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The rank of a matrix has been used a number of times to prove lower bounds
on various types of complexity. In particular it has been used for the size
of monotone formulas and monotone span programs. In most cases that this
approach was used, there is not a single matrix associated with the function in
question, but one has to minimize the rank over a set of matrices (eg., [8, 4]).
Usually, this makes the techniques very difficult to apply. In this note we define
a certain combinatorial structure that enables us to use the rank lower bound
directly. We shall not prove new lower bound, we only show that some previous
lower bounds on monotone span programs can be simply derived using this
structure. It is open whether our approach can produce better lower bounds.

A combinatorial structure

We shall study the following type of set systems on [n] = {1,...,n}. Aisa
family of subsets of [n], B is a family of k-tuples of subsets of [n] and they
satisfy:

(*) for every a € A and every (b1,...,bx) € B, a has a nonempty intersection
with exactly one b;.

We will be mainly concerned with k& = 2.

Monotone depth

The depth (monotone and general) has been characterized by the communica-
tion complexity of Karchmer-Wigderson (KW) game [6]. Computing the com-
munication complexity of the KW game in general is a hard problem, because
what is computed in the game is not a function, but only a relation. On the
other hand, computing the (two party) communication complexity of a function
is usually not difficult, thus the task of proving lower bounds can be considerably
simplified, if one could replace the relation in the KW game by a function.
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Let us consider the case of monotone circuit depth. The KW game for a
monotone function f is defined as follows. One player gets a minterm of f,
the other gets a maxterm of f. Think of the min- and maxterms as subsets
of [n]. The goal of the players is to find an ¢ € [n] in the intersection of the
given minterm and the given maxterm. In general we know that each minterm
intersects each maxterm, but there may be more than one element in the inter-
section. To require that the intersection be of size one is too restrictive. We do
not know whether under this restriction one can prove nontrivial lower bounds,
but it is surely not good for our approach based on the rank. Thus, instead,
assume that we can divide each maxterm into two parts (more generally into
k parts) so that every minterm intersects exactly one of the two parts of each
maxterm. Then, instead of asking the players to find an element in the in-
tersection, we will require only to decide in which part they intersect. Thus
we have reduced the lower bound on the KW game to a lower bound on the
communication complexity of a function.

We can further relax the condition by considering only certain minterms and
maxterms. In fact, it is better not to look for a function with such a property,
but rather for a combinatorial structure defined above. Below we shall show
that there are structures for which this approach works, ie., for which one can
prove sufficiently large lower bounds on communication complexity. For now we
only mention that one can use the rank lower bound [7] on the communication
complexity.

Let A, B satisfy (*). Let 21,...,2r € F be arbitrary elements of a field F.
Define a matrix R = Ra B,z = {r, 3}, where the indices of rows, resp. columns
range over the elements of A resp. of B, by

o5 = 2i where i is such that anb; #0
Thus we have shown:

Theorem 1 Suppose a monotone circuit accepts all a € A and rejects all sets
[n]\ b1 U...Ubg, for b€ B. Then it has depth at least logrank R.

One can check that, in fact, rank R is a lower bound on the monotone formula
size. However this will also follow from the lower bounds on monotone span
programs below using well-known simulations.

Monotone span programs
Let a field F be fixed. A monotone span program for n variable monotone
functions is a matrix M and a row vector vy such that

1. vg # 0;

2. each row is labeled by some [ € [n].

Inputs for a boolean function are {0,1}", instead we shall use subsets of [n]. We
say that the monotone span program accepts a subset a C [n], if there exists a
vector € such that

&M = o,



and € is nonzero only on row indexed by [ € a.
The size of the monotone span program is the number of rows of M.

Theorem 2 Let A, B satisfy (*). Suppose a monotone span program over F
accepts all a € A and rejects all sets [n] \ by U...U by, for b € B. Then it has
size at least rank R.

Proof. Let the monotone span program be given by a matrix M and a target
vector Ug. Let m be the number of rows of M, which is the size of the span
program.

For every a € A, let &, be a vector that witnesses that a is accepted, which
means that &M = @. Let b € B. Since [n]\ by U...U b is not accepted,
no linear combination of vectors of M gives ¢fy. Hence there exists a vector 3
such that 5 = 0 for every row vector @ of M that is labeled by an element
of [n]\ by U...Uby and G+ = 1. Vector d; will be defined by modifying the
vector My as follows. For every i = 1,. ..,k multiply the elements of Mdj; that
correspond to the rows labeled by elements of b; by the field element z;; note
that all other elements are 0. We claim that

Tap = Cody. (1)

Indeed, let ¢ be such that a N b; # (). Then the only coordinates on which both
¢, and dy are nonzero are those that are labeled by elements of b;. Hence

N LA Sl =
Cy dy = 2;C;y My = 20y Uy = 2;.

This proves (1). Since R is a matrix of scalar products of vectors of dimension
m, rank M < m.

Remarks. 1. Using k > 2 we can get only little gain over the case k = 2. For
every i = 1,...,k let B; be the set of pairs (bi,U;, b;) for (b1,...,bx) € B.
Assign z; to the first set and 0 to the second and let R; be the matrix for
A,B;,z;. Then R= Ry + ...+ Ry, hence rank R < kmax; rank R;.

2. Let t be an upper bound on the size of intersections aNb;. Then rank M <
kn'tl. By the remark above, we only need to bound rank R; by n*tl. Let
S be the matrix {Xg X;}a5, Where a € A,b € B and xx denotes the 0-1
characteristic vector of a subset X C [n]. Since S is a matrix of scalar products
of vectors of length n, its rank is at most n. Let f(z) be the polynomial of
degree t + 1 such that f(0) =0 and f(u) = z; foru = 1,...,t. Then the matrix

Ri = {f(XaXb:)} a5 hence

rank R; < (rank §)*! < ptt.



Constructions

Products. Given two families A, B on [n] and A’, B’ on [m], one can take the
product of them A x A’ B x B’ on [n] x [m] defined by

AxA'={axd;aecA, deAl

Bx B' = {(bl X b;’)ie[k],je[k:’]; (bl,. ..,bk) S B, ( ,1,.. .y ;c’) € B’}

Furthermore, if z; and z; are the field elements assigned to b; and b;-, then we
assign z;2; to b; xb. One can easily check that the product satisfies condition (*)
and the associated matrix is the tensor product of the matrices, hence its rank
is the product of the ranks of these matrices. Thus one can get infinitely many
examples starting from one. However, one cannot get superpolynomial bounds
in this way.

When some field elements assigned to b;’s are the same, we can unite those
sets without changing the corresponding matrix. Hence the product does not
have to increase the parameter k. For instance, if we use only £1, then we can

keep k = 2.

Geometric constructions. Let V be a set of size > 2k — 1. Let W = (Z)
(the set of k-element subsets of V'). Define

A={()k(>; Xe <2kv_ 1>},

5= (1), (2) 72 paniion o ).

Condition (*) is satisfied because exactly one of the following two statements is
true X NY >k, XN Z > k. The associated matrix (take z; = 0,25 = 1) has
almost full rank, but we cannot get large bounds, since |4] < [W|2.

This construction can be interpreted geometrically: think of the elements
of A being k-dimensional faces of a simplex and elements of B being certain
pairs of disjoint faces. Similar construction works with the octahedron and the
dodecahedron.

The bipartite graph construction We shall show that our method gener-
alizes the method used in [2, 4]. Hence all lower bounds that they get can be
obtained also by our method. Still, it may be interesting to prove their best
lower bound directly using our criterion.

Let G be a bipartite graph on U x V, |U| = |V| = n/2. We shall say it
satisfies the isolated neighbor condition for k, if for every X,Y disjoint subsets
of U of size at most k there exists a vertex v € V such that every vertex u € X
is connected with v and no vertex u € Y is connected with v. For a bipartite
graph satisfying this condition we define A to be the set of sets a C U UV such
that [a N U| = k and a NV is the set of all vertices that are joined to every
vertex of aNU, ie., maximal complete bipartite graph with the part in U of size



k, and B to be the set of pairs (b1, b2) such that by C U, |b1| < k and b consists
of all vertices of V' that are not joined to any vertex of b;. Since a induces a
complete bipartite graph and by, b2 an empty graph, a cannot intersect both by
and be. If anb; = 0, then the condition above guarantees that aNby # @. Thus
A, B satisfy (*). Take z; = 0,29 = 1. Then the matrix R4, g > has full rank.
This is because R4, p, > is the well-known disjointness matrix D(n/2, k)'eg. [5]
or a more general Lemma 1 below. Thus we get a lower bound ("/?). There are
several constructions that achieve k = Q(logn), see [1], the most popular being
the Paley graph, hence we obtain a lower bound of the form n®(e&™),

Relation to self-avoiding families

A family A of subsets of V is called self-avoiding (cf. [2]) if, no two elements of
A are comparable by inclusion and with each a € A, one can associate a subset
T(a) C a such that for every a,a’ € A,

1. if T(a) C @' then a = d,

2. for every y C T'(a),

a' ,@ U a" \y

a" € A,a"" Ny#0

Let us define
S(y) = U a”.

a” €A, 0" Ny#0

Thus the second condition says that no a’ is contained in S(y) \ y. In [3] they
proved that every monotone span program that computes a monotone boolean
function the minterms of which form a self-avoiding family has size at least
the size of the family. Their proof actually gives such a lower bound for every
monotone span program that accepts all sets a € A and rejects all sets of the
form V' \ S(y) for y C T'(a), a € A. We shall show that this can also be derived
using our criterion, thus proving that ours is at least as general as theirs.

We take A as it stands and define B as the set of pairs (b, bs) such that for
some a € A, by CT(a) and by = V' \ S(b1). Let such a pair (b1, b2) be given and
let a' € A be arbitrary. If a’ Nb; # 0, then a’ C S(b1), hence a’ Nby = . Thus
a' intersects at most one of the sets. If '’ Nby = (0, then a’ N by # 0, because
otherwise a’ C S(b1). Thus also a’ intersects at least one of the sets, hence we
have condition (*). Take z; = 0,22 = 1, then the matrix R4 g ; has full rank
by the following lemma (implicit in [3]).

Lemma 1 Let A be a family of subsets that are incomparable by inclusion. Let
M be the matriz such that rows are indexed by the elements of A and columns
are indexed by sets b such that b C a for some a C A and the entry corresponding

IRecall that this is the matrix in which rows are indexed by k—element subsets of [n] and
columns are indexed by at most k element subsets and the corresponding entry is 1 if the sets
are disjoint and 0 otherwise.



to a and b is 1 if they have empty intersection and 0 otherwise. Then M has
full rank (over any field).

Proof. Recall that D(n), the full disjointness matrix in which we take all subsets
of [n], has full rank (it can be proven easily by induction on n). Now consider
M. Suppose that a row with index a can be expressed as a linear combination
of others. Take the submatrix N of M consisting of columns indexed by b C a.
Clearly, the rows of N are rows of D(]al|), some of them repeated. But the row
indexed by a occurs in N only once, so it cannot be a linear combination of
others.

Hence the size of every monotone span program for that accepts all sets
a € A and rejects all sets of the form V' \ S(y) for y C T'(a), a € A is at least
rank R4 gz = |A|.

Open problem

Does there exist sets A, B satisfying (*) such that the rank of the associated
matrix is larger than n©@(ogn)?
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