Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 6 (2002)

Random nondeterministic real functions and Arthur Merlin games

Philippe Moser*

Abstract

We construct a nondeterministic version of APP, denoted NAPP, which is the set of all
real valued functions f : {0,1}* — [0, 1], that are approximable within 1/k, by a probabilistic
nondeterministic transducer, in time poly(1*,n). We show that the subset of all Boolean
functions in NAPP is exactly AM. We exhibit a natural complete problem for NAPP,
namely computing the acceptance probability of a nondeterministic Boolean circuit. Then
we prove that similarly to AM, the error probability for NAPP functions can be reduced
exponentially. We also give a co-nondeterministic version, denoted coNAPP, and prove that
all results for NAPP also hold for coNAPP. Then we construct two mappings between
NAPP and promise-AM, which preserve completeness. Finally we show that in the world

of deterministic computation, oracle access to AM is the same as oracle access to NAPP,
i.e. PNAPP — pprAM

1 Introduction

Similarly to the complexity class BPP, it is not known whether AM (the probabilistic version
of NP) has complete sets. One reason for this is that AM is a semantic class; on every input,
there must be at least 3/4 or at most 1/4 random string (of a certain length) that make an AM
machine accept.

One way around this difficulty is to consider promise problems i.e. problems that need to be
solved only on instances where a certain promise holds. Thus the canonical complete language
L ={(M,z,1%)| M is an AM machine and M accepts z in at most ¢ steps}, together with the
promise that M is indeed an AM machine, is promise-AM (denoted prAM) complete. Indeed
once it is known that M is an AM machine, a probabilistic nondeterministic Turing machine
can simulate machine M on input z, thus deciding, with high probability, whether M accepts z
or not.

Another approach was introduced by V. Kabanets et al. in [KRC00]. They introduced a
natural generalization of BPP, namely the class APP of real-valued functions f : {0,1}* —
[0, 1], that can be approximated within any € > 0, by a probabilistic Turing machine running in
time polynomial in the input size and the precision 1/e. They showed that BPP is exactly the
subset of all Boolean functions in APP.

In this paper we construct an nondeterministic version of APP (denoted NAPP). We show
that similarly to APP, the subset of Boolean functions that are in NAPP, is exactly AM.
Next, we prove that similarly to AM, the error probability for NAPP functions can be reduced

*Address: Computer Science Department, University of Geneva. Email: moser@cui.unige.ch

ISSN 1433-8092

exponentially, with only a polynomial increase of time. Then, we exhibit a natural complete
problem for NAPP; we show that computing the acceptance probability of a nondeterministic
Boolean circuit is NAPP-complete. The crucial point in our definition of NAPP is that we
say that a nondeterministic probabilistic transducer M computes the image of f on z, iff the
largest of all values computed on each nondeterministic branch of M is a good approximation of
f(z), with high probability. Thus, it is possible to show that such a transducer can approximate,
with high probability, the acceptance probability of any nondeterministic circuit C, by simply
choosing a random string, and by nondeterministically guessing a witness making C accept. At
the end of the computation, only the nondeterministic branches that guessed correct witnesses,
approximate the acceptance probability of C correctly, with high probability. Moreover, all other
nondeterministic branches output values smaller than the acceptance probability of C, with
high probability. The same idea applies when proving the error probability reduction Theorem:;
by repeated trials, and using Chernoff bounds, we prove that at the end of the computation,
the nondeterministic branches that guessed correct witnesses, output a good approximation of
f(z) with exponentially small probability error. The other nondeterministic branches output
values smaller than the values output by the ”correct” branches, also with exponentially small
probability error.

We also give a co-nondeterministic version of NAPP, and show that all results holding for
NAPP, also hold for its co-nondeterministic version.

Next, we show that NAPP and prAM are intimately related in the following way. The
main tool we use to this purpose is the subgraph of a function. Recall that for a real valued
function f : {0,1}* — [0, 1], its subgraph is defined as being the set of encoded triples (1*, z, %)
such that y < f(z) within distance 1/k. We prove that computing the subgraph of the function
fxapp (where fxapp, on input a Boolean nondeterministic circuit, outputs its probability of
acceptance), which is NAPP-complete, together with the promise that all queries "y < f(z)?”
made to subgraph(fxapp) have the property that the distance between f(z) and y is either " very
small” | or "rather large”, is prAM complete. Then we prove that computing the subgraph of
any function in NAPP together with the same promise, is in prAM. This yields a mapping
from NAPP to prAM, mapping each function in NAPP to a promise problem in prAM, and
preserving completeness, i.e. mapping complete functions to complete promise problems.

For the opposite direction, we first prove that, for any real-valued function f : {0,1}* — [0, 1],
such that the problem of computing its subgraph (together with the same promise as above) is
in prAM; f is in NAPP. Second, we construct a mapping from prAM to NAPP, that maps
every promise problem to a real-valued function, and that preserves completeness.

Finally we prove that for deterministic computations, oracle access to prAM is the same as
oracle access to NAPP, i.e. PPrAM — pNAPP,

2 Preliminaries

Since polynomial time Turing machines can only approximate real numbers, we need the follow-
ing definition of approximate equality. Let a,b,e € [0,1] be real numbers. We say that a and b
are € — equal (denoted a = b) if d(a,b) := |a — b < e.

As usual, a function f : {0,1}* — [0,1], mapping strings to real numbers, is defined as a

family of functions f = {fn}n>0: {0,1}* — [0, 1], where f, : {0,1}" — [0,1].

Definition 1 A family f = {fn}n>0 : {0,1}* — [0,1] of real-valued functions is in NAP (for
nondeterministic AP), if there exists a nondeterministic polynomial-time transducer M, and a
polynomial p(k,n) such that, Vk,n € N,Vz € {0,1}",

1
max M@ z,y) £ fo(z
ye{0,1}p(k,m) (y) = falz),

where the max is taken over all nondeterministic choices y of M. For simplicity, we will denote
MaX, ¢ g 1}p(kn) ; by max,, where it is implicit that y is a witness of size polynomial in k and n.

Definition 2 A family f = {fn}n>0 : {0,1}* — [0, 1] of real-valued functions is in NAPP, if
there exists a probabilistic, nondeterministic polynomial-time transducer M, and a polynomial
q(k,n) such that, Yk,n € N,Vz € {0,1}",

1
— 3
k k
= > —
we{OEf‘I(’“’")[ijMw(l axay) fn(x)] =k

where the max is taken over all nondeterministic choices y of M.

For simplicity we will denote Pr, . {0,1}a(km) 5 by Pr,, where it is implicit that w is a random
string of size polynomial in k£ and n.

It is not hard to see that NP is exactly the subset of all Boolean functions in NAP, and
AM is exactly the subset of all Boolean functions in NAPP.

Theorem 1

1. NP is exactly the subset of all Boolean functions in NAP.

2. AM is exactly the subset of all Boolean functions in NAPP.

Proof

We prove the second statement. It is easy to see that for a language L in AM, its characteris-
tic function xz, is in NAPP. For the other direction, let f = {f,}n>0 : {0,1}* — {0,1} be a fam-
ily of Boolean functions in NAPP. Then there is a probabilistic, nondeterministic transducer

1
M such that, Vk,n € N,Vz € {0,1}", Pr,[max, M,(1%,z,y) £ f.(2)] > %. Fix k£ = 3, thus

Pry[max, My, (1%, z,y) = fu(z)] > %, and since f is Boolean, Pr,,[3y M, (1%, z,y) = fu(z)] > %,
and therefore L(M) € AM; where L(M) denotes the language accepted by M.

a

To define completeness we need the following definitions of reductions. We say that f is
polynomially many-one approximately reducible to g, denoted f <h g, if there is a polynomial

~
~

family of reductions r,,x : {1}*¥ x {0,1}" — {0,1}™%") for some polynomial m, such that,
Vk,n € N,Vz € {0,1}",

1
fn(z) £ gm(rn,k(lk,x)).

It is easy to check that NAPP is closed under polynomial approximate many-one reduction.

There is also a Turing reduction notion for functions. Let us first give the definition of an oracle

for a NAPP function. An oracle for a function f € NAPP is queried (1¥,z) and answers v,
1/k

where y is a dyadic rational number of size polynomial in k, and such that y = f(z). For two
functions f and g in NAPP, f is polynomially approximately Turing reducible to g, denoted
f é‘% g, if there is a polynomial time oracle Turing machine M, with oracle access to g, such
that, Vk,n € N,Vz € {0,1}",
1/k
f(@) "L Motk).

In order to connect functions to languages, we need the subgraph of a real valued function.

Let f ={fu}n>0:{0,1}* —= [0, 1] be a real valued function. We define its subgraph by,

subgr(f) = {15, 2,9)|y < F(@)).

Let us recall some definitions about prAM. The following definitions are from Grollmann
and Selman, see [GS88] for more details. Formally, a promise problem is a pair of predicates
(@, R), where @ is the promise, and R is the property. A Turing machine solves (Q, R) if

Vz[Q(z) — [M(z) halts A [M accepts z <> R(z)]]].
A solution of (@, R) is a language A such that,
vz[Q(z) = A(z) = R(z)]

prAM is the class of all promise problems (@, R), that have a solution in AM (on instances
where the promise is satisfied).

In order to define complete problems for prBPP we need to define many-one reductions for
promise classes.

Definition 3 We say that a promise problem (Q, R) is uniformly many-one reducible in poly-
nomial time to a promise problem (S,T), denoted (Q,R) <k (S,T), if there ezists a partial
polynomial time computable function red : {z € {0,1}*| Q(z)} — {0,1}* in FP, such that for
every solution A of (S,T), the set B defined by: B(z) = A(red(z)) is a solution of (Q, R).

In order to connect prAM to NAPP we need the following promise problem. Let f be a
function in NAPP. Consider the following promise problem (Py, subgr(f)) where,

1 3
Pr(1¥,z,y) = 1iffd(z,y) < 5 or > o,
i.e. we promise that all queries to subgr(f) whether y < f(z) we make, are such that the
distance between y and f(z) is either very small, or rather large. For simplicity, we will denote

Py, by P.

3 Error probability reduction

Similarly to the case of AM, the error probability in Definition 2 can range from % + m to

1 —279k+7) for any polynomials p and gq.

Theorem 2 Let f = {fn}n>0 : {0,1}* = [0,1] be a family of real-valued functions such that,
there exists a probabilistic, nondeterministic transducer M and a polynomial p, such that Vk,n €
N, vz € {0,1}",
1 1 1
P M, (1* £ >4 ——
wr[m;}‘X ’IU("T’y) fn(.T)] =9 + p(k +’I’L)’

then for any polynomial q, there exists a probabilistic, nondeterministic transducer N, such that

Vk,n € N,Vz € {0,1}",
1
Primax My, (1%, z,y) £ fu(x)] > 1 — 2790+,
wooy

Proof
Let z € {0,1}" and k € N be fixed. Consider ¢ = # Consider the following probabilistic,
nondeterministic transducer N. On input (1%, z),

1. Choose wy, ... ,wy, at random.

2. Nondeterministically guess y1,... ,Ym-

13k

3. Simulate My, (13%,z,y;) fori = 1,... ,m, denote by ; the output of M on input (13*, z,v;),

with random seed w;.

4. Let v = 2e. Let us divide the interval [0, 1] in % subintervals, of length at most . Let
80,--. ,8; be the endpoints of those subintervals. Define

s maxi<j<i{s;|[s; — 2¢,5; +2€¢] N[0, 1] contains more than F of the a;’s} (1)
~ | 0 if none such j exists

Finally N outputs s.
For a random string w;, denote by y¢,... , ¢ the nondeterministic choices for M on input

(13, z), and by of, ... , o} the outputs of M, (13, x,y;) for j =1,...,t. Consider the following
random variables X; where ¢ =1,... ,m.

X;=1if o} < fu(w) for [=1,... .1, and F such that, o}, < f,(z).

Xi,...,X,, are independent random variables such that Pr[X; = 1] = p > 1 + m.
Consider X =) 7", X;. We have x(X) = mp. Let § = m, we have: (1—48)u > (%—I—m)

Choosing m > 4p*(k +n)q(k + n), and using Chernoff bounds, we have Pr[X > (1 —§)u] > 1 —
2-4(k+n) We prove that when X > (1—0)u, N computes a value %—equal to fn(z). Suppose that
more than m(% + m) > 7 of the X;’s are equal to 1, i.e. at the end of a computation path

5

Yyl -.-y" of N, a majority of], ... " are in the interval I = [f,(z) —€; fu(z)+€¢]N[0,1] (A),

or a majority of aj ... are < fn(z) (B).

Case (A): Since there exists a point 5 = s; such that |5 — f,(z)| < 3 = ¢, the interval [§ —2¢; 54
2¢] N [0,1] contains more than % of o] ...o" since it contains I as a subinterval. Hence the
output of N(l’“,:l:,yll1 ...y) satisfies (1). Conversely let 5§ = s; for a certain j € {1,...,l} be

m

such that the interval J = [y — 2¢;y + 2¢] N [0, 1] contains more than % of oj ...o[". Then
J must intersect I, otherwise I would contain less than 3 of alll ...apr. Therefore s 3 fn(x),
1
hence 5 £ f,(z).
1
Similarly, for case (B), we have that the output of N (1%, z, ylll TSR % fn(z). Moreover case
(A) happens at least once.

4 A complete function

Similarly to the case of APP, there is a natural complete function for NAPP, under many-one
approximate reduction. This is believed not to be true for AM, because of its semantic nature.
Consider the following family of functions fxapp = {fn}n>0 : {0,1}* — [0,1], which takes on

input a nondeterministic circuit C, and outputs its acceptance probability, i.e. fxapp(C) =
Pr,[C(w) = 1], which is equal to Pr,[Jy C(w,y) = 1].
The following Theorem states that the function fxapp is NAPP-complete.

Theorem 3 The function fnapp is NAPP complete, under many-one approximate reduction.

Proof
The proof is divided in two parts.

Part 1. fyapp is NAPP-hard.

Let g = {gn}n>0 : {0,1}* — [0,1] be any function in NAPP, and let M be its transducer,
ie.

Pry,[max, My, (1%, z,y) £ g,(z)] > 1 —279*+7) (1), which implies

1
£
1
k

Pry,[max, My,(1%,z,y) < gn(z)] > 1 — 279K+ (2).

Consider the following nondeterministic, probabilistic transducer M. On input (1*, z),

1. Choose w at random.

2. Guess y nondeterministically.

3. Compute a, the output of M, (1%, 2, y).

4. Output 1 with probability oy, and 0 with probability 1 — a,.

By encoding the transducer M into a Boolean circuit, we obtain the following nondetermin-
istic circuit C = Cj 4, where C(w,y) = M, (1%, z,y). Thus,

|1

Pry,[C(w) = 1] = Pry[max, C(w,y) = 1] = E,[max, Mw(l%,m,y)] gn ().
Part 2. fnapp € NAPP.

Consider the following probabilistic, nondeterministic transducer M for fxapp. Input (1%, C),
where C' is a nondeterministic circuit.

1. Choose wy, ... ,wy, at random.
2. Nondeterministically guess y1,... ,Ym.-
3. Compute «;, where o; = C(wj,y;), for i =1,2,... ,m.

4. Output the probability - 37 ;.

Let p = Pry[3y C(w,y) = 1]. Consider the following random variables X; fori =1,2,... ,m.

. 1 ifw, €A
XZ_{ 0 ifw; €R

Where A = {w|3y C(w,y) =1} and R = {w|Vy C(w,y) = 0}.
We have Pr[X; = 1] = p. By letting X = Y ", X;,we have p = E(X) = mp. By using
Chernoff bounds, we get:

Pryg,.. wn X < (11— %)p]), and

Prwl,---,wm[X > (]‘ + %)p]

We prove that M computes fxapp correctly when (1 — %)P <X<(1+ %)p

Therefore suppose 4 holds. Without loss of generality, we can suppose w1, ... ,w; are in A,
and wyi1,... , Wy, are in R. Let §1,... ,%; be witnesses for wy,... ,w;, and let §yy1,... ,Ym be
any nondeterministic choices. We call 41, ... ,yn a good path. We show that the value computed
on any path of M is %—smaller than the value computed on a good path. But this is clear: let
Y1,--- ,Ym be any path of M, so we have that C(w;, ;) > C(w;,y;) fori = 1,... ,m. Moreover,
when 4 holds, there exists at least one good path for M. This ends the proof.

|3 %Yz

N
~

< 2%
< 296

a

5 Random co-nondeterministic functions

We define a co-nondeterministic version of APP, which contains BPcoNP.

We say that a family f = {fn}n>0:{0,1}* — [0,1] of real-valued functions is in coNAPP,
if there exists a probabilistic, nondeterministic polynomial-time transducer M such that, Vk,n €
N,vVz € {0,1}",

1
Prfmin My, (1%, 2,y) £ fu(a)] > °,
wo oy 4

7

where the min is taken over all nondeterministic choices y of M.
All the results that hold for NAPP also hold for coNAPP. More precisely:

Theorem 4 BPcolNP is exactly the subset of all Boolean functions in coNAPP.

The proof is similar to that of Theorem 1.

Error probability can be reduced exponentially for coNAPP functions, and Theorem 2 holds
for coNAPP.

For the complete function for coNAPP, things change slightly. Consider the following family
of functions feonapPP = {fn}n>0 : {0,1}* — [0, 1], which takes on input a co-nondeterministic
circuit C, and outputs its acceptance probability, i.e. feonapp(C) = Pry[C(w) = 1], which is
equal to Pr,[Vy C(w,y) = 1].

Again the function feonapp is cONAPP-complete.

Theorem 5 The function feonAPP is CONAPP-complete, under many-one aprorimate reduc-
tion.

The proof is similar to that of Theorem 3. The complete functions fnapp and feonapp are
related by the following formula.

Lemma 1 Let C be a nondeterministic circuit, and let C' be the nondeterministic circuit com-
puting —=C'. Then,
feoxarp(C) =1 — fnarp(C').

Proof
feonapp(C) = Pry[VyC(w,y) = 1] = 1 — Pry[FyC(w,y) = 0] = 1 — Pry,[By-C(w,y) = 1] =
1 — fnapp(C')

6 A mapping between promise-AM and NAPP

The following result states that the problem of computing the subgraph of the NAPP-complete
function fxapp, together with a promise on the distance between the querries and the value of the
function, is prAM-complete. This establishes a connection between random nondeterministic
real functions and prAM.

Theorem 6 (P, subgr(fxapp)) is prAM-complete under <ph, reduction.

Proof
i) (P, subgr(fnapp)) € prAM
Consider fxapp € NAPP and let M be a probabilistic nondeterministic polynomial time

transducer witnessing this fact. We construct a probabilistic nondeterministic polynomial Turing
1/k
machine N, solving (P, subgr(fxapp)). On input (1%,z,2), (N has to determine whether z <

fnapp(x)),

1. Choose w at random.
2. Nondeterministically guess y.

3. Simulate M, (1%¥,z,y); denote its output by 2.

1/k
4. Accept iff z < Z.

It is clear that first N has an AM-like behaviour inside the promise. Second it is clear that
N decides subgr(fxapp) correctly inside the promise; indeed by observing Figure 1 we see that
wherever y and ¢ are in the interval [fxapp(z) — ﬁ, fnapp(z) + ﬁ], N accepts (1%, z,v) inside
the interval [fxapp(z) — %, fxapp(z) + QL], with high probability, and rejects (1¥,z,y) outside
the interval [fnapp (%) — 5, fNaPP(2) + 5], with high probability.

3
I =

0] f(z) y

= zone where the promise holds

Figure 1: The intervall [0, 1]

ii) (P, subgr(fxapp)) is prAM-hard under <}, reduction.

Let (Q, R) € prAM be any promise problem, and let M be a probabilistic nondeterministic
Turing machine solving it. We construct a polynomial time reduction 7 : {0,1}* — {0,1}*. Let
z € {0,1}". Let C be the nondeterministic circuit that on input (w,y) computes M, (z,y).
Define r(z) = (119,C,0.5). It is easy to see that r is a polynomial time many-one reduction
from (Q, R) to (P, subgr(fxaprp))-

O

The proof of Theorem 6 can be applied to any function f € prAM, thus yielding the
following result.

Theorem 7 Let f be in NAPP. Then (P, subgr(f)) € prAM.

Theorem 6 gives a mapping ¥ from NAPP to prAM, associating to each real-valued func-
tion in NAPP a promise problem in prAM, and preserving completeness, i.e. mapping com-
plete function onto complete promise problems (see Theorem 9). The following result gives an
inverse for W.

Theorem 8 Let f:{0,1}* — [0, 1] be a real valued function, such that (P, subgr(f)) € prAM.
Then f is in NAPP.

Proof

By hypothesis, there is a solution A which decides subgr(f) correctly inside the promise,
moreover A € prAM inside the promise, i.e. whenever d(z, f(z)) < 5 or > 2. Let N
be a probabilistic nondeterministic Turing machine deciding A. We construct the following

probabilistic nondeterministic polynomial time transducer M for f. On input: (1%, z),

e Divide the interval [0, 1] into % subintervals of size at most % Denote by yg, ... ,y; the
endpoints.

e Nondeterministically guess the largest y; (denoted by y;,) such that (1%,1,%) € A.
e Output y;,.

Suppose f(z) € [Yig, Yio+1)- Wlog d(f(z),vi,) < 3 - % = ﬁ Thanks to the promise, A

is correct on (1%,:0, Vi,), and therefore at least one nondeterministic branch of M outputs the
value y;,, with high probability, and d(y;,, f(z)) < % Let us prove that with high probability,

1/k
the bigest value over all nondeterministic branches of M, is < f(z). Thanks to the promise,
A’s error zone is smaller than 3 - 2 = 2. Therefore any falsely accepted input ((1%,:5,%)) of

A, must satisfy d(f(z),y;) < % Therefore the largest value over all nondeterministic branches

1/k
of M,is < f(z), with high probability.

Let us construct two mappings between NAPP and prAM.
Consider the following two mappings

v { NAPP — prAM { prAM — NAPP
" f e (P, subgr(f)) " (Q,R) = fo,r

Where fq g is defined as follows. Let {M;};>; be an enumeration of all probabilistic nonde-
terministic Turing machines solving (@, R). Let M’ be the first (in lexicographical order). We
define fg pr(z) = Pry,[M,,(z) = 1] The following result states that the two mappings ® and ¥
preserve completeness.

Theorem 9 ¥ maps every NAPP éﬁl—complete function f to a prAM <},-complete problem
(P, subgr(f)), and ® maps every prAM <h,complete problem (Q,R) to a NAPP <h.-complete
function fg g.

Proof

For ¥ the result immediately follows from Theorem 6. The Proof for ® follows.

First we prove that ® maps (P, subgr(fxapp)) to a NAPP é‘T’-complete function. Consider
h = ®(P, subgr(fnapp)). Let M be the first (in lexicographical order) probabilistic Turing
machine solving (P, subgr(fxapp)). We have h(1%,z,y) = Pr[M, (1%, 2,y) = 1].

10

Claim: h is NAPP h-complete.

Proof (of Claim). Let g € NAPP be any real-valued function, and let N be a probabilistic
polynomial Turing machine witnessing this fact. We construct a deterministic polynomial time
oracle Turing machine K, such that K computes g. Here is a description of K* on input (1%, z).

1

Let red : {0,1}* — {0,1}* be a reduction in FP such that g(z) Z fxapp(red(z))

¢ Divide the interval [0,1] into subintervals of size at most % Denote yo,y1,... ,y: the
endpoints of those subintervals.

13k:

e For i = 0,1,...,t, querry h(1°*,red(z),y;) with precision %. Output the largest y;

satisfying

h(13k,red(rc),yi)2 —11—0 (1).

= w

Let’s prove the correctness of K”. First we show that there is a y; satsfying (1). Indeed we can
suppose wlog that fxapp(red(z)) € [y;,yj+1]. Therefore wlog d(fxapp(red(z)),y;) < é. But
thanks to the promise, we know that M decides (1%, red(z), y;) correctly if d(fyapp(red(z)),y;) <

1/k
% . %, which is true. Second we prove that the largest y; satisfying (1) is such that y; < g(z).

Thanks to the promise, the error zone is smaller than % . ﬁ = ﬁ Therefore the largest y;
that K" might output is y; 2, which is still correct, since d(fxapp(red(z)),y;t+2) < 3¢, which
guarantees d(g(z),yj+2) < 1.

Second we prove that & preserves completeness. So let (S,7) be any prAM-complete
language. Therefore let reds be a reduction from (P, subgr(fxapp)) to (S,T). Let N be the
first (in lexicographical order) probabilistic polynomial Turing machine that solves (S,T). The
following probabilistic polynomial Turing machine M solves (P, subgr(fxapp)). M on input z

computes and outputs N(redz(z)). The end of the proof is similar to the first case.

a

7 Querries to prAM can be answered with oracle access to
NAPP

Let us prove that for deterministic polynomial time computations, oracle access to prAM is
the same as oracle access to NAPP, coNAPP or prBPcoNP.

Theorem 10 PprAM — PNAPP — PcoNAPP — PprBPcoNP'

Proof

First we prove the D inclusion (for the first equality). Let L be any language in and
let M be a deterministic polynomial time oracle machine, with oracle access to the complete
function fxapp, deciding L. We construct a deterministic polynomial time oracle machine N,
with oracle access to (P, subgr(fxapp)), deciding L. On input z, N(Psubar(/narp)) simulates
M/~aPP(z). Suppose that during its computation, M/NAPP querries the string (1¥,C) to its

NAPP
P ;

11

oracle (i.e. asking fyxapp(C) ik 7). Then divide the interval [0, 1] into subintervals of size at

most % Denote by yo,vy1,- .- ,y: the endpoints of those subintervals. Querry the oracle whether
(1%,0, vi) € (P, subgr(fxapp)), for ¢ = 0,1,... ,t. Denote by y;, the largest y; accepted by
the oracle. Answer M/NAPP’s querry (1%, C) with y;,. This ends the description of N on input
z. Let us prove that N answers M’s querries correctly. Suppose fxapp(C) € [y;,y;+1] for a
certain j. Wlog we have d(y;, fxarp(C)) < % Therefore y; will be accepted by N’s oracle.
Moreover suppose vy, is the largest y; accepted by N’s oracle. The promise P gurantess that
d(yto, fuarp(C)) < 3- % = %

Second we prove the C inclusion. Let L be any language in PPAM and let M be a
deterministic polynomial time oracle machine, with oracle access to prAM, deciding it. We
construct a deterministic polynomial time oracle machine N, with oracle access to the complete
function fxapp, deciding L. On input z, N/NAPP gimulates MP™AM(z). Suppose MPrAM

?

querries wether z € (Q, R) to its oracle, where (Q, R) € prAM. Since (Q, R) € prAM, let K
be a probabilistic nondeterministic polynomial Turing machine witnessing it. N constructs a
nondeterministic circuit C' that computes K on input z (i.e. C(w,y) = Ky(2,y)). Next, N asks
its oracle for fxapp, the value of fxapp(C), with precision %. Finally N answers M’s querry z
with "yes” iff fxapp(C) > % — %. This ends the description of N on input z. It is clear that N
answers M’s querries correctly inside the corresponding promises.

The second equality follows from Lemma 1. The last holds because PPAM — pprBPcoNP

|

References

[BDGYI0] J. L. Balcazar, J. Diaz, and J. Gabarro. Structural Complezity II. EATCS Monographs
on Theorical Computer Science Volume 22, Springer Verlag, 1990.

[BDGY5] J. L. Balcazar, J. Diaz, and J. Gabarro. Structural Complezity I. EATCS Monographs
on Theorical Computer Science Volume 11, Springer Verlag, 1995.

[GS88] J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosystems.
Siam Journal on Computing, 17(2):309-335, April 1988.

[KF82] K. Ko and H. Friedman. Computational complexity of real functions. Theorical
Computer Science, pages 20:323-352, 1982.

[Ko91] K. Ko. Complezity Theory of Real functions. Birkhduser, Boston, 1991.

[KRCO00] V. Kabanets, C. Rackoff, and S. A. Cook. Efficiently approximable real-valued func-
tions. Technical Report 00-034, Electronic Colloquium on Computational Complexity,
April 2000.

[Mos01] P. Moser. P(APP) = P(prBPP). Technical Report 01-068, Electronic Colloquium on
Computational Complexity, October 2001.

12

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
New York, 1995.

13

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

