
Zaps and Their Applications

Cynthia Dwork
�

Moni Naor
�

January 7, 2002

Abstract

A zap is a two-round, witness-indistinguishable protocol in which the first round, consisting of a
message from the verifier to the prover, can be fixed “once-and-for-all” and applied to any instance, and
where the verifier does not use any private coins. We present a zap for every language in NP, based on
the existence of non-interactive zero-knowledge proofs in the shared random string model. The zap is in
the standard model, and hence requires no common guaranteed random string.

We present several applications for zaps, including 3-round concurrent zero knowledge and 2-round
concurrent deniable authentication, in the timing model of Dwork, Naor and Sahai [16], using moderately
hard functions [14].

Keywords: zero-knowledge, oblivious transfer, witness-indistinguishability, verifiable pseudo-random
functions, verifiable pseudo-random generators, timing, resettable zero-knowledge

1 Introduction

The concept of zero-knowledge, introduced in the ground-breaking paper of Goldwasser, Micali, and Rack-
off [26], has proved to be an invaluable tool in the design of cryptographic primitives and protocols. For
example, consider an identification protocol based on pseudo-random function evaluation: I am identified
by my ability to evaluate a function ��� , where only I know the seed � . Given a challenge � , I produce � and
prove that �	�
�������� critically without revealing any information about � .

An appealing and frequently useful relaxation of zero-knowledge, called witness-indistinguishability,
was proposed by Feige and Shamir [19]. Roughly speaking, in the context of NP, the difference is as
follows: An interactive proof system is zero-knowledge if a prover, knowing a witness for membership of a
string � in an NP langauge � , can correctly “convince” a verifier to accept � while revealing no information
whatsoever about the witness. If there are two “independent” witnesses for ����� , a proof system is witness-
indistinguishable if the verifier cannot tell which of the two witnesses is being used by the prover to carry out
the proof, even if the verifier knows both witnesses. We restrict our attention to NP because we are interested
in the realistic setting in which parties are restricted to probabilistic polynomial time computations1 .
�
Microsoft Corporation, 1065 L’Avenida, Mountain View, CA 94043, USA. E-mail: dwork@microsoft.com. Work performed

while the author was at the IBM Almaden Research Center.�
Dept. of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. Some of this

work performed while at the IBM Almaden Research Center and Stanford University. Supported in part by a grant from the Israel
Science Foundation and ONR grant N00014-97-1-0505, Multidisciplinary University Research Initiative ”Semantic Consistency in
Information Exchange”. E-mail: naor@wisdom.weizmann.ac.il.

1The literature on these subjects is extensive. See in particular the papers [12, 20, 24], the lecture notes [13], and the text-
books [21, 32].

Electronic Colloquium on Computational Complexity, Report No. 1 (2002)

ISSN 1433-8092

In this work we obtain surprising results on the numbers of rounds needed in order to achieve zero-
knowledge and witness-indistinguishability. For this purpose we introduce and investigate. zaps. A zap is a
two-round witness indistinguishable protocol in which

(i) the first round, consisting of a message from the verifier to the prover, can be fixed “once-and-for-
all” and applied to any instance and

(ii) the verifier uses only public coins.
That is, the system remains sound and witness-indistinguishable even if the statements to be proven are

chosen after the first-round message is fixed. Thus, if we think of the participating parties as families of
non-uniform, rather than uniform, probabilistic polynomial time-bounded Turing machines, the existence of
a zap for a language � implies the existence of 1-message witness-indistinguishable proof system for � .

Throughout the paper we will distinguish between the shared random string model, in which the parties
have access to a common guaranteed random string, and what we call the standard model, in which no
such assumption is made. Whenever we refer to noninteractive zero-knowledge proofs (NIZKs), we mean
in the shared random string model (the definition of NIZK forces this). We present zaps for every language
� � ��� based on the existence of a noninteractive zero-knowledge proof system for � in the shared random
string model. The zap is in the standard model, and hence requires no common guaranteed-random string.
Using current NIZK technology this means that zaps can be based on any family of trapdoor permutations.

Not only can zaps be constructed from NIZKs, but the converse holds as well: if every langage in NP has
a zap and one-way functions exist, then every language in NP has a NIZK. This result (and its proof) gives a
somewhat formal view of zaps, but yields little intuition for why zaps and NIZKs exist at all. Indeed, our first
constructions of zaps were not based on NIZKs, but relied on the new notion of a verifiable pseudo-random
bit generator, or VPRG. Roughly speaking, a pseudo-random sequence is verifiable if a party knowing the
pseudo-random seed can construct verifiable “proofs” of the bits of the pseudo-random sequence. Moreover,
a VPRG with some number � of output bits passes what we call the “ � th bit test” for all ���	���
� : given
proofs of the values of all but the � th bit in the sequence, it is computationally infeasible to guess the � th bit
with a non-negligible advantage over ���� . Thus, VPRGs can be viewed as a special case of the verifiable
pseudo-random functions (VPRF’s) of Micali, Rabin, and Vadhan [33], in which the domain is very small.
We give constructions for VPRGs and a relaxation, approximate VPRGs. The importance of VPRGs is this:
Zaps (and NIZKs) exist if and only if approximate VPRGs exist in the standard model.

We present applications of zaps in several models. Specifically, we construct faster implementations of
important cryptographic primitives in each of the standard, timing-based, and resettable models. Although
in some cases the absolute improvement in rounds may be modest, the number of rounds that we achieve in
each case is within 1 of the best possible. For example, all previous witness-indistinguishable proof systems
require at least three rounds of communication. Zaps achieve witness indistinguishability in two rounds.
The fact that zaps also yield non-uniform one-round witness-indistinguishability suggests that proving a
lower bound of two rounds is unlikely.

The most interesting application in this paper is in the timing model of Dwork, Naor, and Sahai [16],
where, using moderately hard functions [14] and timed commitments [7], we obtain 3-round concurrent
black-box2 zero knowledge proofs of knowledge for all of NP. A 3-round black-box zero-knowledge proto-
col with timing (even without concurrency) is interesting in its own right: it is known that in the standard
model (no timing) this is impossible to achieve (with negligible soundness error assuming NP �� BPP) [23],
while the possibility of concurrency implies that at least � ������������������������� � rounds are required [10]; thus,

2A protocol is ‘black-box zero-knowledge’ if there is a universal simulator, which when given “black box” access to any verifier
strategy, is able to produce a simulation of that verifier with the prover. Virtually all zero-knowledge proofs until very recently
where black-box (but see [1] for the first example of a protocol which does not fit this category).

2

adding timing allows us to go well below the lower bounds in the standard model. Recently, using zaps,
Dwork and Stockmeyer have obtained 2-round timing-based black-box (concurrent) zero-knowledge inter-
active proofs under the assumption that certain functions have no fast auditors; they also provide a prover-
advice based variant for which soundness is absolute (in this variant the prover can have arbitrary computa-
tion time) [17]. We note that even in the timing-based model, zero-knowledge proof systems for languages
outside of BPP require two rounds of interaction. No such result is known for the bounded-advice model.

We also use zaps to construct 2-round deniable authentication protocols [12, 15, 16, 17]. Intuitively,
deniable authentication is like a signature scheme in that it permits one party to authenticate messages to
another party, based on a public key; however, unlike in the case of digital signatures, the authenticating
conversation “leaves no trace,” for example, it may be simulable, and hence can be effectively repudiated.

The relative ease with which we are able to reduce the amount of interaction provides further motivation
for the timing model of [16] – in our opinion a more realistic one than the shared guaranteed random string
model (see e.g. [11])– and a complexity theory of moderately hard functions [14].

Using zaps and timed commitments we also obtain a different type of improvement on the results in [16,
17]. The timing model requires a mild “ ����� � � ” assumption about the relative rates of the clocks of non-
faulty processors, and the protocols in [16] require processors (typically, the prover), to wait until an interval
of at least

���
� time has elapsed (as measured on the processor’s own clock). � and

�
are chosen so as

to tolerate actual system and communication delays. The proofs in [16, 17] require the parameters to be
set according to the slowest non-faulty processors. Our new techniques permit flexibility in this respect:
fast verifiers with good communication links to the prover are not forced to suffer delays due to slower
concurrent verifiers.

In the standard model, without timing assumptions, we give a 2-round oblivious transfer protocol based
on the quadratic residuousity assumption and using public keys; without previously established public keys
the protocol requires three rounds.

Finally, we consider a model of computation in which the prover’s use of randomness is severely re-
stricted, as, for example, in the case of a smart card, in which the prover may have a short embedded
truly random seed and read-only memory. Canetti, Goldreich, Goldwasser, and Micali [9] give one for-
malization, termed resettable zero-knowledge (rZK). Informally, a protocol protects a witness (either in the
zero-knowledge sense or in the indistinguishability sense) in the resettable model if the protection holds
even if the prover may be re-started (reset) many times and forced to repeatedly use the same random tape
(the prover may also be re-started using a different, but still random, tape).

Using zaps and timed commitments, we construct a 3-round timing-based rZK proof system for any
language in NP. As noted in [9], rZK proofs cannot be proofs of knowledge, so, despite the connections
between smart-card, resettable, and concurrent zero-knowledge [9, 28], this result is incomparable with our
3-round concurrent-ZK proofs of knowledge.

We also observe that 2-round (and even non-constructive 1-round) resettable witness-indistinguishability
is easily obtained from a zap, simply by having the prover’s “random” bits in the zap be a pseudo-random
function of the verifier’s initial message and the input. This improves (both in conceptual and round com-
plexity) upon the 5-round resettable witness-indistinguishability results in [9].

In all our protocols that employ timing, only the verifier needs access to a (local) clock. This is partic-
ularly appealing in the resettable case, in which the prover may be a smart card, since the card may not be
equipped with a clock.

3

1.1 Outline

In Section 2 we review the definitions of known cryptographic primitives. A formal definition of a zap is
given in Section 3. In Section 4 we prove the existential equivalence of zaps (in the standard model) and
NIZKs (in the shared random string model). Section 5 defines and constructs verifiable pseudo-random bit
generators (VPRGs) and approximate VPRGs, together with a proof that zaps (and hence, by the above-
mentioned result, NIZKs) exist if and only if approximate VPRGs exist in the standard model. In Section 7
we discuss the timing-based applications (3-round concurrent zero knowledge and 2-round deniable authen-
tication). Section 6 contains our zap-based oblivious transfer protocol. In Section 8 we discuss uses of zaps
in the resettable model of [9]. Finally, open questions are discussed in Section 9.

2 Brief Review of Cryptographic Primitives

Throughout this paper, unless otherwise noted, we assume that all “good” parties (the non-faulty prover and
verifier) are modeled by uniform probabilistic polynomial time Turing machines. However, our protocols
remain sound regardless of the computational power of the prover, and we achieve zero-knowledge against
non-uniform probabilistic polynomial time cheating verifiers.

Let � � � � denote a function that grows more slowly than the inverse of any polynomial, i.e., for all �����
there is an ��� such that � � � �	�	��� ��
 for all � � ��� .

2.1 Interactive Proof Systems and Zero Knowledge

The concepts described here are due to Goldwasser, Micali, and Rackoff [26].
An interactive protocol is a pair ��� �� � of interactive probabilistic polynomial time machines, the prover

� and the verifier , where � has two inputs � and � , and has inputs � and � . The protocol ��� �� � is an
interactive proof for the language � if the following two conditions hold (we let � denote the size of �):

1. Completeness: For all ����� , there exists a � such that

Pr � ��� �� � ��� � � � accepts ���	����� � � �

2. Soundness: For all probabilistic polynomial time machines � � , for all � ���� , for all �

Pr � ��� �� � ��� � � � accepts ����� � � �

where the probability spaces are over the coin flips of both machines. The parameter � plays the role of a
security parameter.

To define zero-knowledge we allow to have an auxiliary input � . Let ��� �� � ��� � � ����� denote the
transcript of the conversation between � and when � ’s input is ��� � � � and ’s input is ��� ����� . Then ��� �� �
is zero-knowledge if for every (possibly cheating) verifier �� , there exists a (probabilistic polynomial time
machine) simulator � , such that for all deterministic polynomial size circuit family of tests � and all � � �
such that ��� �� � ��� � � � accepts with all but negligible probability, and for all � :

�
Pr � � � ��� �� � � ��� � � ����� ����� Pr � � ��� ��� ����� ��� � ��� � � � (1)

where the probability in the first (resp., second) term is over the random choices of � and � (resp., �).

4

2.2 Proofs of Knowledge [19]

Let � be an NP language accepted by a nondeterministic polynomial time Turing machine ��� . A compu-
tation path is a sequence of nondeterministic choices made by ��� . The set of accepting computation paths
on input ����� is the witness set of � , denoted � ��� � .

An interactive proof of knowledge system for NP language � is a pair of algorithms ��� �� � satisfying:

1. Completeness: � ��� � ����� ��� ��� �

Pr � ��� �� � ��� �	� � accepts ���	����� � � �

where the probability is over the coin flips of � and ;

2. Soundness: there exists an expected probabilistic polynomial time knowledge extractor � such that
for all (possibly cheating) probabilistic polynomial time prover � � and � �
��� �

�
Pr � ��� � �� � ��� �	� � � accepts � � Pr � � ��� ��� � ��� �	� � � � ��� ������� � ��� � � �

where the probability is taken over the coin flips of and � .

The soundness condition is very strong: since it holds for all � � we have in particular that � � need not flip
coins, since its favorable coin tosses can be incorporated into � � . Note that if � ���� , then � ��� � ��� , so the
probability that accepts is negligible.

An interactive proof of knowledge is zero knowledge if it satisfies the definition of zero knowledge
(simulability).

2.3 Witness Indistinguishability

The concept of witness indistinguishability was proposed by Feige and Shamir [19] as a relaxation of zero-
knowledge. Unlike the case with zero-knowledge, witness indistinguishability is closed under parallel and
concurrent composition.

Definition 2.1 (Witness Indistinguishability) A proof system ��� �� � is witness indistinguishable if for any
polynomial time � , for all ����� , for all �� �	��� ��� ����� , and for all auxiliary inputs � to � , the distribution
on the views of � following an execution ��� �� � � ��� �	� ����� is non-uniform probabilistic polynomial time
indistinguishable from the distribution on the views of � following an execution ��� �� � � ��� �	� � ��� � .

Note that the auxiliary input � can even be the two witnesses � �	� � . Thus, even knowing both witnesses,
 � should not be able to distinguish which witness is being used by � .

Theorem 2.1 ([19]) Every zero-knowledge protocol is witness indistinguishable.

Theorem 2.2 ([19]) Witness indistinguishability is preserved under parallel and concurrent composition of
protocols.

5

2.4 Noninteractive Zero-Knowledge Proof Systems

The following discussion is based on [12, 20, 37]: A (single theorem) non-interactive proof system for a
language � allows one party � to prove membership in � to another party for any � � � . � and
initially share a string � of length polynomial in the security parameter � which is trusted to have been
chosen at random. To prove membership of a string � in ���
� � ��� � � ��� � , � sends a message � as
a proof of membership. decides whether to accept or to reject the proof � as function of � and � .
Non-interactive zero knowledge proof systems were introduced in [5, 4]. Non-interactive zero-knowledge
schemes for proving membership in any language in NP may be based on any trapdoor permutation (see
[20, 29]). Assuming a trapdoor permutation on � bits, the length of a proof of a satisfiable circuit of size �
(and the size of the shared random string) is 		� � � � � .

We assume that the shared string � is generated according to the uniform distribution on strings of length
polynomial in � and � , where the polynomial depends on the particular protocol.

Let � be in NP and for any � � � let � ��� � be the set of strings that witness the membership of � in � ,
as described above. For the proof system to be of any use, � must be able to operate in polynomial time if
it is given a witness � � � ��� � . We call this the tractability assumption for � . In general � is not available
to .

Let ��
 ��� �	� ��� � be the distribution of the proofs generated by � on input � , witness � , and shared
string � . Suppose that � sends a proof � when the shared random string is � . Then the pair �� ��� � is
called the “conversation”. Any � � � and � � � ����� induces a probability distribution ��	�
 ��� �	� � on
conversations �� ��� � where � is a shared string and � � ��
 ��� �	� ��� � is a proof.

For the system to be zero-knowledge, there must exist a simulator ����� which, on input � , generates a
conversation �� �� � . Let ����� ����� be the distribution on the conversations that � ��� generates on input � , let
������� ����� � ������� be the distribution on the � part of the conversation, and let ������� ��� � be the distribution
on the proof component. In the definitions of [4, 20] the simulator has two steps: it first outputs �������
without knowing � , and then, given � , it outputs ����� � ����� .

Definition 2.2 A pair of probabilistic polynomial time machines ��� �� � with shared random string � is a
non-interactive zero-knowledge proof system for the language � ��
 � if:

Completeness: For all � � ��� , for all � � � ����� and for random � , with overwhelming probability for
� ��� ��
 ��� �	� ��� � , we have that accepts on input �� � � ��� � . The probability is over the choice of
the shared string � and the internal coin flips of � .

Soundness: For all � ������ with overwhelming probability over � and for all ��� � � � � ��� � , we have that
rejects on input �� � � ����� � . The probability is over the choices of the shared string � .

Zero-knowledge: There is a probabilistic polynomial time machine ����� which is a simulator for the sys-
tem: For all non-uniform polynomial time distinguishers � , for all ��� � , and � � � ����� ,

�
Pr � � � � � � � � � ��� ����� ��� ��� � Pr � � � � � � � � � ��� �"!$#&% ��� �	� ��� � � � � � �

where � � � � is a negligible function and where the probability space is taken over the random choices
of � and over the random choices of the ����� and ' .

Note that this definition of NIZK does not require that the system be sound if the instance � is chosen
after the public random string is known. Nevertheless, it is sufficiently strong for our purposes.

As shown in [20], any NIZK satisfying Definition 2.2 is also general witness indistinguishable:

6

Definition 2.3 ([20]) A NIZK for language � in NP is general witness indistinguishable if for all polynomial
distinguishers � for a random string � , for any sequence

� ����� �	� � �	� �� � � ���� chosen by � where ��� � � �
and � � �	� �� ��� ����� � for all � � ��� � we have

�
Pr � � �� ��� � ������� � � � � � ��� Pr � � �� � ��� �� ������� � �� � � � � � ��� � � �

where for all � � � � � and
	 � � � � ��� we let ��
� ��� ��
 ����� �	��
� ��� � . The probability space is over ' ’s and

� ’s random coins and the choice of � .

Note that general witness indistinguishability implies witness indistinguishability even if � ������ �
� � , which will be the case of interest here.

2.5 Deniable Authentication

A public key authentication scheme permits an authenticator � ' to convince a second party , only having
access to � ' ’s public-key, that � ' is willing to authenticate a message � . However, unlike in the case
of digital signatures, deniable authentication does not permit to convince a third party that � ' has au-
thenticated � – there is no “paper trail” of the conversation (say, other than what could be produced by
alone). Thus, deniable authentication is incomparable with digital signatures. Deniable authentication first
appeared in [12, 15]; and was formalized in [16] (see also [17]). Several 4-round timed concurrent deniable
authentication protocols are given in [16, 17]
The authentication protocol should satisfy:

Completeness: For any message � , if the prover and verifier follow the protocol for authenticating � , then
the verifier accepts.

Soundness – Existential Unforgeability Against Chosen Message Attack: Suppose that the copies of � '
are willing to authenticate any polynomial number of messages � � ��� ������� , which may be chosen
adaptively by an adversary � who also controls the verifier � . We say that � successfully attacks
the scheme if a forger � , under control of � and pretending to be � ' , succeeds in authenticating to
a third party � (running the protocol of the original verifier) a message � �� ��� , � � � � ������� . The
soundness requirement is that all probabilistic polynomial time � will succeed with at most negligible
probability.

Zero-Knowledge - Deniability: Consider an adversary � as above and suppose that the copies of � '
are willing to authenticate any polynomial number of messages. Then for each � there exists a
polynomial-time simulator that outputs an indistinguishable transcript.

2.6 Security of Encryption

We will need public-key cryptosystems for two of our applications: Resettable Zero-Knowledge (Section
8.2) and Deniable Authentication (Section 7.2). The security requirements of these two applications are
different. To specify the security of an encryption scheme one must describe the power of the attacker in
terms of access to the system (chosen plaintext, chosen ciphertext) and what it means to break the system
(semantic-security, non-malleability). See [12] or [2] for a discussion of notions of security. The deniable
authentication application requires a system that is non-malleable against chosen-ciphertext attacks in the
post-processing mode (called CCA-2 in [2]). The resettable zero-knowledge application requires semantic
security against chosen plaintext attacks (there are some other requirements from the encryption scheme
which transcend security).

7

2.7 Using Time in the Design of Protocols

Dwork, Naor and Sahai [16] have shown the power of time in the design of zero-knowledge protocols
through the use of an ����� � � assumption. This says that all good parties are assumed to have clocks that
satisfy the ����� � � -constraint (where � � �

): for any two (possibly the same) non-faulty parties � and � � ,
if � measures � elapsed time on its local clock and � � measures

�
elapsed time on its local clock, and � �

begins its measurement in real time after � begins, then � � will finish after � does.
The protocols in [16, 17] use time in two explicit ways: (i) Delays: one party must delay the sending

of some message until at least some specified time
�

has elapsed on its local clock; (ii) Time-outs: one
party requires that the other deliver its next message before some specified time � has elapsed on its (first
party’s) local clock. In this work we are able to eliminate the use of delays; the protocols only use time-outs.
Furthermore we do not require a global ��� � � � -constraint, rather each instantiation of the protocol can fix
its own values based on the local characteristics of the network. An essential ingredient of our protocols is
the implicit use of time via moderately hard functions [14]. In particular, we use timed commitments with
verifiable recovery, described next.

Timed Commitment. A string commitment protocol allows a sender to commit, to a receiver, to some
value. The protocol has two phases. At the end of the commit phase the receiver has gained no information
about the committed value, while after the reveal phase the receiver is assured that the revealed value is
indeed the one to which the sender originally committed. Timed commitments, defined and constructed by
Boneh and Naor [7], are an extension of the standard notion of commitments in which there is a potential
forced opening phase permitting the receiver, by computation of some moderately hard function, to recover
the committed value without the help of the committer. The price paid in terms of security is that the com-
mitted value is hidden for only a limited amount of time. The important requirements of timed commitments
are (i) The future recoverability of the committed value is verifiable: if the commit phase ends successfully,
then the receiver is correctly convinced that forced opening will yield the value. (ii) Forcibly recovered val-
ues and decommitments are verifiable: the receiver not only obtains the value, but also a proof of its validity,
so that anyone who has the commitment (or the transcript of the commit phase) can verify the value without
going through a recovery process, i.e. in fixed amount of time. (iii) The commitment is immune to parallel
attacks, i.e. even if the receiver has much more computing power than assumed, it cannot recover the value
substantially more quickly than a single-processor receiver. We denote by � the bound on the time below
which it is safe to assume that the timed commitment cannot be broken with non-negligible probability, even
by a PRAM.

Specifically, we are interested in timed commitment schemes with the following structure. The commit-
ter sends to the receiver a string � , which constitutes the commitment. For every “valid” commitment � , it
is possible, through moderately hard computation, to recover a pair ��� ��� � such that � is an easily checked
witness to the fact that � is a commitment to � . The set of valid commitments is in NP: For every valid
commitment � there is a witness to the statement “ � is a valid commitment to a string that can be recov-
ered through the forced recovery process.” Finally, the forced recovery time is relatively large compared to
the time of all other operations in the protocol (such as, constructing � , verifying a correctly decommitted
value, verifying future recoverability, etc.) Thus, we think of all other operations as “easy” while recovery
is “moderately hard.” The scheme in [7] has this structure and properties.

8

2.8 Oblivious Transfer

In a 1-out-of-2 Oblivious Transfer protocol one party, the sender, has two strings � � � � � � as its input,
and the second party, the chooser, has a bit

	
. The chooser should learn �
 and nothing regarding � ��

while the sender should gain no information about
	
. 1-out-2 OT was suggested by Even, Goldreich and

Lempel [18], as a generalization of Rabin’s “oblivious transfer” [38].

3 Formal Definition of a Zap

A zap is a 2-round (2-message) protocol for proving membership of � � � , where � is a language in NP,
satisfying the following conditions Letting the first-round (verifier to prover) message be denoted � and the
second-round (prover to verifier) response be denoted � :

Completeness: Given � , a witness � � � ��� � , and a first-round � , the prover, running in time polynomial
in
� � � , can generate a proof � that will be accepted by the verifier. The probability is over the choices

made by the prover and the verifier. Moreover, the verifier’s decision whether to accept or reject is a
polynomial time function of � � � , and � . In other words, a zap is a public-coin protocol.

Soundness: With overwhelming probability over choice of � , there exists no � � �� � and round-2 message
� such that the verifier accepts ��� � � � ��� � .

Witness-Indistinguishability: Let � �	��� � � ����� for � � � . Then � � , the distribution on � when the
prover has input ��� �	� � and the distribution on � when the prover has input ��� �	� � � are nonuniform
probabilistic polynomial time indistinguishable.

It follows immediately from the definitions that a zap yields a non-constructive non-uniform single
round witness-indistinguishable protocol; informally, the first-round message, � , can be fixed once and
for all, without hurting any of the completeness, soundness, or witness-indistinguishable properties. More
rigorously, for each � , there exists a string �

� � such that, letting ��� � � � � � � ��� � ,
1. Given ������� and a witness � � � ��� � , the prover can generate a proof � that will be accepted by the

verifier. Moreover, the verifier’s decision whether to accept or reject is a polynomial time function of
� ���� � , and � .

2. There exists no � ���� � � and message � such that the verifier accepts ����� ���� � ��� � .
3. For all ������� and all � �	� ��� � ��� � , the distributions ' ��� �	� ���� � � and ' ��� �	� � ���� � � are indistinguish-

able by any non-uniform probabilistic polynomial time distinguisher.

Comparison with NIZKs. Zaps differ from non-interactive zero-knowledge proof systems (NIZKs) in
two respects, making the two concepts incomparable. On the one hand, zaps do not require that the prover
and verifier have access to a common guaranteed random string. On the other hand, NIZKs provide more
provable protection of the witness than do zaps, since NIZKs can be simulated without access to the witness
while zaps provide no such guarantee.

9

4 The NIZK-Based Construction

Assume we have a NIZK system (in the shared string model) satisfying Definition 2.2 for a language � . We
will construct a zap for � (in the standard model). We will first provide some intuition for the construction.
Consider a NIZK in the shared string model; we try to convert it into a zap by somehow generating the
shared string � . Suppose we let the verifier choose a string � and fix ����� . The danger with this approach
is that there may be “bad” choices for � that leak information about the witness, and the verifier might
choose � to be one of them, thus harming the witness protection. If, to compensate, we have the prover
choose its own random string � and we set ������� � (that is, � is the bit-wise exclusive-or of � with �),
then the danger is that the prover will use the simulator to come up with a � � that “proves” that � � � (that
is, causing to accept �), even for � ���� . The prover could then set � � � � ��� , violating soundness.

The actual protocol strikes a balance between these two ideas: a NIZK is repeated many times in parallel,
but not quite independently, as follows. The � th instance has common string ��� , defined to be the bitwise
exclusive-or of two strings, one chosen by the prover and the other chosen by the verifier. The verifier’s
choice for the � th instance may be any string � � ; however the prover may only choose a single string � that
is used in all instances.

Choice of Parameters (General Construction). Assume that we have a NIZK for � which, for proving
membership of strings of length

� � � , with security parameter � , uses a common shared string of length	 � 	 � � � � � � � . Assume further that on any input � �� � of length
� � � the NIZK errs with probability at

most
 ��
 � � � . In Equation 2, � � ��� � � � � � � � � � � , the number of random bits sent by the verifier in the
first-round message. The number of copies � � � � � � of the NIZK will be � � 	 . To achieve soundness
guarantee � for the zap (that is, a cheating prover should succeed with probability at most �), we choose �
satisfying

������� �
�� ��� � � � (2)

4.1 Protocol Z: A Zap

In order to achieve soundness against an arbitrarily powerful prover and yet to require only feasible compu-
tation from the “good” prover, we must assume the existence of a NIZK with these properties, such as the
systems in [20, 29].

Let � ��� be an NP-statement to be proved to the verifier. We do not need � to be fixed before execution
of the protocol begins. Let � be the witness to � � � known by the prover, let � be the security parameter,
and let

��� ��� �	� ��� � be the distribution on messages sent in the NIZK by a (non-cheating) prover when the
common random string is � of length

	 � � � � � � � . For simplicity, in the remainder of this discussion we assume
� and

� � � are related by some fixed polynomial so that it suffices to think of
	 � � � � � � � as a function solely

of � . Let �	� ��� � � and � � � � � � satisfy Equation 2.

First Round: ��� ��� The verifier sends to the prover a random � -bit string � � 	 ����� 	 , which is
interpreted as � ������� � , where ��� denotes the � th block of

	
consecutive bits and

	
is the length of the

common random string used by the NIZK.

Second Round: � ��� �� The prover responds as follows. First, it chooses a random
	
-bit string

� � � ������� � . For � � � ������� define � � to be the bitwise exclusive-OR of �!� and � :

�"� �����#� � �

10

Then the prover sends to the verifier � , � , and the � noninteractive proofs

� � � ��� � � ��� �	� ���"� � � � � ����� � �

Final Check: The verifier checks that each of the � NIZKs � ������� ��� � would result in acceptance; if so,
then the verifier accepts the zap; otherwise the verifier rejects. This completes the description of Protocol Z.

Lemma 4.1 Protocol Z is sound; moreover, for all � , there exists a choice �
� � � �

	 ����� �	
� ��� for the first

round message that yields perfect soundness: � � ���� � ��� ��� � �� � ��� � rejects.

Proof. Let
	 � 	 � � � and ��� ��� � � . Fix an � �� � and random bit string � � � ������� � . We will show that

with overwhelming probability, over the choice of
	 ������� � 	 , the prover will fail to convince the verifier

to accept � . The key point is that once everything but the
	
’s has been fixed, the � � ’s are truly random –

because the � � ’s are. Therefore each copy of the NIZK proof has probability at most
 of failing to cause
rejection. Since each proof is independent (because the random

	 � ’s used in each copy of the NIZK proof
are independent), the overall probability that all � � � � 	 copies fail is at most
 � .

The number of possible assignments to the � ’s, and � ���� is at most � � � ��� . Hence, as long as

 � � � ���
 � � � � � ���
����� ���
(which is guaranteed by our choice of � in (2)) the probability over

	 ������� � 	 , that there even exists a “bad”
choice of � ������ � � , an � ���� , and a zap � that erroneously causes the verifier to accept � , is at most � (cf. the
soundness requirement in Definition 2.2). Since � � � , there must exist some �

� � � �
	 ����� �	 that provides

soundness against all � ������ : � � ���� � ��� ��� � �� � ��� � rejects.�

Lemma 4.2 Protocol Z is witness indistinguishable.

Proof.
We prove witness indistinguishability for every � . Thus, fix an arbitrary � for the entire proof. We

will carry out a standard hybrid argument with the following steps along the chain. Let � and � � be two
witnesses that � � � , and let � � � � � . At one extreme of the chain the witness � is used in each of the �
NIZKs; at the other extreme the witness � � is used in every copy. At each step along the chain we increase
by one then number of copies of the NIZK in which � � is used (and decrease the number in which � is
used).

Let � � �	� � � �	� denote the distribution on transcripts in which the first � copies of the NIZK are consructed
using � and the remaining � � � copies are constructed using � � . The distribution is over random random
choices made by the prover (since � is fixed. Let � be a non-uniform polynomial-time test that takes as input
a transcript and outputs a single bit. We write � �
� � �	� � � �	� � to denote � ’s behavior on a transcript chosen
uniformly from � �	� �	� � � �	� .

Assume for the sake of contradiction that there exists a probabilistic polynomial time test � and � �
� � � such that for some a fixed � and infinitely many � :

Pr � � �
� � �	� � ��� � ��� � � � � � Pr � � �
� � �	� � ���� � � � � � �
���

The probability space is over the choices made by the prover and the randomness of � . We will show that
this contradicts the witness-indistinguishability of the underlying NIZK.

11

Let ��� � �� � � be the underlying NIZK protocol (running in the shared random string model). Let �
be a truly random string of

	
bits. Choose � � � � � �	� �� and give � to � � . Let � � generate a proof

�
��� � � ��� ��� ��� � . By the witness-indistinguishability of the NIZK, with overwhelming probability over
choice of � , no non-uniform probabilistic polynomial time machine, even given � and � � , has non-negligible
advantage of guessing the value of � from � . We will show how to use � to violate this indistinguishability.

Using � and � � , construct a simulated transcript of Protocol Z as follows. Break � � 	 ������� � 	 into
� � � � 	 blocks � ������� � � � . Set � ��� ����� , so that �"��� ���!� � ��� , which is truly random by
assumption. For all ����� , construct � � ��� ��
 ��� �	� ��� � � . For all ����� , construct ��� ��� ��
 ��� �	� � ��� � � .
Set �"� � � which, by assumption, is a uniformly chosen element of ��
 ��� ��� ��� � . Let

�
denote the resulting

transcript.
Run � on

�
. Since � is truly random and uniformly distributed, � is uniformly distributed as well, so

the resulting transcript of � NIZKs is a uniformly chosen element of either � � �	� � ��� � ��� (if � � � �) or
� � �	� � ��� � (if � � �). We can therefore use � ’s assumed ability to distinguish these two cases to obtain a
non-negligible advantage in guessing whether � � � or � ��� � . �

Theorem 4.3 Protocol Z is a zap.

Proof. Completeness is immediate from the completeness of the underlying NIZK system. Completeness
for the 1-round non-uniform case follows from the fact that, for any �

� , since � is random, the probability
that there is some block ���� such that � ��� ��� ��� �	� � ���� � � � but � � ���� � � � � ��� � does not accept, is
negligible. (Here, as earlier, �� � is the � th consecutive block of

	
bits in �

� .) Soundness, non-uniform sound-
ness, and witness-indistinguishability have been argued. Finally, the proof of witness-indistinguishability
in Lemma 4.2 holds for every � , assuming the underlying NIZK enjoys general witness indistinguishabil-
ity (Definition 2.3), in particular, it holds for the strings �

� � of Lemma 4.1 (the strings providing perfect
soundness).

�

Our main conclusion is therefore:

Corollary 4.4 Let � ��
 � be arbitrary.

1. If there exists a NIZK for � in the common guaranteed-random string model, then there exists a zap
for � in the standard model.

2. If there exist zaps in the standard model for every language in NP, and if there exist non-uniform
one-way functions, then there is a NIZK for � in the common guaranteed-random string model.

Proof. The first claim is immediate from the construction and correctness of Protocol Z.
For the second claim we directly apply the idea of Feige, Lapidot, and Shamir [20] of transforming the

proof of the statement � � � into a witness-indistinguishable proof for the statement “the common shared
random string � is pseudo-random OR ����� ”. As we will explain, to carry out this approach it is sufficient
to have

� a pseudo-random generator � that, say, doubles the length of the seed (in this case a random string is
unlikely to be the output of the generator for any seed) and

� a zap for the language �	� � � ��� ��� � � � ��� or 	 � ���
�	� � � � .

12

The desired pseudorandom generators exist iff non-uniform one-way functions exists [27]; moreover, since
� � is clearly in NP, it has a zap by assumption. We assume for simplicity (and without loss of generality)
that the verifier’s message in the zap is chosen uniformly at random.

Recall we are trying to show that if one-way functions and zaps exist, then there exists a NIZK in the
shared random string model. Given a shared random string, treat it as �� � � � where � is the verifier’s first-
round message in the zap for the language � � . The prover simply transforms its witness for � � � to a
witness for ��� ��� � ���	� . Soundness follows from the fact that most � ’s are not equal to �	� � � for any � (this
follows from the assumption that � is length-doubling and � is truly random).

The system is zero-knowledge since, critically, the simulator for a NIZK is permitted to choose the
common string and may in particular choose it to be � � � � for some random � . Then for a random � it uses
� as the witness for ��� � � � � � � � �	� . The non-uniform probabilistic polynomial time indistinguishability of
outputs of � from truly random strings, and the witness indistinguishability of the zaps for � � , imply that
the output of the simulator is indistinguishable from a real transcript.

�

5 Zaps and Verifiable Pseudo-Random Bit Generators

In this section we characterize aaps in terms of a new cryptographic primitive: verifiable pseudo-random
sequence generator (VPRG). A VPRG is a pseudo-random generator where the holder of the seed can
generate “proofs” of consistency of some parts of the sequence without hurting the unpredictability of the
remaining bits. In the standard model we will exhibit a construction of zaps from VPRGs (Protocol VZ
below). As we will see, the construction works even if the VPRG is approximate, in that the “proofs” of
the bit values are occasionally incorrectly accepted, so it is possible to “cheat” a little. We will also show
that if zaps exist then so do approximate VPRGs. Very roughly, approximate VPRGs can be designed to
have multiple witnesses, so zaps, with their witness-indistinguishability, are sufficiently strong to yield the
necessary proofs � of consistency with some member in � �� � � . In contrast, we do not know how to design
strict VPRGs to have multiple witnesses.

The following summarizes the relationships between zaps, VPRGs, and NIZKs, both in the standard
model and in the common guaranteed random string model.

Summary 5.1 1. NIZKs exist in the common guaranteed random string model if and only if VPRGs
exist in the common guaranteed random string model (Theorem 5.3).

2. NIZKs exist in the common guaranteed random string model if and only if zaps exist in the standard
model (Theorem 4.3 and Corollary 4.4).

3. Zaps exists in the standard model if and only if approximate VPRGs (with certain parameters) exist
in the standard model (Corollary 5.7 and Theorem 5.8).

Definition: An � � � � � verifiable pseudo-random generator (VPRG) is a pseudo-random sequence gen-
erator which, for security parameter � � , maps a random seed � of length ��� � � to an output sequence
� ������� � �

� ��� � ��� � of length ��� � � � � � � and a verification key � where � � � � and ��� � � � � � � and the length
of � are fixed polynomials. The mapping should satisfy the following requirements:

Binding: The public verification key � binds the sequence: there is only one sequence � � � � ������� �
consistent with � (there can be two different seeds � and � � that yield that same � , but then they
should also yield the same � � � � ������� �).

13

Verifiability: For any subset ��� � � ������� � � � of indices, given the seed � � � � � ��� �
� ��� it is possible

to construct a polynomial length proof � of the consistency of the values of
� ��� � ����� . Given � the

verifier can check the proof � of the consistency of
� � ��� ����� with � . For any � and � � � � ������� � � �

there is (at most) one assignment to
� � � � ����� for which there is a proof � that the verifier accepts.

Passing the � th Bit Test: For all � �
� � � and polynomial time adversaries � the following should be
true. Suppose that � receives for a random � � � � � ��� �

� � � the verification key � and

� � � � ������� � � � � � � � ������� � �

The adversary � selects � � � � ������� � � � such that � ���� and receives a random proof � for the
consistency of

� � � � �	��� . It then attempts to guess � � . The probability, over the choice of the seed, the
random choices in the construction of the proof � , and the random choices by � that � guesses ���
correctly is negligibly close to ���� .

Remark 5.2 : Consider a subset test, i.e. instead of a single � � � � � there is a missing subset of indices
and the distinguisher gets the values of � ��
 at all other locations plus candidate values for the missing
locations. It can then ask to see a proof of consistency for any subset � not including any of the missing
indices and then has to guess if the candidate values are correct or just random. This test is equivalent to
the � th bit test, just as the distinguishing test and the next bit test are equivalent for regular pseudo-random
generators. Note that in the case of verifiable pseudo-random functions (VPRF) such an equivalence is not
clear. The relation between VPRGs and VPRFs is further discussed in Sections 5.2 and 9.

We also use a relaxation of VPRGs, which we call � � � � -approximate VPRGs. The differences are

Relaxed Binding: For any � , there are at most � � � � values for the revealed string that are accepted as
consistent with � . More precisely, there exists a set of strings � �� � � of size at most � � � � such
that for any set � of indices, if the prover can convince the verifier to accept the values

� � � � ����� , then
there exists a string in � �� � � consistent with these values.

Two-Round Communication: The proof of consistency may be “zap-like”, that is, the choice of � and
the proof may depend on a first-round message chosen by the verifier.

Theorem 5.3 VPRGs in the shared random string model exist if and only if NIZKs exist in the shared random
string model. Moreover, in the shared random string model NIZKs imply VPRGs of arbitrary expansion.

Proof.(Sketch) To construct VPRGs from NIZKs in the shared random string model, commit (say, using the
protocol of [34], taking the first several bits of the common random string to be the “first-round” message
of the receiver) to the seed of a pseudo-random sequence and use a NIZK to prove that the revealed value is
the correct one. For the converse, given a VPRG in the common random string model, construct essentially
the NIZK of Feige, Lapidot, and Shamir [20], in which the bits of what they call the intermediate random
string (IRS) (see more about them below) are the bits of the VPRG.

�

5.1 Zaps based on VPRG

Proofs Based on Hidden Random Strings: We find the following “physical” intuition helpful for de-
scribing certain types of proofs of membership. The prover is dealt a sequence of

	
binary cards, where each

card has value 1 with probability 1/2. The prover knows the values of the cards and can choose any subset to

14

reveal to the verifier. The verifier learns absolutely nothing about the values of cards that are not explicitly
revealed. The prover has no control over the values of the cards. The sequence of cards is a hidden random
string (HRS).

To prove that ��� � , the prover, holding witness � � � ��� � , can choose any subset of the hidden bits to
reveal to the verifier (cards to turn over). Let � be the locations and values of the revealed bits in the HRS.
In addition to � , the prover may send extra information,

�
, to the verifier. The verifier decides whether to

accept or reject � as a function of � ,
�

, and � .
The soundness requirement is that for some
 � � such that � �
 is non-negligible (that is,
 is non-

negligibly far from 1), the probability (over the values of the hidden random bits) that the prover can cause
the verifier to accept an � �� � is at most
 , even if the prover is arbitrarily powerful. That is, with non-
negligible probability ���
 there is no triple ��� � � � � � such that � �� � and the verifier accepts ��� � ��� � � .

The witness indistinguishability requirement is that there exist a simulator that on input � � � (but
without a witnesses to �����),

1. can create ����� � � identically distributed to the ����� � � pairs created in real executions of the proof;

2. given � ,
�

, and any witness � � to ����� , can generate an assignment to the remaining cards so that the
distribution on extended transcripts, that is, the hidden cards, the revealed cards � , and

�
, is identical

to the distribution on extended transcripts in real executions by a prover holding witness � � . We call
this “completing the simulation with � � .”

Again: � and
�

are chosen without access to a witness; then, given any witness � � � � ����� , the simulator
can create an assignment to all the cards, hidden and exposed, so that the distribution on triples containing � ,
�

, and the values for all the cards is exactly the distribution on these values in real executions with witness
� � .

The concept of an HRS-based proof is exemplified by the noninteractive zero-knowledge proof systems
of Feige, Lapidot and Shamir [20] and of Kilian and Petrank [29]. The idea is to implement the hidden
random string using the output of the VPRG and to the opening using the proof capabilities of the VPRG.

Protocol VZ: A VPRG-based Zap

The choice of parameters for VPRG-based zaps differs slightly from the choice in the case of NIZK-based
zaps. This is because in the case of the VPRG we have less freedom: � � ��� � � (the length of �) is tied to
the VPRG.

Choice of Parameters: Assume we have an HRS-based proof that for string � and security parameter
� polynomially related to

� � � uses
	 � � � cards, and on any input � errs with probability at most
 . Let

� � � � � � be the length of a seed permitting the VPRG to output ��� ��� � � � � � � bits. To achieve soundness
guarantee � (that is, a cheating prover should succeed with probability at most �), we require that ��� � � � � � �
will sufficiently expand the input: it should satisfy

� � � � ��� � ���

� � � � �
 � � � � ��� � �

� � � �

The Protocol: Let � � � � 	 . The HRS proof will be repeated � times. The verifier sends to the prover
random bits

	 ������� � 	 .

15

The prover chooses
	

random bits � ������� ��� � and a random seed � � � � � ��� � for the VPRG. Let � and
� � � � ������� � � be the output of the VPRG on � . The � th bit of the HRS is defined to be

� � � 	 � � � ������� � � �
The prover sends to the verifier: � , � ������� ��� � , and � HRS-based proofs that � � � , where the � th

proof uses the � th block of
	

bits of the HRS. For all revealed cards � � � � � the prover provides � � and a
proof � for the consistency of the revealed values.

Let ����� � � � � be the values of the revealed cards and additional information in the � th copy of the HRS-
based proof, for � � � ������� � � . For the revealed cards the verifier, using � , checks that the value revealed
is the correct one. If not, the verifier rejects; otherwise the verifier accepts iff for all � instances of the
HRS-based proof, the HRS-based verifier accepts.

Lemma 5.4 Protocol VZ is witness-indistinguishable.

Proof. Let � and � � be two witnesses that � � � . Assume there exists a sequence
	 � ������� � 	 � and a

distinguisher � that, given ��� �	� �	� � � and a transcript consisting of
	� ������� � 	 � followed by the responses of

the � HRS-based proofs of � ��� , succeeds with non-negligible advantage � to guess which witness, � or
� � , was used by the prover in generating the response.

By a pigeonhole argument, for some � � � � � there exists a distinguisher for the following two types
of transcripts, that distinguishes between them with advantage at least ��� � :

1. The prover uses witness � for the first � � � copies of the HRS-based proof and � � for copies � ������� .

2. The prover uses witness � for the first � copies of the HRS-based proof and � � for copies ��� � ������� .

Let us fix such a � for the remainder of the proof.
We first use the simulator, whose existence is guaranteed by the definition of an HRS-based proof, to

choose � and
�

for the � th copy of the HRS-based proof. For a given seed � to the VPRG, for the positions
� indicated by � , we choose ��� so that the value � � � 	 � � � � � �

� ������� � � � � � ������� � � opened is the value
indicated by � .

By the definition of witness-indistinguishability for an HRS-based proof, the simulator, now given �
and � � , can efficiently find a completion (choices for the unopened values) 	 corresponding to the case in
which the witness used is � , as well as a completion 	�� , corresponding to the case in which the witness used
is � � . Together with the seed � , the completions 	 and 	�� determine, respectively, the values of the bits � �
for each position � that is not indicated by � (the values for the positions indicated by � were fixed above
and will remain unchanged throughout the rest of the proof). Let
 � �

	
� � �

	 � � . For ��� � ��
 , we denote
by � ��	 �	 � ��� �� values for the � ’s not indicated by � that agree with 	 in positions � ������� � � and agree with 	 �
in positions ���	� ������� ��
 . Thus, when � � � the values all agree with 	�� , while when � ��
 the values all
agree with 	 .

We will now form a hybrid chain on proof strings. In every element in the chain, the seed � remains
unchanged, as do the

	 �
’s and the values for the � ’s in the positions indicated by � . Only the � ’s not indicated

by � will change as we move from one element in the chain to the next. The first element in the chain has
values � ��	 �	 � � � ��� for the � ’s not indicated by � . Thus, these values all agree with 	 , where the witness is � .
Having fixed all the � ’s for this element of the chain, we can complete the description of the first element of
the chain. The first �	� � blocks are HRS-based proofs constructed with witness � , and blocks ��� � through
� are constructed with witness � � . Moreover, by choice of the � ’s, the � th block has been completed with
� .

16

The next element in the chain has values � ��	 �	 � � � � � � for the � ’s not indicated by � . Everything else
remains the same: the values for the remaining � ’s that were fixed in the description of the first element in
the chain are again used here. Then, having again fixed all the � ’s, the first � �
� blocks are HRS-based
proofs constructed with witness � , and blocks � � � through � are constructed with witness � � . Note that
the � th block might not really be something that could have been generated by the prover, since it is not
completely consistent with a proof constructed using either � or � � .

In general, for � � � �
 , the � � � th element in the chain has values � ��	 �	�� � � � � �� for the � ’s not indicated
by � , for � � � �
 . The last element in the chain has values � ��	 �	 � ��� � � , that is, it agrees completely with
	�� .

We note that the chain is non-empty, since otherwise the behavior of the prover on witnesses � and � � is
identical and therefore yields no possibility of distinguishing between the two witnesses. Thus, the number
of steps in the 	 � 	 � hybrid chain is � �
 � 	

(including the endpoints, the chain has
 � � elements).
We assumed an � � � advantage in distinguishing the two endpoints of the chain, hence there is an � � 	

� �
where the adversary has advantage at least a ��� � � 	 � to distinguish between the � � � and � th elements in
the chain. The pseudo-randomness of the VPRG can be broken at this location. The subset � is the one
determined by � and the HRS proofs used in the other � � � blocks.

�

Lemma 5.5 Protocol VZ is sound; moreover, the first round can be fixed non-uniformly.

Proof. Let � �� � , � ������� ��� � , and the VPRG verification key � be fixed. We will show that with over-
whelming probability, over the choice of

	 ������� � 	 , the prover will fail to convince the verifier to accept � .
The key point is that once everything but the

	
’s has been fixed, the hidden random string is truly random –

because
	 ������� � 	 have not been chosen yet. Therefore each copy of the HRS-based proof has probability

at most
 of failing to cause rejection. Since each proof is independent (because the
	 � ’s used in each copy

of the HRS-based proof are independent), the overall probability that all � � � � 	 copies fail is at most
 � .
The number of possible assignments to the � ’s, � ’s, and � �� � is at most � � � � � � � ��� . Hence, as long as

 � � � � � � � ���
 � � �
for a random

	 ������� � 	 , the probability that there even exists a “bad” choice of � ������� ��� � ,
�

, and � that
erroneously causes the verifier to accept, is at most � . Thus, not only is the protocol sound, but the first
message (the

	
’s) can be fixed non-uniformly.

�

Theorem 5.6 Given an HRS proof system for a language � using
	

cards and with probability of error at
most
 and given a VPRG mapping a seed � to � bits, if

������� �
 � ��� � � � � � �

then protocol VZ is a zap for � .

Note that if instead of a VPRG we use a � � � � -approximate VPRG, then we can obtain a similar result
by adjusting the counting argument to accomodate the � � � � possible openings consistent with � :

Corollary 5.7 Given an HRS proof system for � using
	

cards and with probability of error at most
 and
given a � � � � -approximate VPRG mapping a seed � to � bits, if

 ��� � �
� � � � � �

�
 � ��� � � � � � �

then protocol VZ is a zap for � .

17

As we show next, the converse holds as well and we can use zaps in order to obtain approximate VPRGs.

Theorem 5.8 Let
	 � � � be any polynomial. Fix � � . Let � be any pseudo-random generator taking a

seed of length ��� � � and producing an output of length
	 � � � . Then, assuming every language � ��
 � has a

zap, one can construct a � � � � -approximate VPRG expanding a seed of length � � ��� � � to a string of length
� � 	 � � � , where � � � � � � �

� � � .

Note that the expansion is arbitrary, since
	 � � � is an arbitrary polynomial and pseudo-random generators

exist for any polynomial expansion, based on any one-way function.

Proof. We use the commitment scheme of [34] (in this scheme, the receiver sends an initial message, which
can be fixed non-uniformly). The prover commits to � seeds of length � � � � ; � is the concatenation of
the � commitments. Using the pseudo-random generator, each seed yields a block of length

	 � � � , for a total
output length of � � 	 � � � . For any set � of indices, the prover can reveal the values of the pseudo-random
bits

� � � � ����� , and can prove using a zap that the revealed bits in at least � � � of the blocks are consistent
with � (this is certainly in NP, so it has a zap by assumption).

Verifiability is immediate from the zap. Relaxed binding is also simple, since given � , the number of
possible strings the prover can convince the verifier to accept is � �

� ��� � � � � � (the prover has freedom to
choose one of � blocks on which he can cheat and which of �

� ��� values to plug in there).
It remains to show passing of the � th bit test. Suppose the construction fails this test with some bias � .

We will use the block � containing � , to distinguish pairs of the form ���	� � � ��� � from ���	� � � � � � � � � , where
�	� � � is a commitment to a seed � of length ��� � � and � is random of length ��� � � . Given a pair ���	� � � � � � ,
construct a key � as follows. Choose � � � seeds � ������� � � � � , and arrange commitments to these
seeds and the commitment �	� � � so that � � � � is the commitment to the supposed seed for block � . Open
the values for all positions other than � , and provide a zap of approximate consistency with � , using the
chosen seeds � ������� � � � � as the witnesses to the fact that the revealed bits in at least � � � of the blocks
are consistent with � .

If � is pseudo-random with seed � , then by the witness-indistinguishability of the zap, the advantage
in guessing the � th bit is close to � (the witness-indistinguishability may introduce a negligible error, so we
don’t get exact advantage �). On the other hand, if � is truly random, then there can be no bias. Therefore
we have a distinguisher for ��� � � � ��� � from ��� � � � � � � � � � . �

Remark 5.9 In the case of ordinary pseudo-random generators, it is known that the ability to expand by
even one bit can be used to obtain arbitrary expansion. Is the same true of (approximate) verifiable pseudo-
random generators? From Corollary 4.4, Theorem 5.3, and Corollary 5.7 we have only a higher threshold:
if any polynomial expansion is possible (from � to � ��� for fixed �), then we can build zaps and hence
arbitrary expansion. See more open problems in Section 9.

5.2 Construction of VPRGs

A VPRG can trivially be constructed from any verifiable pseudo-random function (see, e.g., [33]), since if
the domain of the VPRF is small one obtains a VPRG. However, such a construction is “overkill;” moreover,
the only known constructions we have of VPRFs require the Strong-RSA assumption.

We provide an alternate construction, following along the lines of the trapdoor-based synthesizer con-
struction of Naor and Reingold [36]. To obtain (non approximate) VPRGs we require that the trapdoor
permutation be certified (see [3]).

18

We assume the existence of a family �$� of certified trapdoor permutations with common domain � � ,
together with a hard-core predicate (� is a security parameter). The VPRG output is given as a binary
matrix (say, in row-major order). The matrix has
 rows and � columns, where
 � � � . Choose
 functions
� ������� � � , from � (one for each row) and � random � ’s (one for each column) in the intersection of the
ranges of all the trapdoor permutations � � . The � � ����� entry of the matrix will be the hard-core predicate of
� � � ��� � � .

Let � � � ������� � � � � � ������� � �
 . To prove the value of the � � ��� � entry, reveal � � � ��� � � . Verification
is immediate using � and the fact that each � � is a permutation that is easy to compute in the forward
direction.

The length of the seed � is
 ����� � � � � � � ����� � � � � . As � is fixed and � grows, the expansion is roughly
quadratic. This completes the description of our VPRG construction. The proof that it satisfies the � th bit
test closely follows the proof in [36].

The standard example of a certifiable trapdoor function is RSA with prime public exponent � satisfying
� �
 . If we relax the perfect binding requirement and instead aim for an approximate VPRG, then we can
use any trapdoor permutation. For instance, we can use RSA with small exponent: associate with the � th

column the � th smallest prime. The � � ����� th output bit is the hard-core bit of � ������ � �	�
 � . The possible
problem is that � � may divide
 �
 � � . In this case � � may have multiple � � th roots, possibly with different
hard-core bits, and the owner of the generator can “cheat.” However, there can be at most

�
 � � ������� �
 � �
such primes. We can take this into account in setting the parameters. This construction is very related to
Shamir’s pseudo-random generator [40].

6 Oblivious Transfer in the Standard Model

Although there are many protocols under various assumptions for oblivious transfer, to date no 3-round
protocol has been shown secure, without resorting to a random oracle model. We provide a protocol for
1-out-of-2 OT for which we are able to prove that the chooser’s privacy is protected by the quadratic residu-
ousity assumption (QRA) [25], and the sender’s privacy is protected statistically (that is, with overwhelming
probability over choices made by the sender, at most one value is transmitted to the chooser)3 . The protocol
is not known to ensure correctness, that is, the sender may choose what to send as a function of the chooser’s
message.

For simplicity, we describe the protocol for the case in which the sender’s two inputs are bits
	 � � 	 The

first round of the protocol, described next, can be eliminated if the Sender has a public key. In this case, the
public key is chosen to be a random first-round message � for zaps.

1. If the Sender has no public key, then it chooses a first-round message � for a zap and sends it to the
Chooser. (If the Sender instead has a public key, then this round is not needed.)

2. Let � � � � � ��� be the Chooser’s input. The Chooser chooses a random 2-prime modulus
 and two
random strings � � � � in ��� � such that � �� � is a quadratic residue modulo
 and � � is a non-residue
with Jacobi symbol 1. Using � , the Chooser gives a zap � of the statement: “ � � is a QR � �	�
 OR
� is a QR � ���
 .”

3. The Sender verifies the zap � � ��� � and, if verification fails, the Sender aborts. If verification succeeds,
the Sender chooses � � � � ������� � and sends the following two values to the Chooser in any order:� �
��
�� �

�� � �	�
 � �
��
�� �
� � ���
 � .

3Previous applications of QRA to OT appear, for example, in [8, 31].

19

We now give a proof sketch of correctness of the protocol. Assume first that both parties are following
the protocol correctly. Let � � be the unique quadratic non-residue modulo
 among � � � � . Then �
��� � �� is
a quadratic residue modulo
 if and only if

	 � � � . On the other hand, since � �� � is a quadratic residue
modulo
 , so is �
 ��� ��� � � � �� � , independent of the value of

	 �� � . Thus, the ability of the Chooser to compute
quadratic residuousity yields only and exactly the value of

	 � .
Now assume the Sender follows the protocol correctly but the Chooser does not. The soundness of the

zap ensures that at least one of � � � � is a quadratic residue modulo
 . Assume then that ��� is a quadratic

residue modulo
 . Then �
 �� � �� � ���
 is always a quadratic residue, independent of
	 � , and independent

of how
 is chosen. Thus, the Chooser can learn at most one of
	 � � 	 . Finally, by the QRA and the way

in which a good Chooser constructs
 � � � � � , the sender cannot distinguish which of � � � � is the quadratic
residue. In particular, the (polynomial time bounded) sender cannot distinguish among the following four
distributions �
 � � � � � � � � ��� � � where � is fixed in Step 1,
 is chosen according to the protocol, and the
other elements are chosen as follows:

1. � � is a random quadratic residue modulo
 , � is a random non-residue with Jacobi symbol 1, and � �
is the witness used in constructing � ;

2. � � and � are both quadratic residues modulo
 and � � is the witness used in constructing � ;

3. � � and � are both quadratic residues modulo
 and � is the witness used in constructing � ;

4. � is a random quadratic residue modulo
 , � � is a random non-residue with Jacobi symbol 1, and �
is the witness used in constructing � ;

Distributions 2 and 3 are indistinguishable by the witness-indistinguishability of the zap. Distributions 1
and 2 (and, similarly, distributions 3 and 4) are indistinguishable by the QRA. Thus, distributions 1 and 4
are computationally indistinguishable, so the Sender does not learn which of

	 � � 	 has been transferred to
the Chooser.

Remark 6.1 Naor and Pinkas [35] were able to modify this approach to produce a different protocol with
similar security properties; their protocol is based on DDH and does not explicitly use zaps.

7 Timing-Based Applications

In this section we describe two delay-free timing-based (see Section 2.7) applications for zaps:

� 3-round concurrent zero-knowledge proofs of knowledge for any language � � ���

� 2-round deniable authentication

7.1 3-round Concurrent Zero-Knowledge Proofs of Knowledge

At a high level, the protocol consists of two steps. Let ����� be the statement to be proved. (1) The verifier
chooses a statement � and proves, using a zap, that � is true; (2) the prover gives a proof of knowledge of
a witness to the statement “ � � � � � ”. Intuitively, soundness comes from the fact that the verifier’s proof
does not reveal a witness to � . This is achieved by constructing � to be the logical-or of two independent
statements – in such a case witness-indistinguishability is known to imply witness-hiding [19]. A single pre-
processing step is needed for both the proof of knowledge and to provide the first-round � for the verifier’s
zap of � .

20

In a little more detail, the statement � is a claim that of two given timed commitments to two random
strings, at least one is valid – forced recovery of the committed value is possible (see the discussion in
Section 2.7). Verifiable recovery implies the existence of a knowledge extractor. The extractor is used in
constructing the simulator for proving zero-knowledge.

Let � be a one-way function. Let �
�
 � � � � be the � th iterate of � applied to � . Associated with any

randomly chosen � , there is a � -bit pseudo-random string � consisting of the hard-core bits of

� � � � � � � �
� � � � � � ������� � �

�
 � � � � � �

respectively [6]. The basic technique for proving knowledge of a witness � ��� ����� is to commit to � �
and � by giving a pair �

�
 � � � � � � �

�
 � � � � . The verifier then chooses one of the two blocks, say, � � , to

be revealed. The prover releases � � and gives ��� � �� � , together with a proof of consistency. Because
this only gives a probability 1/2 of detecting cheating, the process is repeated many times in parallel. The
pre-processing step (Step 1 in the protocol) is just the transmission of sufficiently many pairs of the form
�
�
 � � � � � � �

�
 � � � � , together with a � for the verifier’s zap in Step 2.

3-round Timed Concurrent ZK POK for � � � � . Common input ����� , input to prover � ��� ����� .

1. (a) Let � be a fixed one-way permutation (� is part of the protocol, known to both parties). The
prover sends to the verifier � pairs � �

�
 � � � � � � �

�
 � � � � ������� � � �

�
 � � � �� � � � �

�
 � � � � � � � � for randomly

chosen � � � , � � � ������� � � and � � � � � .
(b) The prover also sends to the verifier � , a round-one message for a zap.

2. (a) The verifier selects a random � -bit string � ����� � � � .

(b) The verifier chooses two random values � � and �
 of length � , and constructs from them two
commitment strings � � and � using the timed commitment protocol. Using � , the verifier sends
� proving that at least one of the � � is valid (� � ��� � constitute a zap).

(c) The verifier sends to the prover a new round-one message � � .
3. (a) For each � � ��� � , the prover sends to the verifier �
 �� . For each such � the prover also computes

��� , the pseudo-random � -bit string consisting of the hard-core bits of

� ��
 �� � � � � ��
 �� � � �
� � � � � ��
 �� � ������� � �

�
 � � � � ��
 �� � �

(b) The prover checks the zap � � � � � � � ��� � . If the proof is invalid, the prover terminates the protocol.

(c) The prover chooses � at random.

(d) Using � ������� � � � the prover commits to � and � . Specifically, it sends � � � ������� ��� � � � ;
similarly it commits to � , using blocks � � � ����� � � � . We call the commitments to � the first
group, and the commitments to � the second group. Using � � , the prover constructs a proof ���
that at least one of the following two statements holds: (1) there exists � consistent with all of the
commitments in the first group and � is the value committed to in one of the timed commitments

� � or � ; or (2) there exists � consistent with all of the commitments in the second group and
� ��� ��� � . The witness used for constructing the zap is the set of strings

� � ��
 ��� �� � ������� � � ��
 � �� � � .

21

Timing constraints: accepts � ’s Round 3 message only if arrives within time � on ’s local clock from
the time at which sent its Round 2 message. � and

�
(for the timing assumption) should be chosen to

satisfy � � � and � � 	 � � , where the value � is the time below which it is safe to assume that the timed
commitment cannot be broken, even by a PRAM, and 	 is an upper bound on the time it takes to create a zap
by a program that is given a witness. For completeness, � must be sufficiently large to permit the necessary
computations by � , and the round-trip message delay.

The protocol is concurrent zero knowledge because it is straight-line simulable via the forced open-
ings: every interaction can be simulated without rewinding the prover [17]. To see this, consider a single
interaction. The simulator generates a real round-one message, which is given to the verifier. The verifier
constructs its timed commitments and their proof � . The simulator checks � and, if it is correct, continues
with the protocol. The clocks are frozen and the simulator computes the forced opening of the timed com-
mitments, obtaining � , the de-commitment of one of � � and � . The clocks are started again, the simulator
sets � � � , commits to � and a random string (instead of �), and constructs � � using the commitment to �
as the witness. When the adversarial scheduler schedules � ’s next message, the simulator sends � � .

Now consider four classes of transcripts: they differ according to the value committed to in the first
block (random or � � �), the value committed to in the second block (� or random), and which witness is
used in creating the zap ��� (� or �). Only 4 of the eight possibilities are relevant.

1. First block: random; Second block: � ; witness is � .

2. First block: � � � ; Second block: random; witness is � .

3. First block: � � � ; Second block: � ; witness is � .

4. First block: � � � ; Second block: � ; witness is � .

The real transcripts are the first class. The simulator outputs the second class. Classes 1 and 3 are com-
putationally indistinguishable by the one-wayness of � and the properties of hard-core bits. Classes 2
and 4 are indistinguishable for the same reason. Classes 3 and 4 are indistinguishable by the witness-
indistinguishability of zaps. Hence, classes 1 and 2 are computationally indistinguishable.

We now argue that the interaction is sound and a proof of knowledge. If the prover completes the proof
with probability � , then standard extraction techniques can be used to obtain a witness (strings � ��
 �� for the
appropriate set of indices �) with probability negligibly close to � � .

Suppose � �� � , and that a cheating prover succeeds with non-negligible probability � to cause the
verifier to accept. Then the timed commitment scheme can be broken with probability negligibly close to
� � �� , as follows. Consider a (possibly fictitious) non-faulty process running a perfect clock. By the ��� � � �
assumption, if is non-faulty and measures time at most � on its own clock between the time at which it
sent its round 2 message and the time at which it received � ’s round 3 reply, at most

�
real time has elapsed.

Assume we are given a timed commitment
� ��� � �	��� � . Run the cheating prover for one step. Choose

� ������ � � at random. Choose � � and give
� � � � � ��� � � ; then, using the witness based on � � , act as the

verifier and in Step 2 give a zap that at least one of
� and

� � is valid. By definition, such a zap can be
constructed within time 	 . If the prover responds (which it will do with probability at least �), repeat Steps 2
and 3, using the same timed commitments and zap in Step 2, but with a new random string � � ������� ��� �� . If the
prover responds again, use the revealed �

 � to obtain at least one of � � � ���	� � � ��� � . Since � ���� , the value
obtained is either � or � � . By the witness-indistinguishability of the verifier’s zap, the value will be � with
probability 1/2. The total time required for extraction is at most � � 	 � � contradicting the assumption
that breaking the timed commitment requires time at least � . Thus, the system is sound. That the system is
a proof of knowledge is immediate from the extraction procedure described above.

22

Theorem 7.1 The protocol described above is a 3-round timed concurrent zero-knowledge proof of knowl-
edge system for any language � in NP.

Remark 7.2 The straight-line simulability also permits the prover to use differing ��� � � � pairs for the dif-
ferent verifiers.

7.2 Timed 2-round Deniable Authentication

We now describe a 2-round timed concurrent deniable authentication protocol (see Section 2.5 for definition
and discussion), based on zaps and timed commitments.

The � ' has a public key � ��� � � � , where � and � � are public encryption keys chosen according
to a public-key cryptosystem generator that is non-malleable against chosen-ciphertext attacks in the post-
processing mode, and � is a first-round message for a zap.

1. The verifier chooses random strings ��� � � ��
 and sends to the prover � � ��� � ���
 � and timed
commitments � � ��� � �	��� � � and � ��� � �	��� � . In addition, using � , the verifier gives a zap that at
least one of the � � is valid. Finally, the verifier also sends to the prover a first-round message � � for a
zap.

2. The prover checks the zap � � ��� � and aborts if verification fails. Otherwise, the prover sends to the
verifier � � ��� �
 � , � ����� � � � � for a randomly chosen � . Using � � , the prover sends a zap � � that at
least one of the following holds: ����� �
 � or � � � � � � � � (more specifically, ��� is a proof that � is
an encryption under � of the suffix of the message encrypted by ciphertext � OR � is an encryption
under � � of one of the values committed to by

� � � �). The witness used in creating ��� is the set of
random bits in creating � .

 accepts if and only if both (1) the zap � � � ��� � � is accepted and (2) � ’s response is received in a timely
fashion, as specified in the timing constraints.

Timing constraints: � ’s Round 2 message must arrive within time � on ’s local clock from the time
at which sent its Round 1 message. � and

�
are chosen to satisfy � � �

and
�
� 	 � � , where the

value � is the time below which it is safe to assume that the timed commitment cannot be broken, even by a
PRAM, and 	 is an upper bound on the time it takes to create a zap by a program that is given a witness. For
completeness, � must be sufficiently large to permit the necessary computations by � , and the round-trip
message delay.

This completes the description of the deniable authentication protocol.

Theorem 7.3 The 2-round protocol is sound and deniable.

Proof. We first argue soundness. Suppose that the adversary is trying to forge message � and is given by
the verifier � � �	�
 � � Then by the non-malleability of � it cannot produce � �
 � , even if it has access to
a decrypting oracle for � on all messages with prefix different than � 4. Given that the adversary provides
a zap at Step 2, it must be the case that � � � � for some � � � � � ��� . Then together, the real prover, who
knows � � , and the adversary can be used to break the timed commitment scheme with probability ���� :
given � � ��� � , choose � � at random and give � �	��� � � ; then, using the witness based on � � , give a zap that at

4Actually it seems that we do not need
 � to resist any chosen ciphertext attacks and it is enough that it is non-malleable against
chosen plaintext attacks. The reason is that we can give the adversary an encryption of a random string instead of
 � ���� and use
the forced opening of the timed commitment in order to obtain a zap in the second step.

23

least one of � �	��� � or � �	��� � � (in random order) is recoverable. By definition, such a zap can be constructed
within time 	 . If the forger gives back � � � within time � , then � � has been broken in time at most
�
� 	 � � .

We now argue deniability. The simulator extracts from � �	��� �� and � �	��� � either � � or � . It creates
� �
 � � for a random
 � and creates � � ��� � � and uses it as a witness to a zap that � � � �
 � or � � � � . The
proof of indistinguishability of simulated and real transcripts is analogous to the proof of Theorem 7.1.

�

8 Witness Protection in the Resettable Model

8.1 Resettable Witness-Indistinguishability

For a formal definition of resettable witness indistinguishability, see [9]. We will motivate the definition
informally by focusing on smart cards. Intuitively, a smart card is loaded with � , � � � ��� � , and a seed �
for a pseudo-random function, at the time it is created. This seed is the only source randomness the card
has; furthermore, we assume that the card is stateless, i.e. does not change its internal memory between
sessions. Our interest is in protecting the prover from a verifier � that runs the prover many times on the
same � �	� � � . Let us use the notation ��� ��� �	� � � � �� � ��� ����� � denote the transcript of exactly this kind of
attack where � is auxiliary information known to � (in particular, we may even have � � � �	� �). Letting
� �	� � � � ����� , a proof that � � � is resettable witness-indistinguishable if for all probabilistic polynomial
time � �� � and � :

�
Pr � � � � � � � � ��� ��� �	� � � � � ��� ����� ����� Pr � � � � �
 � � � ��� ��� �	� � � � � � � ��� ��� � ��� � � � � � � �

Every zap for a language � �
 � yields a 2-round resettable witness-indistinguishable proof system
for � as follows. On input � , the prover computes

� �
� � ��� � � � , where � � is a pseudo-random function with
seed � . It then uses the bits

�
as the “random” bits in computing the zap response � .

Soundness holds because the round-one message � is not needed for unpredictability – indeed, soundness
holds even if some �

� is fixed non-uniformly and before � is chosen. As for witness-indistinguishability, from
the WI of the zap it follows that an assumed distinguisher for the resettable system can be used to distinguish
the output of the pseudo-random function from truly random, a contradiction.

8.2 Resettable Zero-Knowledge

We first present our 3-round timing-based rZK protocol for any � �
 � , and then compare it to previous
results.

Let � � � � � be the encryption and decryption algorithms of a semantically secure encryption method.
The scheme need not be public-key, but there should be a public description � � of the encryption key with
the following two properties. (1) It is easy to verify that decryption is unique, that is, given ciphertext � and
a public description � � there should be at most one � satisfying � � � � � � . (2) Given � � it is easy to verify
that there exists decryption key � � such that given � � � � � � we have � � ���� � � .

An example of such an encryption scheme can be based on RSA with large public exponent, as in
Section 5.2. That is, the public key is ��� ��
 � , in which the exponent � is prime and sufficiently large (so that
� cannot possibly divide
 �
 �); � � � ��� ��
 � in this case and the actual encryptin is doen using the hardcore
predicate of the exponentiation with � function. Alternatively, � could be a pseudo-random permutation
cipher (with random padding to avoid collisions) and where � � is a (perfectly binding) commitment to the
seed.

24

For this application, we require that the timed commitment scheme be secure non-uniformly, i.e. that
there does not exist a PRAM with fixed advice tape that can break the commitment scheme with non-
negligible probability in time less than � .

3-round Timing-Based rZK for � ��
 �
1. The prover chooses � � (the public description of the encryption key of �) and a random string � and

sends both to the verifier.

2. The verifier checks that encryptions under � are uniquely decryptable (as discussed above) and if not,
rejects. Assuming � passes the test, the verifier chooses random strings � � � � and sends to the prover
timed commitments � � � � � �	��� � � � � � � � �	��� � and, using � , a zap � that at least one of the two
timed-commitments is valid. The verifier also sends a string � � to the prover.

3. The prover checks �� � � � . If it is accepted, then the prover uses the random bits defined by an appli-
cation of its pseudo-random function on the message sent by the verifier to generate � � � � � � � and	 ����� ����� where � � � ����� and � is random. Using � � and part of the output of the pseudo-random
function the prover also generates a zap � � that � ��� ����� OR � � � � � � � � . The witness used consists
of the random bits used in generating � . � � 	 and � � are sent.

The verifier checks that � � ����� � � is accepted, that
	

has unique decryption and that the prover’s response was
timely, as defined by the timing constraints, accepting if and only if all conditions are satisfied.
Timing Constraints: � ’s Round 2 message must arrive within time � on ’s local clock from the time at
which sent its Round 1 message. � and

�
(from the timing assumption) are chosen to satisfy � � �

and
�
� 	 � � , where the value � is the time below which it is safe to assume that the timed commitment cannot

be broken, even by a PRAM, and 	 is an upper bound on the time it takes to create a zap by a program that
is given a witness. For completeness, � must be sufficiently large to permit the necessary computations by
� , and the round-trip message delay.

Note that the only party that has to measure time is , which is considered more resourceful than the
prover (who may be a smart-card with no independent clock) in the resettable setting

Theorem 8.1 For any � ��
 � the above protocol is rZK.

Proof. A straight-line simulator can be constructed in a similar fashion to the construction in the proof of
Theorem 7.1. For soundness we use the existence of a decryption algorithm � with decryption key � � . If the
protocol is not sound, then this key can be used to break the timed commitment in exactly the same way as
the proof of knowledge was used in the proof of Theorem 7.1, violating the assumed non-uniform security
of the timed commitment. We therefore have a non-constructive reduction: given an algorithm for providing
false proofs for � we know there exists an algorithm for breaking the timed-commitment; however, the
reduction does not yield an effective method for the conversion.

Note that a proof of security which does not yield an effective procedure to break the underlying as-
sumptions is rare.

�

9 Open Questions

One vein of open problems induced by this work is with respect to the new primitive VPRG: Can VPRGs
be composed “á la GGM”, as can ordinary pseudo-random generators? This is related to the issue of con-
structing VPRGs with better expansion as well as to the question whether there is a general construction

25

of VPRFs from VPRGs. A different issue is whether VPRGs can be based on an assumption weaker than
trapdoor permutations? For example, is it possible to base VPRGs on the Diffie-Hellman assumption (either
computational or the decisional version)?

A second vein of questions deals with efficiency and practicality. We have used general NIZKs; thus any
proof must go through a reduction to an NP-complete problem. It would be useful to have more efficient,
special-purpose zaps, for instance, a zap that one of � and � is a quadratic residue modulo
 . Another
concrete question regarding zaps is to construct one in conjunction with a timed-commitment, so that it will
be simple to prove consistency.

A third vein of questions deals with round-efficiency: in which cases are our protocols round-optimal? It
is not hard to argue that 2-round (non-black-box) zero-knowledge proofs of knowledge are impossible, even
using timing. However, we do not know whether or not 2-round (non-black-box) zero-knowledge proofs are
possible, with or without timing.

References

[1] B. Barak, How to Go Beyond The Black-Box Simulation Barrier, Proc. of the 42nd IEEE Symposium
on the Foundation of Computer Science, 2001.

[2] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway, Relations among notions of security for public-key
encryption schemes, Advances in Cryptology - Crypto’98, LNCS vol. 1462, Springer, 1998, pp. 26–45.

[3] M. Bellare and M. Yung, Certifying permutations: Noninteractive zero-knowledge based on any trap-
door permutation, Journal of Cryptology 9(3), 1996, pp. 149–166.

[4] M. Blum, A. De Santis, S. Micali, and G. Persiano. Noninteractive zero-knowledge, SIAM Journal on
Computing 20(6), 1991, pp. 1084-1118.

[5] Blum M., P. Feldman and S. Micali, Non-Interactive Zero-Knowledge Proof Systems, Proc. 20th ACM
Symposium on the Theory of Computing, Chicago, 1988, pp 103-112.

[6] M. Blum and S. Micali, How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits,
SIAM J. Comput. 13(4), 1984, pp. 850–864.

[7] D. Boneh and M. Naor, Timed Commitments, Advances in Cryptology - CRYPTO’2000 Proceedings,
Lecture Notes in Computer Science No. 1880, Springer, 2000, pp. 236–254.

[8] G. Brassard, C. Crepeau,. and J. M. Roberts, All-or-nothing disclosure of secrets, Advances in Cryptol-
ogy - CRYPTO ’86, Lecture Notes in Computer Science No. 263, Springer, 1987 pp. 234–238.

[9] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali, Resettable Zero-Knowledge, Proc. 32nd ACM
Symp. Theory of Computing, 2000, pp. 235–244.

[10] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Concurrent Zero-Knowledge Requires
�

� ��������� � Rounds,
Proc. of the 33rd ACM Symposium on the Theory of Computing, 2001, pp. 570–579. Full version:
Electronic Colloquium on Computational Complexity, Report TR01-050, Volume 8, 2001. Available:
www.eccc.uni-trier.de/eccc/

[11] I. Damgård, Efficient Concurrent Zero-Knowledge in the Auxiliary String Model, Advances in Cryptol-
ogy - EUROCRYPT 2000, Lecture Notes in Computer Science No. 1807, Springer, 2000, pp. 418–430.

26

[12] D. Dolev, C. Dwork and M. Naor, Non-malleable Cryptography, Siam J. on Computing, vol. 30(2),
2000, pp. 391–437.

[13] , C. Dwork, The Non-Malleability Lectures, Course notes for CS 359, Stanford University, Spring
1999, available at: theory.stanford.edu/˜gdurf/cs359-s99.

[14] C. Dwork and M. Naor, Pricing via Processing -or- Combatting Junk Mail, Advances in Cryptology –
CRYPTO’92, Lecture Notes in Computer Science No. 740, Springer, 1993, pp. 139–147.

[15] C. Dwork and M. Naor, Method for message authentication from non-malleable crypto systems, US
Patent No. 05539826, issued Aug. 29th 1996.

[16] C. Dwork, M. Naor, and A. Sahai, Concurrent Zero-Knowledge. Proc. of the 30th ACM Symposium
on the Theory of Computing, 1998, pp. 409–418.

[17] C. Dwork and A. Sahai, Concurrent Zero-Knowledge: Reducing the Need for Timing Constraints,
Lecture Notes in Computer Science No. 1462, Springer, 1998, 442–457.

[18] S. Even, O. Goldreich and A. Lempel, A Randomized Protocol for Signing Contracts, Communications
of the ACM 28, 1985, pp. 637–647.

[19] U. Feige and A. Shamir, Witness Indistinguishable and Witness Hiding Protocols Proc. 22nd ACM
Symposium on the Theory of Computing, 1990, pp. 416–426.

[20] U. Feige, D. Lapidot and A. Shamir, Multiple NonInteractive Zero Knowledge Proofs Under General
Assumptions, SIAM J. Comput. 29(1), 1999, pp. 1–28.

[21] O. Goldreich, Foundations of Cryptography - Basic Tools, Cambridge U. Press, 2001.

[22] O. Goldreich S. Goldwasser and S. Micali, How to Construct Random Functions, J. of the ACM 33
(1986), pp. 792–807.

[23] O. Goldreich and H. Krawczyk. On the Composition of Zero Knowledge Proof Systems. SIAM J. on
Computing, Vol. 25, No. 1, pp. 169–192, 1996.

[24] O. Goldreich, S. Micali and A. Wigderson, Proofs that Yield Nothing But their Validity, and a Method-
ology of Cryptographic Protocol Design, J. of the ACM 38, 1991, pp. 691–729.

[25] S. Goldwasser and S. Micali. Probabilistic Encryption, Journal of Computer and System Sciences,
Vol. 28, April 1984, pp. 270–299.

[26] S. Goldwasser, S. Micali, and C. Rackoff, The Knowledge Complexity of Interactive Proof Systems,
SIAM Journal on Computing, Vol. 18, 1 (1989), pp. 186-208.

[27] J. Håstad, R. Impagliazzo, L. A. Levin and M. Luby, A Pseudorandom Generator from any One-way
Function, SIAM J. Comput. 28(4), 1999, pp. 1364–1396.

[28] R. Impagliazzo, M. Naor, O. Reingold, and A. Shamir, personal communication, 1998.

[29] J. Kilian and E. Petrank, An Efficient Non-Interactive Zero-Knowledge Proof System for NP with Gen-
eral Assumptions, Journal of Cryptology, Vol. 11(1), 1998, 1-27.

27

[30] J. Kilian, E. Petrank and C. Rackoff, Lower Bounds for Zero Knowledge on the Internet, Proceedings
of 39th IEEE Symposium on Foundations of Computer Science, 1998, pp. 484–492.

[31] E. Kushilevitz and R. Ostrovsky, Replication Is Not Needed: Single Database, Computationally-
Private Information Retrieval, Proceedings of 38th IEEE Symposium on Foundations of Computer Sci-
ence, 1997, pp. 364-373, 1997.

[32] M. Luby, Pseudorandomness and Cryptographic Applications, Princeton University Press, 1996.

[33] S. Micali, M. Rabin, and Salil Vadhan, Verifiable Random Functions, Proceedings of 40th IEEE Sym-
posium on Foundations of Computer Science, 1999, pp. 120–130.

[34] M. Naor, Bit Commitment Using Pseudo-Randomness, Journal of Cryptology, vol 4, 1991, pp. 151–
158.

[35] M. Naor and B. Pinkas, Efficinet Oblivious Transfer Protocols, Proc. of the twelth Annual ACM-SIAM
Symposium on Discrete Algorithms, 2001, pp. 448–457.

[36] M. Naor and O. Reingold, Synthesizers and their application to the parallel construction of pseudo-
random functions, J. of Computer and Systems Sciences, vol. 58 (2), April 1999, pp. 336-375.

[37] M. Naor and M. Yung, Public-key Cryptosystems provably secure against chosen ciphertext attacks
Proc. 22nd Annual ACM Symposium on the Theory of Computing, Baltimore, 1990, pp. 427–437.

[38] M. O. Rabin, “How to exchange secrets by oblivious transfer”, Tech. Memo TR-81, Aiken Computa-
tion Laboratory, 1981.

[39] A. Rosen, A Note on the Round-Complexity of Concurrent Zero-Knowledge, Advances in Cryptology
- CRYPTO’2000 Proceedings, Lecture Notes in Computer Science Vol. 1880, Springer, 2000, pp. 451–
468.

[40] A. Shamir, On the Generation of Cryptographically Strong Pseudorandom Sequences, ACM Trans. on
Computer Systems 1(1), 1983, pp. 38–44.

28

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

