Electronic Collogquium on Computational Complexity, Report No. 9 (2002)

On determinism versus unambiquous nondeterminism
for decision trees

Petr Savicky *

Abstract

Let f be a Boolean function. Let N(f) = dnf(f)+dnf(—f) be the sum
of the minimum number of monomials in a disjunctive normal form for f
and —f. Let p(f) be the minimum size of a partition of the Boolean cube
into disjoint subcubes such that f is constant on each of the subcubes.
Let dt(f) be the minimum size (number of leaves) of a decision tree for f.
Clearly, dt(f) > p(f) > N(f). It is known that dt(f) can be at most
quasipolynomially larger than N(f) and a quasipolynomial separation
between p(f) and N(f) for a sequence of functions f is known. We present
a quasipolynomial separation between dt(f) and p(f) for another sequence
of functions f.

1 Introduction

Let us consider binary decision trees, which test a single Boolean variable in each
internal node. When the computation path reaches a leaf, the label assigned
to the leaf is the value of the computed function. Since we consider Boolean
functions, the leaves may be labeled by 0 or 1. The size of the tree is measured
by the number of its leaves. Let dt(f) be the minimum size of a deterministic
decision tree for f.

A nondeterministic decision tree is a decision tree, which can possibly
contain nondeterministic nodes with an arbitrary number of successors. If a
computation reaches such a node, it may continue into any of its successors.
An input is accepted, if there is at least one accepting computation path for
the input, i.e. a computation ending in a 1-leaf. By a co-nondeterministic tree
for f, we understand a nondeterministic tree for —f.

The size of a nondeterministic tree is measured by the number of 1-leaves.
Clearly, the minimal size of a nondeterministic tree for a Boolean function is
equal to the minimum number of monomials in an equivalent disjunctive normal
form formula. Let dnf(f) be the minimum number of monomials in a disjunctive
normal form (dnf) for f and let N(f) = dnf(f) + dnf(=f).

Clearly, the collection of all accepting resp. rejecting paths in a decision
tree for a function f determines a dnf for f resp. —f. Hence, N(f) < dt(f).

*Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod
vodérenskou vézi 2, 182 07 Praha 8, Czech Republic. The research was supported by
the Ministry of Education of the Czech Republic - The research and development project
LNO00AO056 “Institute of Theoretical Computer Science - ITI”.

ISSN 1433-8092

The following theorem shows that the difference between dt(f) and N(f) can
be at most quasipolynomial.

Theorem 1.1 (Ehrenfeucht, Hausler, [1]) Let f be a function of n
variables. Then dt(f) < 200ogn log” N(f)

The next theorem shows that a quasipolynomial separation may indeed be
achieved.

Theorem 1.2 (Jukna et al., [2]) There is a sequence of Boolean functions
fi with unbounded N(f;) such that dt(f;) > 2%(log” N(f))

Let us denote, in the context of decision tree complexity, the
classes of Boolean functions representable by polynomial size deterministic,
nondeterministic and co-nondeterministic decision trees by P, NP and co-NP,
respectively. Using this notation, Theorem 1.2 yields a separation between P
and NP N co-NP in the context of decision trees.

An unambiquous nondeterministic decision tree is a nondeterministic tree
with at most one accepting path for every input. Such a tree corresponds to a
dnf such that each input is accepted by at most one monomial. Let us call such
a dnf an unambiquous dnf. Let udnf(f) be the minimum number of monomials
in an unambiquous dnf for f.

Definition 1.3 For every Boolean function f, let p(f) = udnf(f) + udnf(—f).

Note that p(f) is also the minimum size of a partition of the cube {0,1}"
into disjoint subcubes such that f is constant on each of these subcubes.
Every decision tree for f determines such a partition of the cube into subcubes
corresponding to the leaves of the tree. Hence, we have dt(f) > p(f) > N(f).

By inspecting the proof of Theorem 1.2 in [2], one can easily see that
dt(f;) > p(f;) > 2208° N(/1)) is proved there, although in a different notation.
Hence, a quasipolynomial separation between p(f;) and N(f;) is possible for
the sequence f; used in [2]. The main result of the present paper is a
quasipolynomial separation between dt(g;) and p(g;) for some other sequence
of Boolean functions g;, see Theorem 3.7. Sections 2 and 4 contain additional
related results.

2 A polynomial separation

In this section, we prove a polynomial separation between dt(f) and p(f). By
@, we denote the addition modulo 2.

Lemma 2.1 Let f1, fo be functions of disjoint sets of variables. Then, we have

dt(f1 @ f2) > dt(f1)dt(f2).

Proof: The proof is done by induction on the number of variables. If one of
the two functions is a constant, its dt size is 1 and the inequality is satisfied.
Now, let both functions be nonconstant. Assume, we have a tree computing

f1 ® fo. W.lo.g., assume that the variable z; tested in the root belongs to
fi- By considering the tree size for the functions computed in the left and
right subtrees separately, we obtain that the total size of the tree is at least
dt(f1|z;=0 @ f2) + dt(f1|z,—1 @ f2). By the induction hypothesis, this is at least
(dt(filzi=0) + dt(file;=1))dt(f2) = dt(f1)dt(f2). O

This lemma can be used as follows. Find any function f, even on a small
number of variables, such that p(f) < dt(f). Then, if F), = f' @ f2® ... ® f*,
where f' are copies of f depending on disjoint sets of variables, we have
p(Fy) < p(f)F and dt(Fy) > dt(f)*. This implies

Indt(f)
Inp(f)

Theorem 2.2 For every k, we have dt(Fy) > p(Fy)®, where a =

For a concrete example, use e.g. f(z,y,2) = zyz V Iz, for which we have
p(f) =5, dt(f) = 6 and o = B¢ ~1.113.

3 A quasipolynomial separation

In order to construct functions G; with a quasipolynomial difference between
p(G;) and dt(G)), let g(z1, z9, T3, x4) = (x1VE2VE3)TsVE12223. For every i, we
define a function G; of 4! variables as follows. Let Gy be a single variable and for
every i > 0, let Gj41 = g(GZl, GZ?, G?, Gf), where the upper index distinguishes
distinct copies of G; on disjoint sets of variables. Clearly, G; is a function of 4°
variables. Later, in Theorem 3.6, we prove dt(G;) = exp(€(4*)). Together with
the next theorem, this implies the required separation.

Theorem 3.1 For every i, we have p(G;) < 2%.
Proof: Consider the monomials
T1T2T4, ToT3T4, T3T1T4, T1T2T3,

T1T2T4, ToT3T4, T3T1T4, T1T2T3-

Note that the function g is constant on any subcube determined by any
monomial in this list. This was used in [3] to prove that there is a partition
of the cube of 4’ variables into disjoint subcubes determined by monomials of
length 3¢ such that G; is constant on any of these subcubes. Clearly, the number
of the monomials is 23°. 0O

The proof of Theorem 3.7 consists of the next three lemmas. For any f, let
d(f) be the minimum depth of a decision tree for f.

Lemma 3.2 Ifh = f(g¢',¢%,...,g%), where g',g?,...,g"* denote distinct copies
of g depending on disjoint sets of variables, then d(h) > d(f)d(g).

Proof: The proofis done by an adversary strategy using the observation that for
every ¢ and g we have d(g) < max(d(g|z;=0),d(g|z;=1)) + 1. Assume, a variable
is tested by the tree for h. This variable belongs to some of the occurrences of g.
We choose the value of the variable that maximizes the depth of the obtained
restriction of g. If both values lead to the same depth of the restriction and
the restrictions are nonconstant, we can choose the value arbitrarily. If both
restrictions are constant functions, we choose the value of the variable so that
we maximize the decision tree depth for the corresponding restriction of f.

This strategy finds a path that determines the value of at least d(f)
occurrences of g and in each of them the strategy guarantees that we have
to determine at least d(g) variables. O

The strategy used in the proof of Lemma 3.2 finds a path leading to the
last possible level in the tree. The proof of Lemma 3.5 shows that under some
assumptions, we can find a lot of such paths.

Definition 3.3 For a nonconstant Boolean function f of n variables, let r(f)
be the minimum number of 1-leaves at the n-th level of a decision tree for f,
i.e. after testing all variables. For a constant function f, let 7(f) = 0.

Note that r(f) is sensitive to adding formal variables. Namely, if f does not
depend on all its variables then r(f) = 0. More generally, r(f) = 0 if and only
if there is a tree for f of depth less than n. Note that every 1-leaf at the n-th
level occurs in a pair with a 0-leaf. Hence, r(f) is also the minimum number of
such pairs.

Lemma 3.4 Let g be a function of at least 2 variables. Then for every i, we
have 7(g) < r(glz;=0) + (gla;=1)-

Proof: Since g|z,—, depends on at least one variable, there exists a tree for
9lz;=a With at most 7(g|z;—,) 1-leaves. By combining such trees for a = 0 and
a = 1 using a root testing z;, we obtain a tree proving the required upper bound
onr(g). O

Lemma 3.5 Let f and ¢1,92,...,9x be Boolean functions and let h =
f(g1,92,--.,9x). Moreover, let g1,goa,---,gr depend on disjoint sets of variables.

Then r(h) 2 r(f)r(g1)r(g2) - - - 7(gk)-

Proof: The lemma will be proved by induction on the number of variables of
h. W.Lo.g., we can assume that all functions f, g1, ¢o, ..., g; are functions of at
least one variable, since otherwise r(f)r(g1)7(g2) ---7(g9x) = 0. If h is a function
of one variable, then k£ = 1 and both f and g; are functions of one variable. If,
moreover, 7(f)r(g1) > 0, then each of the functions f, g1 and h is equal to its
input variable or its negation. Hence, we have r(h) = r(f)r(g1) = 1.

If h is a function of more than one variable, consider a tree for h
with 7(h) 1-leaves at the last level. Assume, the root of the tree tests
a variable from g;. If g; itself is a function of more than one variable,

4

we use Lemma 3.4 to it. Let ¢, and g/ be the two restrictions of g;
by the root variable. By the induction hypothesis, the left and right
subtree contribute to r(h) at least r(f)r(g1) ... 7(g9i—1)7(g})7(gi+1) - . . 7(gx) and
r(f)r(g1) .- 7(gi—1)7(g))r(gi+1) - .- 7(gk) respectively. The sum of these two
contributions is at least 7(f)r(g1) ...7(gk), since, we have r(g}) +7(g) > r(9:)-

If g; is a function of a single variable, then f is a function of at least two
variables, since h is a function of at least two variables. We use Lemma,
3.4 to the function f. The two restrictions of the root variable lead to
the functions f(gl, ey Gi—1, 0,gi+1, cee ,gk) and f(gl, ey Gi—1, 1, Gi+1y--- agk)-
Let f' and f” be the corresponding restrictions of f. By the induction
hypothesis, the contribution of the above two functions to r(h) is at least
r(f)r(g1)---r(gi-1)r(git1) --.r(ge) and r(f")r(g1)-..7(9i-1)7(gi+1) - --7(gk)
respectively. Since 7(g;) = 1 and 7(f') + r(f") > r(f), the two contributions
together yield at least r(f)r(g1)...7(gx) as required. O

4442

Theorem 3.6 For every i, we have dt(G;) > 2 3 .

Proof: By restricting any single variable in g to any constant, we obtain a
read-once formula depending on three variables. Hence, in every decision tree
for g, both subtrees connected to the root contain a 1-leaf. It follows that
7(g) = 2. Using this and Lemma 3.5, we obtain by an easy induction on i that

r(G;) > 25" Since dt(G;) > 2r(G;), the theorem follows. O

Theorem 3.7 For every i large enough, we have dt(G;) > 20(log” P(Gi) | where
B = logs 4 ~ 1.262.

Proof: Combine Theorems 3.1 and 3.6. [

4 TIterated majority

Lemma 3.5 may also be used to prove a quasipolynomial separation between
p(f) and N(f), although not as strong as needed for Theorem 1.2.

Let MAJs(z,y,2) be the majority on three variables. For every i > 0,
let H; be defined as follows. Let Hj be a single variable and for every 4 let
H;y1 = MAJ3(H}, H?, H?), where the upper index distinguishes distinct copies
of H; on disjoint sets of variables. Clearly, H; is a function of 3¢ variables.

3041

Theorem 4.1 (see [2]) For every i, we have dt(H;) > 272 .

This theorem together with an upper bound N(H;) < 202" was used in
[2] to prove that dt(H;) > 22(oe” N(Hi)) where v = log, 3 ~ 1.585. We give an
alternative proof of Theorem 4.1, using the technique developed in the current
paper.

Proof: By setting any variable in MAJ3 to a constant, we obtain a function
depending on both the remaining variables. Hence, r(MAJ3) = 2. Using

this and Lemma 3.5, we obtain r(H;) > 955 by an induction on 7. Since
dt(H;) > 2r(H;), the theorem follows. O

Acknowledgement. The author is indebted to R. Impagliazzo and
P. Pudlik for encouraging discussions on the topic at early stages of the
preparation of the paper.

References

[1] A. Ehrenfeucht, D. Haussler. Learning decision trees from random examples.
Information and Computation, 82 (1989), pp. 231-246.

[2] S. Jukna, P. Savicky, A. A. Razborov, I. Wegener. On P versus NP N co-
NP for decision trees and read-once branching programs. Computational
Complezity, Vol. 8, No. 4 (1999), pp. 357-370.

[3] P. Savicky, J. Sgall. On DNF tautologies with a limited number of
occurrences of every variable. Theoretical Computer Science, Vol. 238, Issue
1-2 (2000), pp. 495-498.

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

