as follows. For every
x ∈ X and y ∈ Y , set

AI(x)
def
= {a ∈ RX | (x, a) ∈ I} ⊂ RX

AI(y)
def
=

⋃

ψx→y∈Ψ

ψx→y(AI(x)) ⊂ RY

By the definition of AI , for every x with AI(x) 6= φ and for every ψx→y ∈ Ψ,

ψx→y(AI(x)) ∩AI(y) 6= φ .

Denote X0 = {x ∈ X |AI(x) 6= φ} and observe that since there is an equal number of ψx→y ∈ Ψ
for each variable x:

Pr
ψx→y∈Ψ

[ψx→y(AI(x)) ∩AI(y) 6= φ] = Pr
x∈X

[x ∈ X0] =
|X0|
|X| >

1

h
· |I||X| > ε/h .

Finally, by picking for each variable x ∈ X, y ∈ Y a random assignment

∀x ∈ X, y ∈ Y, ax ∈R AI(x), ay ∈R AI(y)

If AI(x) 6= φ, the probability that ψx→y ∈ Ψ is satisfied by such a random assignment is at least
1

|AI(x)| · 1
|AI(y)| > 1/h2. Thus the expected number of Boolean functions satisfied by this random

assignment is > ε
h3 · |Ψ|. Since at least one assignment must meet the expectation, Υ(Ψ) > ε

h3 .

C Some Propositions about µp

Proposition 5.3 For a monotone family of subsets F ⊆ P (n), q > p⇒ µq(F) ≥ µp(F).

Proof: For a subset F ∈ P ([n]) denote

F≤i
def
= F ∩ [1, i] and F>i

def
= F ∩ [i+ 1, n]

and consider, for 0 ≤ i ≤ n, the hybrid distribution, where the first i elements are chosen with
bias p and the others are chosen with bias q

µp,i,q(F )
def
= p|F≤i| · (1− p)i−|F≤i| · q|F>i| · (1− q)n−i−|F>i|

Observe that
∀0 ≤ i ≤ n µp,i,q(F) ≥ µp,i+1,q(F)

therefore µq(F) = µp,0,q(F) ≥ µp,n,q = µp(F).
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Theorem 5.4 [Russo-Margulis Identity] Let F ⊆ P (R) be a monotone family. Then,

dµq(F)

dq
= asq(F)

Proof: For a subset F ∈ P (n) write

µq(F ) =
∏

i∈[n]

µi
q(F ), for µi

q(F ) =





q i ∈ F

1− q i 6∈ F
(4)

Observe that

influenceiq(F) =
∑

F∈F


 dµiq(F )

dq
·
∏

j 6=i
µj
q(F )




Differentiating (4) according to q, and summing over all F ∈ F , we get

dµq(F)

dq
=
∑

i∈[n]

influenceiq(F) = asq(F) .

We next show that for any monotone family F ⊂ P (R), if U ⊂ R is a set of elements of tiny
influence, one has to remove only a small fraction of F to make it completely independent of U :

Proposition 6.13 Let F ⊂ P (R) be monotone, and let U ⊂ R be such that for all e ∈ U ,
influenceep(F) < η. Let

F ′ = {F ∈ F |F \ U ∈ F}
then,

µR
p

(
F \ F ′

)
< |U | · η · p−|U |

Proof: Let
F ′′ = {F ∈ P (R \ U) | F ∪ U ∈ F but F 6∈ F} .

A set F ∈ F ′′ contributes at least µ
R\U
p (F ) · p|U | to the influence of at least one element e ∈ U .

Since the sum of influences of elements in U is < |U | · η, we have µ
R\U
p (F ′′) < |U | · η · p−|U |. The

proof is complete noting that,
F \ F ′ ⊆ F ′′ t P (U)

D Erdős-Ko-Rado

In this section we prove a lemma that is a continuous version and follows directly from the
complete intersection theorem of Ahlswede and Khachatrian [AK97].

Let us define
Ai def= {F ∈ P ([n]) |F ∩ [1, 2 + 2i] ≥ 2 + i}

and prove the following corollary,
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Corollary 5.9 Let F ⊂ P ([n]) be 2-intersecting. For any p < 1
2 ,

µp(F) ≤ max
i
{µp(Ai)}

Proof: Denote µ = maxi(µp(Ai)). Assuming F0 ⊂ P ([n0]) contradicts the claim,
let a = µp(F0) − µ > 0. Now consider F = F0 t P ([n] \ [n0]) for n > n0 large enough, to

be determined later. Clearly, for any n ≥ n0, µ
[n]
p (F) = µ

[n0]
p (F0), and F is 2-intersecting.

Consider, for θ < 1
2 − p to be determined later,

S
def
= {k ∈ N | |k − p · n| ≤ θ · n}

and for every k ∈ S, denote by Fk = F ∩
([n]
k

)
. We will show that since most of F ’s weight is

derived from ∪k∈SFk, there must be at least one Fk that contradicts Theorem 5.8. Indeed,

µ+ a = µp(F) =
∑

k∈S
pk(1− p)n−k · |Fk|+ o(1)

Hence there exists k ∈ S for which |Fk |
([n]
k )
≥ µ + 1

2a. We have left to see that µ ·
(
n
k

)
is close

enough to maxi(|Ai ∩
([n]
k

)
|). This follows from usual tail bounds, and is sketched as follows.

Subsets in
([n]
k

)
for large enough i (depending only on k

n but not on k or n), have roughly
k
n · (2i+2) elements in the set [1, 2i+2]. Moreover, the subsets in Ai have at least i+2 elements

in [1, 2i + 2], thus are very few (compared to
(n
k

)
), because i+2

2i+2 > 1
2 > p + θ ≥ k

n . In other

words, there exists some constant Cp+θ,µ, for which
∣∣∣Ai ∩

([n]
k

)∣∣∣ < µ ·
(n
k

)
for all i ≥ Cp,µ as long

as k
n ≤ p+ θ.
Additionally, for every i < Cp,µ, taking n to be large enough we have

∀k ∈ S,

∣∣∣Ai ∩
([n]
k

)∣∣∣
(n
k

) = µ k
n

(Ai) + o(1) = µp(Ai) + o(1) < µ+ o(1)

where the first equality follows from a straightforward computation.
We have the following corollary,
Corollary 5.10 Let F ⊂ P (R) be 2-intersecting. For any q < pmax, µq(F) ≤ q•.

Proof: Define a sequence p0 < p1 < . . ., by pi
def
= i

2i+1 . We will show that these are the
points where the maximum switches from Ai to Ai+1. More accurately, we will show for all
i ≥ 0,

∀p ∈ (pi, pi+1] max
j
{µp(Aj)} = µp(Ai) (5)

This, together with Corollary 5.9, implies the corollary, as p < pmax < 0.4 = p2 implies
µp(F) ≤ max(µp(A0), µp(A1)) = max(p2, 4p3 − 3p4) = p•.

So we proceed to prove (5). A subset F 6∈ Ai must intersect [1, 2i + 2] on at most i + 1
elements. If additionally F ∈ Ai+1 it must then contain 2i+ 3, 2i + 4. Thus,

µp(Ai+1 \ Ai) =

(
2i+ 2

i+ 1

)
· pi+1(1− p)i+1 · p2
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Similarly,

µp(Ai \ Ai+1) =

(
2i+ 2

i+ 2

)
· pi+2(1− p)i · (1− p)2

Together,

µp(Ai+1)− µp(Ai) = µp(Ai+1 \ Ai)− µp(Ai \ Ai+1)

= pi+2(1− p)i+1

(
2i+ 2

i+ 1

)(
p− (1− p) i+ 1

i+ 2

)

The sign of this difference is determined by p−(1−p) i+1
i+2 . For a fixed i ≥ 0, this expression goes

from positive to negative passing through zero once at p = i+1
2i+3 = pi+1. Thus, the sequence

{µp(Aj)}j is maximized at i for pi < p ≤ pi+1. (It is increasing when i ≤ 1−3p
2p−1 , and decreasing

thereafter).

E A Chernoff Bound

Proposition E.1 For any set I ⊂ V such that |I| = 1
r · |V |,

Pr
B∈B

[|I ∩B| < lT] < 2e−
2lT
8

Proof: Consider the random variable χI : V → {0, 1} taking a 1 iff v ∈ I. We have
Prv∈V [χI(v) = 1] = 1

r , and for every B ∈ B =
(
V
l

)
, |I ∩B| =

∑
v∈B χI(v), so the expecta-

tion of this is |B| · 1
r = 2lT. The standard Chernoff bound directly gives

Pr
v1,..,vl∈V


∑

i∈[l]

χI(vi) < lT =
1

2
· l/r


 < e−

l
8r

We are almost done, except that the above probability was taken with repetitions, while in our
case, for v1, . . . , vl to constitute a block B ∈ B, they must be l distinct values. In fact, this
happens with overwhelming probability and in particular ≥ 1

2 , thus we write,

Pr
v1,...,vl∈V

[∑

i

χI(vi) < lT

∣∣∣∣∣ |{v1, ..., vl}| = l

]
≤ Prv1,...,vl∈V [

∑
i
χI(vi) < lT]

Prv1,...,vl∈V [|{v1, ..., vl}| = l]

≤ e−
l

8r

1
2

= 2e−
l

8r
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