Electronic Collogquium on Computational Complexity, Report No. 3 (2002)

A Gap in Average Proof Complexity

Eli Ben-Sasson * Yonatan Bilu

December 24, 2001

Abstract

We present the first example of a natural distribution on instances of an NP-complete problem, with
the following properties. With high probability a random formula from this distribution (a) is unsatis-
fiable, (b) has a short proof that can be found easily, and (c) does not have a short (general) resolution
proof. This happens already for a very low clause/variable density ratio of A = logn (n is the number
of variables). This is the first example of such a natural distribution for which general resolution proofs
are not the best way for proving unsatisfiability of random instances. Our result gives hope that efficient
proof methods might be found for random 3-CNFs with small clause density (significantly less than \/n).

Keywords: Proof Complexity, resolution.

*Department of Electrical Engineering and Computer Science, Harvard University, Cambridge, MA.
eli@eecs.harvard.edu

TInstitute for Electrical Engineering and Computer Science, Hebrew University, Givat-Ram, Jerusalem, Israel. john-
blue@cs.huji.ac.il

ISSN 1433-8092

1 Introduction

Assuming P # NP any algorithm solving an NP complete problem must operate miserably on some
inputs. This assumption still does not tell us whether a random instance is easy or hard. The investigation
of properties of various natural distributions on instances of NP-complete problems has received much
attention in recent years, with most attention focusing on the following model. Select uniformly at random
A - n clauses, each of size k (usually k& = 3), from the set of all () - 2% possible clauses. We denote this
distribution by (Ck’", where A is called the clause density, and denote by C ~ (C]X" a random CNF from
this distribution. Many interesting facts are known about C’X”, and in our brief survey we will only discuss
cim, noting that all results can be generalized to larger k. It is known that as A goes from < 3.145...
[1] to > 4.5793... [15] the fraction of satisfiable formulas in (Cin goes from 1 — o(1) to o(1), and that
the threshold is sharp [12]. Knowing this, one may ask what is the range of A for which the satisfiability
problem is hard to solve. When A < 3.145 this amount to finding a satisfying assignment to a formulas,
whereas if A > 4.5793 this is equivalent to finding a short proof of unsatisfiability.

In recent years, many empirical heuristics have been developed for addressing the satisfiability problem.
These methods have also grave implications on practical areas such as constraint satisfaction [18] and sym-
bolic model checking [8] Some of these methods try to randomly find a satisfying assignment, by starting
from some assignment and trying to improve it by local increments (e.g. at any step flip a bit as to minimize
the number of unsatisfied clauses, see [18]). Naturally, when the clause density is very large, these methods
fail with high probability, and moreover, one cannot be convinced that an assignment does not exist. In
the unsatisfiable range, one usually reverts to a proof system, and seeks a short proof that the formula is
unsatisfiable. A very natural framework for this problem is that of resolution. Many currently used au-
tomated theorem provers use DLL procedures [11], that rely on a weak form of resolution, called treelike
resolution. Thanks to some recent developments, we can now say that for some clause densities, there are
proof methods that exponentially outperform treelike resolution. This inefficiency result is the combination
of tight lower bounds for the size of treelike resolution, that behave like exp(%) [6], and the recent elegant
result of Friedman and Geordt [13], showing that using a different proof method, one can easily find proofs
of unsatisfiability for A > /n.

Our knowledge of resolutions efficiency with respect to random instances is less clear. The best current
lower bounds for resolution proof size of a random C ~ (C:Z" are roughly exp(x%) [4, 7], and we currently
do not know of any other proof method that outperforms resolution in the range A < 4/n. This might lead
one to suggest that random instances within the range 4.5793 < A < 4/n might be hard for all proof
systems. In this paper we provide initial evidence contradicting this belief.

Although the distribution (Ci" has received by far the most interest, looking at similar distributions is often
fruitful, and interesting in its own right. Insights about such closely related distributions often lead to a
better understanding of (C?X" itself. For instance, the recent upper bound for random 3-CNFs with clause
density A > y/n [13] was motivated and preceded by upper bounds for random 4-CNFs with clause density
A > n? [14]. Another example is the recent work of [3] examining a mixed distribution of 2 and 3 clauses,
which yields interesting lower bounds on the run time of various SAT solvers. In this paper, we look at a
natural distribution over instances of 4-EH SAT (see definition in section 2.1) . For this distribution over
instances of an NP-complete problem, very similar to " we prove the following results:

1. For A > 0.71, a random instance over n variables and An constraints in unsatisfiable with high

!Similar distributions over instances of the closely related problems of NAESAT and 1-in-k-SAT were recently considered in
[2], where the exact threshold constant of these problems was determined.

probability.

2. With high probability there exist short proofs for random instances when A > log n. Moreover, these
proofs can be found in polynomial time.

3. With high probability the minimal resolution proof size of a random instance is exp(m), for
A =logn.

This is the first example of a natural distribution on instances of an NP-complete language, for which a proof
system exists that exponentially outperforms resolution. This relative inefficiency of resolution, and the
complementary efficiency of the other proof system, occur for a very low clause density of log n. Our work
gives hope for finding similar efficient proof systems for random 3-CNFs with clause density significantly
smaller than /7.

2 Exactly Half SAT has Short Proofs

In this section we define our natural distribution, and show that even for very low clause density, there exist
short proofs of unsatisfiability, that can easily be found. We start by defining our distribution, and then
proceed to prove the upper bound. The main result of this section is the upper bound, appearing in theorem
2.1.

2.1 Exactly Half SAT - Definitions and Basic Facts

The Exactly Half SAT problem is the following constraint satisfiability problem: given a set of clauses, each
containing an even number of literals, is there an assignment that satisfies exactly one half of the literals in
each clause?

The 2k-EH SAT problem is the same problem, where all clauses contain exactly 2k literals. The focus of
this work is on 4-EH SAT .

We first note that by a reduction from 3-Not-All-Equal SAT (also a conclusion from [19]) one gets:
Lemma 2.1 Forany k > 1, 2k-EH SAT is NP-Complete.

Proof: We start by showing that 4-EH SAT is NP-Complete. Given a 3-NAESAT formula with m clauses,
add m new variables, one to each clause. If the original formula is satisfiable, then use the same satisfying
assignment for the old variables, and set the value of the new variable so that exactly one half of the literals
are satisfied. This is possible since each clause has either exactly two literals set to “TRUE”, or exactly two
literals set to “FALSE”, and new variables appear only in one clause.

Conversely, consider a satisfying assignment for the constructed 4-EH SAT formula. For each clause, the
original literals can not be all assigned the same value, so this assignment also satisfies the original 3-
NAESAT formula.

Now we can show a reduction from 4-EH SAT to 2k-EH SAT. Given a 4-EH SAT formula with m clauses,
add k£ — 2 new variables to each clause. Add each new variable twice - once negated, and once unnegated.
Since of each such pair of literals exactly one is set to “TRUE”, the new formula is satisfiable iff the original
one is.]

Now consider a random 4-EH SAT formula with n variables and m = Amn clauses, picked according to
(Cin. As with CNF formulas, a linear number of clauses guarantees that the generated formula is, with high
probability, unsatisfiable:

Lemma 2.2 A random 4-EH SAT formula with n variables and 0.71 - n clauses is, w.h.p., not satisfiable.

Proof: A given assignment satisfies a randomly chosen clause with probability %, and thus the probability
that is satisfies all m clauses is (%)m. By the union bound, the probability that some assignment satisfies all
m clauses is at most 2"(%)"‘. picking m > 0.71n, makes this probability exponentially small. L

2.2 Finding Short Proofs of Unsatisfiability

Using random graph theory arguments, one can show that w.h.p. there are short proofs of unsatisfiability
for random 2k-EH SAT instances, with n variables and Q(n*) clauses: Set N = 2% (Z), and consider the
random graph on N vertices defined by a 2k-EH SAT in the following way: The vertices of the graph are all
the subsets of k literals. For each clause in the formula, pick at random £ of its literals, and put an edge in the
graph between the vertex representing this set, and that representing the remaining literals. If the underlying
formula is picked at random, then this, in effect, is a random graph with m edges picked at random.

Lemma 2.1 If a random graph constructed in the above manner is connected, then the underlying formula
is unsatisfiable.

Proof: For a given assignment, say that a vertex in the graph is a pure if the satisfying assignment sets the
same value to all the literals identified with the vertex. Notice that a necessary condition for an assignment
to satisfy a 2k-EH SAT formula, is that all the neighbors of a pure vertex are themselves pure. Thus, if
the graph is connected, then for a satisfying assignment either all the vertices are pure, or none of them
are. However, neither can be the case, since obviously for any assignment, exactly 2 (k=1) fraction of the
vertices are pure. U

From the theory of random graphs we know that for m > NV, a random graph is, w.h.p., connected (e.g.
[16]). By lemma 2.1, the connectivity of such a graph is a proof that the underlying 2k-EH SAT formula is
unsatisfiable.

However, we can prove a stronger result:
Theorem 2.1 Let f be a random 4-EH SAT formula on n variables, and Q(nlogn) clauses, then, w.h.p.,

there is a polynomial-size proof showing that f is unsatisfiable. Furthermore, this proof can be found in
polynomial time.

We shall start with some definitions and a couple of lemmas. Denote the variables over which a 4-EH SAT
formula is defined by z1, ..., z,, and its clauses by C1, ..., Cy,,. We associate with a 4-EH SAT formula f a
matrix My € M, »(R), and with an assignment « a vector v, € R™ defined as follows:

1 T € C; andfj ¢Cz

(Mf)ij = -1 7, €C;and z; ¢ C;
0 otherwise
(va), = 1 oafz;) = TRUE
“r -1 a(z;) = FALSE

Note that the rows of M contain at most four non-zero entries, and these are either 1 or —1. We shall call
such vectors 4-clause vectors.

Lemma 2.2 For a 4-EH SAT formula f, ifrank(My) > n—0O(logn) then there is a short proof for whether
f is satisfiable or not.

Proof: Observe that v, corresponds to a satisfying assignment iff (Mf)v, = 0. In particular, if f is
satisfiable, then the kernel of M in not trivial. Since the rank of My can be computed in polynomial
time, such a matrix of rank n, along with the computation of the rank, constitutes a short proof for the
unsatisfiability of f.

Now assume that K = Ker(Mj) is of dimension ¢t = O(logn). Let v1, .., , v; be a basis for K. Consider the
matrix whose rows are the v;’s. It is of rank ¢, so we can find, in polynomial time, ¢ independent columns.
Denote by A the regular sub-matrix defined by all ¢ rows and these ¢ columns. Consider an assignment
vector, u, and its restriction, u’, to the ¢ chosen columns. There is exactly one linear combination of the
rows of A that results in u’. Clearly, this is the only linear combination of the v;’s that might sum up to u.
Thus, all assignment vectors in Ker (M) will be found by the following algorithm: Go over all 2* {—1,1}
vectors. For each, find the linear combination of rows from A that produces it. Use this linear combination
of the v;’s, and if it results in a {—1, 1} vector, then it corresponds to a satisfying assignment.

Since this can be done in polynomial time, it constitutes a short for proof for whether f is satisfiable or not.
U

Lemma 2.3 For a random 4-EH SAT formula f with Q(nlogn) clauses, My is, w.h.p., of rank n.

We will need the following technical claim:
Claim 2.4 Let W be an l-dimensional linear subspace of R", then W contains at most E§:12i (i) 4-clause
vectors.

Proof: Let vy, ..., v; be a basis for W. Consider the matrix whose rows are the v;’s. By Gaussian elimination
we may assume, w.l.0.g., that this matrix is of the form (I|A), where I is the [x [identity matrix, and A is
some [by n — [matrix.

Let u be 4-clause vector in W, and consider its representation as a linear combination of the basis elements:
u = X¢;v;. By the assumption on the first [coordinates of the v;’s, the first [coordinates of u are c1, ..., ¢;.
Since u is a 4-clause vector, at most four of the ¢;’s can by non-zero, and in that case, they must be either 1
or —1. Thus, the number of 4-clause vectors in W is at most X}, 2° (i) U
Observe that what the proof relies on is that the size of the support of the vectors is constant. The same
proof shows that if W' is an [-dimensional linear subspace of R”, it contains at most 252121' (i) with support
of size t.

Proof (of Lemma 2.3): Consider the process of picking 4-clause vectors one by one, uniformly at random.
Call such a vector novel if it is not in the linear span of its predecessors. Let X by a random variable denoting
the number of 4-clause vectors drawn, until the nth novel vector. Consider now the coupon collector’s
problem, with n types of coupons (see, e.g. [17] for a definition and analysis of this problem). Let Y be a
random variable denoting the number of coupons drawn until all n are collected.

It is easy to see, that at a point where the coupon collector has exactly [different coupons, the chance of a
coupon picked at random to be different from these [is exactly 1 — % Compare this to what happens when

picking 4-clause vectors uniformly at random. By claim 2.4, at a point where exactly [novel vectors have
been picked, the probability that the next vector is novel (i.e., that isn’t within the linear span of the [novel
SE,2'(3)
16(3)
least 1 — % Think of X = ¥X; and Y = XY as the sum of n random variables counting the number of
coupons collected between consecutive novel vectors. Each of these variables has a geometric distribution,
where the probability of “success” for X; is at least as high as for the corresponding Y;. So we have that for
any number C' > 0

vectors), is at least 1 — . A straight forward calculation shows that for a large enough 7 this is at

Pr(X >C)< Pr(Y > ().

It is easily shown (e.g. in [17]) that Pr(Y > 2nlogn) < n~!. Thus, if f has 2nlogn clauses, with
probability at most n~ !, rank(M;) < n. O

Theorem now 2.1 follows from these two lemmas.

2.3 Extensions to Exactly-(d;, d;)-SAT

The same arguments used in the proof of theorem 2.1 actually show something a bit stronger. Define
Exactly-(d1, d2)-SAT to be the following constraint satisfaction problem: Given a set of clauses of size
di + da, is there an assignment where in each clause exactly d literals are satisfied, and exactly do are not?
In particular, the Exactly-(2, 2)-SAT problem coincides with the 4-EH SAT problem.

Let d; and do are constants such that d; + d2 > 2, and n be large. Consider a random Exactly-(ds, d2)-
SAT formula f on n variables and €2(nlogn) clauses, and the corresponding matrix M. An assignment
o satisfies f iff (M})v, = (di — do)1. By the observation following Lemma 2.4, and a coupon collector
argument similar to Lemma 2.3, we have that w.h.p. rank(M;) = n. Now define M } to be My, with

the additional column (d; — dy)1. Clearly for any satisfying assignment o, (M #)(val —1) = 0. But
dim Ker(M/) < 1, so as in Lemma 2.2, we can perform an extensive search for the satisfying assignment
(In fact, either Ker(M J’,) = {0}, and there’s nothing to check, or it is spanned by a single vector, and
then we just have to check if it can be normalized to as assignment-like vector). Thus, we have that if f
is a random Exactly-(d1, d2)-SAT instance, on n variables and Q2(nlogn) variables, then w.h.p. there is a
polynomial-size proof for f being unsatisfiable, and this can proof can be found in polynomial time.

3 Exactly Half SAT Does not have Short Resolution Proofs

One of the most extensively used proof systems is resolution. In this section we show how the standard size
lower bound techniques of [7] give exponential lower bounds on the size of resolution proofs of random
instances of the 4-EH SAT formula problem with nlogn clauses. We will need some preliminary results
about resolution lower bounds, all of them taken from [7]. The main result of this section is a lower bound
on the size of a resolution proof of an 4-EH SAT instance, when A = log n (theorem 3.11).

3.1 Resolution - Definition

The resolution proof system is complete for the co-NP complete language of unsatisfiable CNF formulas,
has essentially one derivation rule, and all lines in a proof are clauses. Here is a formal definition of this
system.

A literal over z is either z, denoted also z, or Z, denoted also z°. A clause is a disjunction of literals. A
variable x appears in C, denoted x € C, if a literal over = appears in C'. A CNF formula is a set of clauses.
The resolution rule is the following derivation rule:

Resolution Rule: Derive E'V F from {E V z, F V T}, where E, F are any clauses, and z is any variable.

The resolution proof system is the sequential proof system based on the resolution rule. LetC = {C1,Cs...Cy,}
be a CNF formula over n variables. A resolution derivation of a clause A from C is a sequence of clauses

m = {D1,D; ... Dg} such that the last clause is A and each formula D; is either some initial clause C; € C,

or is derived from previous clauses using the resolution rule. A resolution proof, sometimes also called a
refutation, is a resolution derivation of the empty clause, 0. The minimal size of a proof of C, denoted
Sr(C), is the minimal number of clauses in a proof of C. Similarly, S1(C) is the minimal size of a treelike
resolution proof. The following fundamental theorem of resolution implies that S7(C) = Sr(C) = oo iff

C € SAT.

Theorem 3.1 (Completeness of Resolution) Resolution is a complete proof system for CNF formulas. In
other words, for any CNF C, C € co — SAT iff there exists a resolution proof of C.

3.2 Encoding 4-EH SAT as a CNF

A constraint is a Boolean function. Let 7 = {f1... f,} be a set of constraints, where each constraint is
over the variables x1,...,z,. We say F is satisfiable iff there exists an assignment « € {0, 1}" such that
fi(a) = 1fori =1...m, and otherwise we call it unsatisfiable.

For f(z1,...,2,) : {0,1}" — {0, 1} a constraint, let Supp(f) be the set of variables on which f depends,
i.e. it is the minimal subset X C {x1,...,z,} such that any assignment to {0, 1} fixes f.

Definition 3.2 (Explicit Encoding of Boolean Constraints) For
f(z1,...,2p) : {0,1}" — {0,1} a Boolean constraint, an explicit encoding of f, denoted C(f), is some
CNF formula over Supp(f) that is equivalent to f, i.e.

Va € {0,1}" f(a) =C(f)(a).

For F ={f1,... fm} a set of Boolean constraints over variable set X, an explicit encoding of F is

c(F) € | Jict)

i=1

where C(f;) is an explicit encoding of f;, fori =1...m.
3.3 Expansion, Sensitivity and Size
We use the connection of the structure of a set of constraints to the proof size of this set.

Definition 3.3 For F = {f1,... fm} a set of constraints, the graph of F, denoted G(F), is the following
bipartite graph G(F) =< VUU, E >.

1. 'V is the set of constraints.

2. U is the set of variables.

3. (fiszj) € Eiff z; € Supp(fi)-

Definition 3.4 (Bipartite Expanders) A bipartite graph G =< VWU, E > is called an (r, c)-expander if
wW'cv V| <r, IN(V)H| > (1+¢)V,
where N (V') is the set of neighbors of V'.
Definition 3.5 (Boundary Expansion) Let G =< VWU, E > be a bipartite graph. The boundary of V' C
Vis
V' ¥ fueU: INwNV'| =1}

In words: the boundary of V' is the set of unique neighbors of V', such that every boundary element is a
neighbor of exactly one vertex of V.

G is called an (r, c)-boundary expander if
WISV, [VI|[<r V| >c-|V]

A set of constraints F is said to be (r, c)-boundary expanding, if G(F) is an (r, c)-boundary expander.

As one might expect, there is a connection between expansion and boundary expansion. A very good
expander is also a decent boundary expander:

Claim 3.6 If G =< VUU, E > is an (r,c)- expander of maximal degree d on the V side, then it is an
(r,2 4+ 2¢ — d)-boundary expander.

Definition 3.7 (Sensitivity) A constraint f is £-sensitive if for any assignment « such that f(a) = 0, and
any X C Supp(f) | X| < ¥, there is an assignment (3 such that f () = 1 and [agrees with « outside of X.

Intuitively, a constraint is £-sensitive if it can be satisfied by changing any £ of its variables. It is easy to
see that each constraint of an 2k-EH SAT problem is k-sensitive. Thus, for the 4-EH SAT problem, each
constraint is 2-sensitive. We end this section by quoting the following lower bound of [7], presenting a lower
bound on proof size, as a function of the sensitivity and expansion of the input set of constraints. We use the
cleaner formulation appearing in [5]

Theorem 3.8 [7, 5] For F an (r, c)-boundary expanding set of £-sensitive constraints, each of support < d,
and C(F) an explicit encoding of it as a CNF:

ST(C(F)) =exp(Q(r(c— £+ 1) — 2d))

SR(C(F)) = exp (2 ((r(c —£+1) —2d)* - 1))

When applying the above theorem to the 4-EH SAT problem, notice that each constraint is 2 sensitive, and
the support size is 4. Thus we get:

Corollary 3.9 [7] For F be an (r,c)-boundary expanding instance of the 4-EH SAT problem, and C(F) an
explicit encoding of it as a CNF:

St(C(F)) = exp(Q(r(c —1) - 8))

Sr(C(F)) =exp (2 ((r(c—1) - 8)* - n7"))

where St(C) is the minimal number of clauses in a treelike resolution proof, and Sr(C) is the same for
regular resolution.

3.4 Lower Bound

By the previous corollary 3.9, we only need to show that with high probability a random instance of the
4-EH SAT problem with n variables, and 7 log n clauses, is a good boundary expander. Our main technical
lemma is the following.

Lemma 3.10 With high probability, a random 4-EH SAT instance with n variables, and nlogn clauses, is
an (Q(=%—), £)-boundary expander.

log3 n

This lemma, together with corollary 3.9, immediately gives the main result of this section:

Theorem 3.11 With high probability, an explicit encoding of a random 4-EH SAT instance with n variables,
and n'logn clauses, requires resolution size Q(logL%), and resolution treelike size Q(logLsn).

Proof [Lemma 3.10]:

The proof of our lemma follows immediately from Lemma 3.6 and the following claim:

Claim 3.12 A random bipartite F with nlogn constraints and n variables is with high probability a
(n/(log® n), 12)-expander

Proof: Let G(F) be the graph of F, and set 7 = n/log® n, and ¢ = 13. Let BAD be the event that G(F) is
not an (r, ¢)-bipartite expander. We prove that the Pr[BAD] tends to 0 as n grows. Bound the probability of
BAD by the probability that there exists a set V' C V, with 1 < |V'| < r, such that [N (V)| < (1+¢)|V’|
and then use the union bound to upper bound this probability.

Observe that there are (" ki.g ™) possible sets V' C V of size 4, and there are ((120) ;) possible small sets

of neighbors of V'. For a given set V' of size i, and a given set U’ of size (1 + ¢)i, the probability that
NV CU'is

(I+e)iy -

131' — ((4))z < ((1+C)Z)4z

(3) n

Let us bound the probability of the BAD event:

repan < 3 ("F7) (L) 7

=1

Z(enlogn)i_(en)(1+c)i_((1+c)i)4i "

- e (1+c)i n

< i[ﬁ-logn-(%)(Q—C)]i o
=1

< z:[n-logn.(%)@c)]z’

< Xr:[fﬁ-bg_in]i 5
i=1

The first inequality (1) uses the well-known estimation (z) < (%)b, the second (2) is true for the constant
k = e2T¢. (1 + ¢)37¢, and the last (3) follows by plugging in the values of ¢ and r. Clearly, this geometric
sum vanishes as n approaches infinity. This completes the proof of claim 3.12, and with it, lemma 3.10 is
proved.]

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

D. Achlioptas. Setting 2 variables at time yields a new lower bound for random 3-SAT. In
Proceedings of 32th STOC. pp. 28-37 (2000).

D. Achlioptas, A. Chtcherba, G. Istrate, C. Moore The Phase Transition in NAESAT and 1-in-k
SAT In Proceedings of the Symposium on Discrete Algorithms (SODA) 2001, pp. 721-722.

D. Achlioptas, P. Beame, M. Molloy, A Sharp Threshold in Proof Complexity, In Proceedings
of STOC 2001, p.337-346.

P. Beame, R. Karp, T. Pitassi, M. Saks. The efficiency of resolution and Davis Putnam proce-
dures. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC-98),
pages 561-571, New York, May 23-26 1998. ACM Press.

E. Ben-Sasson Expansion in Proof Complexity. Submitted as Ph. D. Thesis to the Hebrew
University, Jerusalem, 2001

E. Ben-Sasson, N. Galesi. Space Complexity of Random Formulae in Resolution. In Complexity
2001.

E. Ben-Sasson, A. Wigderson. Short Proofs are Narrow - Resolution made Simple. In Proceed-
ings of the 31st STOC, pages 517-526, 1999.

A. Biere, A. Cimatti, E. Clark, Y. Zhu. Symbolic model chechikng without BDDs. In Proceed-
ings, Sth International Conference, TACAS *99 pp 193-207, Berlin, 1999. Springer-Verlag.

V. Chvétal, E. Szemerédi. Many hard examples for resolutions. Journal of the ACM 35 pp.
759-768 (1988).

O. Dubois, Y. Boufkhad, J. Mandler. Typical random 3-SAT formulae and the satisfiability
problem. In 11-th SODA pp. 126-127 (2000).

M. Davis, G. Longemann, D. Loveland. A machine program for theorem proving. In Commu-
nications of the ACM 7:201-215, 1960.

E. Friedgut. Sharp thresholds for graph properties and the k-SAT problem, 1998. Unpublished
manuscript.

J. Friedman, A. Goerdt. Recognizing more unsatisfiable random 3-SAT instances efficiently. In
ICALP2001, pp. 310-321, 2001.

A. Goerdt., M. Krivelevich. Efficient recognition of random unsatisfiable k-SAT instances by
spectral methods. In Proc. STACS 2001, LNCS.

S. Janson, Y.C. Stamatiou, M. Vamvakari. Bounding the unsatisfiability threshold for 3-SAT.
Random Structure and Algorithms (17) 2 pp.118-116 (2000).

S. Janson, T. Luczak, A. Rucinski. Random Graphs, Wiley 2000.

R. Motwani, P. Raghavan. Randomized Algorithms. Cambridge Univ. Press., 1995.

10

[18] B. Selman, H. Kautz. A new method for solving hard satisfiability problems. In Proc. 10th
National conference on Artificial Intelligence, (AAAI-92) 440-446, 1992.

[19] T.J. Scaefer. The Complexity of Satisfiability Problems. In Conference Record of the Tenth
Annual ACM Symposium on Theory of Computing, pages 216-226, 1978.

11

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

