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Abstract

A language is called k-membership comparable if there exists a poly-
nomial-time algorithm that excludes for any k words one of the 2*
possibilities for their characteristic string. It is known that all mem-
bership comparable languages can be reduced to some P-selective lan-
guage with polynomially many adaptive queries. We show however
that for all k there exists a (k + 1)-membership comparable set that
is neither truth-table reducible nor sublinear Turing reducible to any
k-membership comparable set. In particular, for all £ > 2 the num-
ber of adaptive queries to P-selective sets necessary to decide all k-
membership comparable sets is (n) and O(n®). As this shows that
the truth-table closure of P-sel is a proper subset of P-mc(log), we get
a proof of Sivakumar’s conjecture that O(log)-membership compara-
bility is a more general notion than truth-table reducibility to P-sel.
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Introduction

Ogihara [12] introduced a hierarchy of classes of polynomial-time membership
comparable sets. For well-behaved functions f: N — N a set A is in the
class P-mc(f) if there is a deterministic polynomial-time machine that for
any input words z1,...,Z ) of length at most n outputs a bit string b €
{0,1}/ (") that is not the characteristic string of the words.

Ogihara showed that P-mc(f) is always a proper subset of P-mc(f + 1),
and thus a fine-grained hierarchy of classes of membership comparable sets
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can be build. He also showed that P-mc(poly) is a subset of P/poly — more
precisely P-mc(f) C P/ (9( f(n)n2) — but proving that it is a proper subset
would show P # NP. Ogihara’s results show that the hierarchy of mem-
bership comparable sets nicely snuggles into the class P/poly. This invites
us to try proving that NP C P-mc(f) implies P = NP for larger and larger
functions f. The state of the art result [12, 5, 1] is that NP C P-mc(clogn)
for ¢ < 1 implies P = NP.

It is an open problem whether NP C P-mc(log) implies P = NP. Here
P-mc(log) denotes [ J . P-mc(clogn). A partial answer to this was obtained
by Sivakumar [15] who showed that NP C P-mc(log) implies NP = RP.
He conjectured that this was an improvement over the previously known
result [17, 4] that NP C R{;(P-sel) implies RP = NP. The reason he only
conjectured that it was an improvement was that RE (P-sel) was known to
be a subset of P-mc(log) by a result of Ogihara, but was not known to be a
proper subset. Ogihara did however show that R (P-sel) is a proper subset
of P-mc(poly). Theorem 10 will show that, indeed, Rf; (P-sel) C P-mc(log),
thus improving on Ogihara’s result and proving Sivakumar’s conjecture.

Theorem 10 is a corollary of our main result, Theorem 1 below. It
concerns the question how powerful extra queries to membership comparable
sets are. It is known [13, 14, 10] that all sets in P/poly are Turing reducible
to a P-selective set. A rough inspection of the proof shows that languages
in P/f can be reduced with O(f(n)n) adaptive queries to a P-selective set.
Hence all languages in P-mc(f) can be reduced with O(f(n)n?) adaptive
queries to a P-selective set. We show that starting with P-mc(3) the number
of queries cannot drop below linear. More generally, we show that if &£ < ¢
there is a language in the class P-mc(¢) that is not sublinear Turing reducible
to P-mc(k). The main result can also be seen as improving Ogihara’s result
that P-mc(k + 1) € P-mc(k).

Theorem 1 (Main Result). Let t >k > 2 and let ¢ < =% Then

P-mc(t) ¢ RS, 1+ (P-me(k)).

This paper is organised as follows. In Section 1 we review some basic
results concerning the relationship of selectivity and membership compara-
bility. In Section 2 we give a proof of Theorem 1. In Section & we apply
this theorem to P-selective sets.

1 Selectivity versus Membership Comparability

In this section we review the notions of P-selectivity and membership com-
parability and state some basic properties. The notion of P-selectivity is
due to Selman [13]. The notion of membership comparability is due to
Ogihara [12].



Definition 2 ([13]). A language L is P-selective if there exists a function
g € FP such that for all words z,y we have g(z,y) € {z,y} and furthermore
ifz € Lory € L, then g(z,y) € L. The class of P-selective sets is denoted
P-sel.

Definition 3 ([12]). Let f: N — N be a function. A language L is f-
membership comparable if there exists a function g € FP that on input of
any f(n) many words z1, ..., T, of length at most n yields a bit string b €
{0, 1}f(") with b # (xL(1),-..,Xz(2s(n))). The class of all f-membership
comparable languages is denoted P-mc(f).

Here xr(z) denotes the characteristic value of z with respect to L. The
different kinds of reductions used in the following fact are defined in the
usual way, see [11] for an introduction and detailed definitions.

Fact 4 ([12, 7]).
1. P-sel C P-mc(2).
2. P-mc(k) € P-mc(k + 1) for all k € N.
3. R?(n)—tt (P-sel) = le;gf(n)_T(P—sel) C P-mc((1 + €) log f(n)).

4. RE (P-sel) C P-mc(poly).

In our proof of the main theorem we will be needing the following lemma,
which has been rediscovered repeatedly by different authors.

Fact 5 ([2, 3, 8, 6]). Let P C {0,1}" have the property that for all indices
i1,-..,0 € {1,...,n} we have

[{bi, .. bi, | b1...by € P} < 2%

Then
k—1

Pl<smm =Y (7).

1=0
2 Proof of the Main Theorem

To prove Theorem 1 we first need a lemma that shows how the function
S(n, k) reacts to an increase of its first versus its second argument. Essen-
tially the lemma states that it reacts much more dramatically to an increase
of its second argument than to an increase of the first.

Lemma 6. Lett >k > 2. Let p: N = N be any function and let ¢: N - N
be a strictly increasing function. Then

i PO implies  lim /4L %)
n—oo q(n)t=k n—oo  S(g(n),t)




Proof. Let us abbreviate a := p(n) and b := ¢(n). In the following calcula-
tion ¢; := (¢t — 1)! and ¢ := (¢t — 1)k are constants.

Sabk) _ Eis (7) _ Xisy (9)
S(b t) Z'E‘é (1 I Py

(@) (b—t+1)! _ (ab)!(b—t+1)!
; ab—z'b' T EST

[Ti= (ab — i) 1 [Ti= (ab — )
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1 ab ’“‘1< ak—1 b =1
=2 _k+1) F\b—k+2) P F\b—k+1

As b = g(n) is strictly increasing, the last expression in brackets tends to 1
as n tends to infinity. As lim,,_,., a*~1/b=% = 0 by assumption, we get the
claim. H

Proof of Theorem 1. We construct a supersparse language A € P-mc(t) \
R, 1 (P-mc(k)) using a standard diagonalisation, see [9] for an example. Let
My, M, ... be a standard enumeration of Turing machines that could serve
as membership comparing machines. Let Ry, R1,... be an enumeration of
Turing reduction machines. Let the time bounds of M; and R; be n' + 1.

Let £: N — N be a quickly growing function. The set A = (J oy 4s
is constructed in stages. Each A, contains only words of length £(s). We
define £(0) appropriately large, such that the first stage of the diagonalisation
works. We furthermore require that the function £ grows fast enough such
that for inputs from any stage we can easily simulate all constructions for
the words from earlier stages.

Each A; will contain at most ¢ — 1 many words. We now argue that
we then have A € P-mc(t) via some machine M. Whenever we are given
t different words of length £(s) it cannot be the case that all of them are
in A. Hence M can simply output 1! in this case. If we are given words from
different lengths, by possibly simulating the construction for earlier stages
we can easily directly decide at least one of the input words, say the i-th one.
Then M can output any bit string that disagrees on the i-th position with
the value that M knows to be correct. Finally, if the same word is given as
input twice, say on positions ¢ and j, M can simply output any bit string
that is 0 at the i-th position and 1 and the j-th. This shows A € P-mc(t).

We must explain how we can setup Ag in stage s = (m,r) such that A
is not reducible via R, to any language L for which M,, is a k-membership
comparing machine. If R, asks more than c£(s) queries for any input of
length #(s) we can skip the stage s and set Ag := 0.

Let n := £(s). For each word w of length n compute all queries the
machine R, asks in its query tree. There are at most 2" many queries. Let



@ contain all queries R, asks in its query tree for any word w € ¥". Then
the size of @) is limited by 2¢"2".

Let P C {0, 1}26n2n be the set of all bit strings that could possibly be
characteristic strings of the words in ) with respect to some language for
which M,, is a membership comparing machine. Then by Fact 5 the size of P
is at most S(2°"2", k). Hence, there are also only S(2°"2", k) possibilities
for the characteristic string of the words of length n with respect to the
language A that are consistent with the machines M,, and R,.

There are S(2",¢) many ways in which we can arrange A;. Let p(n) :=
2¢" and let g(n) := 2". As p(n)k~1 = 2¢k=1n — 2(t=k=en for some € > 0,
we have lim,, o p(n)¥~1/q(n)!~% = 0. By Lemma 6 we get

S(2m2m k)
m ——
n—oo  S(27,¢)

In particular, starting from some ny we have for all n > ng

S(22™ k) < S(2",1).
Thus, we can always choose A, in such a way that M, and R, are fooled. [
Corollary 7. If k > 2 then

P-mc(k + 1) Z Ry; (P-me(k)).

Proof. We just repeat the proof. Only this time the function p(n) limits the
number of queries that can be asked by the truth-table reduction R,. It is
limited by n® 4+ s < nl%" ™ + log* n. Clearly, lim, o p(n)*~'/q(n) =0. O

3 Application to P-Selective Sets

In this section we present two applications of Theorem 1.

Theorem 8. Let ¢ <t — 2. Then P-mc(t) € RY, 1 (P-sel).

Proof. Applying the main theorem with ¥ = 2 and ¢ < t — 2 = (¢t — 2)/
(2 — 1) yields P-mc(t) € R, (P-mc(2)). As every P-selective language is
2-membership comparable, we get the claim. O

This theorem should be contrasted with the fact that all k-membership
comparable sets are Turing reducible to a P-selective set with O(n?®) many
queries. Thus

P-mc(const) C R?)(ng)_T(P—sel), but
P-mc(const) € RE 1 (P-sel) for all c.



In [16] the notion of P-selective query complezity is introduced. The P-
selective query complexity of a set (a class of sets) is the minimum number
of queries that need to be asked to any P-selective oracle in order to decide
the set (every sets in the class). Phrased in terms of this notion, the above
result now reads as follows.

Theorem 9. The P-selective adaptive query complezity of P-mc(const) is
Q(n) and O(n?).

Theorem 10. R{;(P-sel) C P-mc(log).

Proof. By Fact 4 we have Rf;(P-sel) = Rg(log n)-1(P-sel) and RE (P-sel) C
P-mc(log). O

The claim of the above theorem is exactly a conjecture made by Sivaku-
mar [15]. It improves on Ogihara’s result that R{; (P-sel) C P-mc(poly).
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