On the Automatizability of Resolution and Related Propositional Proof Systems

Albert Atserias * María Luisa Bonet ${ }^{\dagger}$
Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya
C/Jordi Girona Salgado, 1-3, Edif. C6.
08034 Barcelona - Spain.
Tel: +34 934016994
Fax: +34 934017014
\{atserias,bonet\}@lsi.upc.es

January 21, 2002

Abstract

Having good algorithms to verify tautologies as efficiently as possible is of prime interest in different fields of computer science. In this paper we present an algorithm for finding Resolution refutations based on finding tree-like $\operatorname{Res}(\mathrm{k})$ refutations. The algorithm is based on the one of Beame and Pitassi [4] for tree-like Resolution, but it is provably more efficient. On the other hand our algorithm is also more efficient than Davis-Putnam and better in the sense of space usage than the one of Ben-Sasson and Wigderson [5]. We also analyse the possibility that a system that simulates Resolution is automatizable. We call this notion "weak automatizability". We prove that Resolution is weakly automatizable if and only if $\operatorname{Res}(2)$ has feasible interpolation. In order to prove this theorem, we show that Res(2) has polynomial-size proofs of the reflection principle of Resolution (and of any Res(k)), which is a version of consistency. We also show that Resolution proofs of its own reflection principle require slightly subexponential size. This gives a slightly subexponential lower bound for the monotone interpolation of $\operatorname{Res}(2)$ and a better separation from Resolution as a byproduct. Finally, the techniques for proving these results give us a way to obtain a large class of examples that have small Resolution refutations but require relatively large width. This answers a question of Alekhnovich and Razborov [1] related to whether Resolution is automatizable in quasipolynomial-time.

[^0]
1 Introduction

In several areas of Computer Science there has been important efforts in studying algorithms for satisfi ability, despite the problem is NP-complete, and also in studying the complementary problem of verifying tautologies.

By the theorem of Cook and Reckhow [12], there is strong evidence that for every propositional proof system there is a class of tautologies whose shortest proofs are super-polynomial in the size of the tautologies. From this we conclude that given a propositional proof system S, there will not be an algorithm that will produce S-proofs of a tautology in time polynomial in the size of the tautology. This is because in some cases we might require exponential time just to write down the proof. Considering this limitation of proof systems, Bonet, Pitassi and Raz [10] proposed the following defi nition. A propositional proof system S is automatizable if there exists an algorithm that, given a tautology, it produces an S-proof of it in time polynomial in the size of the smallest S-proof of the tautology.

In the sequel of papers [22, 11, 7] it was proved that no proof system that simulates $A C^{0}$ Frege is automatizable, unless some widely accepted cryptographic conjecture is violated. Later, Alekhnovich and Razborov [1] proved that under a reasonable assumption in parameterized complexity, Resolution is not automatizable. The drawback of this result is that it is weaker than the others in the sense that we do not know whether a system that simulates Resolution can be automatizable. This problem suggests the following defi nition. We say a proof system S is weakly automatizable if there is a proof system that polynomially simulates S and is automatizable. At this point it is still open whether Resolution is weakly automatizable. In this paper we characterize the question of whether Resolution is weakly automatizable as whether the extension of Resolution $\operatorname{Res}(2)$ (or $\operatorname{Res}(k)$ for k constant) has feasible interpolation. This notion will be defi ned in Section 4. Let us say for the moment, that Resolution, Cutting Planes, Relativized Bounded Arithmetic, Polynomial Calculus, Lovász-Schrijver and Nullstellensatz have feasible interpolation (see $[18,10,24,13,20,28,27,25])$. On the other hand, the stronger system Frege, and any system that simulates $A C^{0}$-Frege do not have feasible interpolation under a cryptographic conjecture. To obtain this characterization we show that $\operatorname{Res}(2)$ has polynomial-size proofs of the reffection principle of Resolution, which is a form of consistency. We also show that Resolution requires almost exponential size to prove its own reflection principle. As a corollary we get an almost exponential lower bound for the monotone interpolation of $\operatorname{Res}(2)$ improving over the quasipolynomial lower bound in [3].

Despite the discouraging results just mentioned, there is still some effort put in finding good algorithms for proof systems such as Resolution. The first implementations were variants of the Davis-Putnam procedure $[16,15]$ for testing unsatisfi ability that consists of either producing a treelike Resolution refutation (if one exists), or giving a satisfying assignment. For various versions of this algorithm, one can prove that is it not an automatization procedure even for tree-like Resolution. A better algorithm for fi nding tree-like Resolution refutations was proposed by Beame and Pitassi [4]. They give an algorithm that works in time quasipolynomial in the size of the smallest proof of the tautology. So tree-like Resolution is automatizable in quasipolynomial time, but the algorithm is not a good automatization procedure for general Resolution (see [8]). A more effi cient algorithm is the one of Ben-Sasson and Wigderson based on the width of a refutation. This algorithm weakly automatizes tree-like Resolution in quasipolynomial time and Resolution
in subexponential time. On the other hand, Bonet and Galesi gave a class of tautologies for which the algorithm will take subexponential time to fi nish, matching the upper bound. In this paper we show that this is not an isolated example. We describe a method to produce tautologies that have small Resolution refutations but require relatively large width, answering an open problem of Alekhnovich and Razborov [1]. As they claim, this is a necessary step towards proving that Resolution is not automatizable in quasipolynomial-time.

Even though the algorithm of Ben-Sasson and Wigderson is not an automatization procedure according to our defi nition, it is one of the best algorithms in terms of time performance. However, an important limitation of the procedure is the space it uses. This is because the number of clauses that have to be kept in memory is enormous. The algorithm we present here has a comparable performance as far as time, the space usage is never worse, and we prove that the space is at least quasipolynomially smaller in a number of cases. Moreover, our algorithm is exponentially more effi cient than the one of Beame and Pitassi and any Davis-Putnam procedure.

2 Definitions

Resolution is a refutational proof system for CNF formulas, that is, conjunctions of clauses. The system has one inference rule, the resolution rule:

$$
\frac{A \vee l \neg l \vee B}{A \vee B}
$$

where l is a literal, and A and B are clauses. The refutation fi nishes with the empty clause. The size of a Resolution refutation is the number of clauses in it. The system tree-like Resolution requires that each clause is used at most once in the proof. When this restriction is not fulfi lled, we say that the refutation is in $D A G$ form.

Following [5] the width of a refutation Π is defi ned as the number of literals of the greatest clause appearing in Π. The main observation in [5] is a relation between the size and the width of Resolution refutations. They show that if a set of clauses has a tree-like Resolution refutation of size S_{T}, then it has a Resolution refutation of width $\log S_{T}$. Similarly, if it has a Resolution refutation of size S, then it has a Resolution refutation of width $O(\sqrt{n \log S})$. Ben-Sasson and Wigderson used this size-width trade-off to obtain an algorithm that fi nds Resolution refutations. It consists in deriving all posible clauses of increasing width until the empty clause is found. The time of the algorithm is $n^{O(w)}$ where w is the minimal width of a Resolution refutation of the initial set of clauses. Notice that the space used by the algorithm can only be bounded by $n^{O(w)}$ since all derivable clauses of width $v<w$ are needed to obtain the clauses of width w. Recall that the minimal width w is at most $\log S_{T}$ in the tree-like case, where S_{T} is the minimal tree-like size to refute the initial set of clauses. Therefore, the algorithm takes time $S_{T}^{O(\log n)}$ in this case. Also, the minimal width w is at most $\sqrt{n \log S}$ in the general case, where S is the minimal size to refute the set of clauses. This gives an $n \sqrt{n \log S}$ bound on the running time.

A k-term is a conjunction of up to k literals. A k-disjunction is an (unbounded fan-in) disjunction of k-terms. The refutation system $\operatorname{Res}(k)$, defi ned by Krajíček [21], works with k-disjunctions. There are three inference rules in $\operatorname{Res}(k)$: Weakening, \wedge-Introduction, and Cut.

$$
\frac{A}{A \vee B} \quad \frac{A \vee l_{1} \quad B \vee\left(l_{2} \wedge \ldots \wedge l_{s}\right)}{A \vee B \vee\left(l_{1} \wedge \ldots \wedge l_{s}\right)} \quad \frac{A \vee\left(l_{1} \wedge \ldots \wedge l_{s}\right) \quad B \vee \neg l_{1} \vee \ldots \vee \neg l_{s}}{A \vee B}
$$

Here A and B are k-disjunctions and the l_{i} 's are literals. As usual, if l is a literal, $\neg l$ denotes the oposite literal. We also allow the axioms $l \vee \neg l$. Observe that $\operatorname{Res}(1)$ is equivalent to Resolution. The size of a $\operatorname{Res}(k)$ refutation is the number of k-disjunctions in it. As in Resolution, the tree-like version of $\operatorname{Res}(k)$ requires each k-disjunction in the proof to be used only once.

3 Some Simple Lemmas and an Algorithm

For every set of literals l_{1}, \ldots, l_{s} we defi ne a new variable $\mathfrak{a}_{1}, \ldots, l_{s}$ meaning $l_{1} \wedge \ldots \wedge l_{s}$. The following clauses defi ne $\mathfrak{d}_{1}, \ldots, l_{s}$:

$$
\begin{array}{r}
\neg z_{l_{1}, \ldots, l_{s}} \vee l_{i} \quad \text { for every } i \in\{1, \ldots, s\}, \\
\neg l_{1} \vee \ldots \neg l_{s} \vee z_{l_{1}, \ldots, l_{s}} \tag{2}
\end{array}
$$

Let \mathcal{C} be a set of clauses on the variables v_{1}, \ldots, v_{n}. For every integer $k>0$, we defi ne \mathcal{C}_{k} as the union of \mathcal{C} with all the defi ning clauses for the variables $\mathfrak{f}_{1}, \ldots, l_{s}$ for all $s \leq k$.

Lemma 1 If the set of clauses \mathcal{C} has a Res(k) refutation of size S, then \mathcal{C}_{k} has a Resolution refutation of size $O(k S)$. Furthermore, if the Res(k) refutation is tree-like, then the Resolution refutation is also tree-like.

Proof: Let Π be a $\operatorname{Res}(k)$ refutation of size S. To get a Resolution refutation of \mathcal{C}_{k}, we will first get a clause for each k-disjunction of Π. The translation consists in substituting each conjunction $l_{1} \wedge \ldots \wedge l_{s}$ for $s \leq k$ in a clause of Π by $z_{l_{1}, \ldots, l_{s}}$. Also we have to make sure that we can make this new sequence of clauses into a Resolution refutation so that if Π is tree-like, then the new refutation will also be. We have the following cases:

Case 1: In Π we have the step:

$$
\frac{C \vee\left(l_{1} \wedge \ldots \wedge l_{s}\right) \quad D \vee \neg l_{1} \vee \ldots \vee \neg l_{s}}{C \vee D}
$$

The corresponding clauses in the translation will be: $C^{\prime} \vee z_{l_{1}, \ldots, l_{s}}, D^{\prime} \vee \neg l_{1} \vee \ldots \vee \neg l_{s}$ and $C^{\prime} \vee D^{\prime}$. To get a tree-like derivation of $C^{\prime} \vee D^{\prime}$ from the two other ones, first obtain $\neg \mathfrak{A}_{1}, \ldots, l_{s} \vee D^{\prime}$ in a tree-like way from $D^{\prime} \vee \neg l_{1} \vee \ldots \vee \neg l_{s}$ and the clauses $\neg z_{l_{1}, \ldots, l_{s}} \vee l_{i}$. Finally resolve $\neg z_{l_{1}, \ldots, l_{s}} \vee D^{\prime}$ with $C^{\prime} \vee z_{l_{1}, \ldots, l_{s}}$ to get $C^{\prime} \vee D^{\prime}$.

Case 2: In Π we have the step:

$$
\frac{C \vee l_{1} \quad D \vee\left(l_{2} \wedge \ldots \wedge l_{s}\right)}{C \vee D \vee\left(l_{1} \wedge \ldots \wedge l_{s}\right)}
$$

The corresponding clauses in the translation will be: $C^{\prime} \vee l_{1}, D^{\prime} \vee z_{l_{2}, \ldots, l_{s}}$ and $C^{\prime} \vee D^{\prime} \vee z_{l_{1}, \ldots, l_{s}}$. Notice that there is a tree-like derivation of $\neg l_{1} \vee \neg z_{l_{2}, \ldots, l_{s}} \vee z_{l_{1}, \ldots, l_{s}}$ from the clauses of \mathcal{C}_{k}. Using this clause and the translation of the premises, we get $C^{\prime} \vee D^{\prime} \vee z_{l_{1}, \ldots, l_{s}}$.

Case 3: The Weakening rule turns into a weakening rule for Resolution which can be eliminated easily.

At this point we have obtained a Resolution refutation of \mathcal{C}_{k} that may use axioms of the type $l \vee \neg l$. These can be eliminated easily too.

Lemma 2 If the set of clauses \mathcal{C}_{k} has a Resolution refutation of size S, then \mathcal{C} has a Res(k) refutation of size $O(k S)$. Furthermore, if the Resolution refutation is tree-like, then the Res(k) refutation is also tree-like.

Proof: We first change each clause of the Resolution refutation by a k-disjunction of $\operatorname{Res}(k)$ by translating $z_{l_{1}, \ldots, l_{s}}$ by $l_{1} \wedge \ldots \wedge l_{s}$ and $\neg z_{l_{1}, \ldots, l_{s}}$ by $\neg l_{1} \vee \ldots \vee \neg l_{s}$. At this point the rules of the Resolution refutation turn into valid rules of $\operatorname{Res}(k)$.

Now we only need to produce derivations of the defi ning clauses of the z variables in $\operatorname{Res}(k)$ to $f i$ nish the simulation. The clauses $\neg \mathfrak{d}_{1}, \ldots, l_{s} \vee l_{i}$ get translated into $\neg l_{1} \vee \ldots \vee \neg l_{s} \vee l_{i}$, which is a weakening of the axiom $l_{i} \vee \neg l_{i}$. The clause $\neg l_{1} \vee \ldots \vee \neg l_{s} \vee z_{l_{1}, \ldots, l_{s}}$ gets translated into $\neg l_{1} \vee \ldots \vee \neg l_{s} \vee\left(l_{1} \wedge \ldots \wedge l_{s}\right)$ which can be proved form the axioms $l_{i} \vee \neg l_{i}$ using the rule for the introduction of the \wedge.

The next lemmas are essentially Proposition 1.1 and 1.2 of [19].
Lemma 3 Any Resolution refutation of width k and size S can be translated into a tree-like Res(k) refutation of size $O(k S)$.

Proof sketch: Let Π be a Resolution refutation of width k and size S. Every non-initial clause C of Π is derived from two other clauses, say C_{1} and C_{2}. Note that the k-disjunction $\neg C_{1} \vee \neg C_{2} \vee C$, where $\neg C_{i}$ is the conjunction of the negated literals of C_{i}, has a very simple tree-like $\operatorname{Res}(k)$ derivation. The rest of the proof goes as in [19].

Lemma 4 ([19, 23, 17]) Any tree-like Res(k) refutation of size S can be translated into a Resolution refutation of size $O\left(S^{2}\right)$

We will describe an algorithm that fi nds tree-like $\operatorname{Res}(k)$ refutations in time $(k S)^{\rho(k \log n)}$ if such proofs of size S exist. Here, n is the number of variables of the set of clauses. Before that, however, let us recall the algorithm of Beame and Pitassi for fin nding tree-like Resolution refutations.

Given an unsatisfi able set of clauses \mathcal{C}, we first check whether \mathcal{C} contains two contradictory literals l and $\neg l$. In such a case, the refutation is clear. Otherwise, for every possible literal l, we run the algorithm recursively on $\mathcal{C} \cup\{l\}$ for 2^{i} steps for increasing values of $i=0,1,2, \ldots$ until some recursive call succeeds. Let l be the literal on which the call $\mathcal{C} \cup\{l\}$ succeeded in 2^{i} steps. Then we run the recursive call on $\mathcal{C} \cup\{\neg l\}$ to completion. At the end, we will have produced treelike Resolution refutations of $\mathcal{C} \cup\{l\}$ and $\mathcal{C} \cup\{\neg l\}$. Finally, one can build a tree-like Resolution refutation of \mathcal{C} as follows: Take the refutation of $\mathcal{C} \cup\{l\}$ and ignore all cuts with the literal l. This will produce a derivation of $\neg l$ from \mathcal{C}. Then proceed with the refutation of $\mathcal{C} \cup\{\neg l\}$ to obtain the empty clause.

Let us now reason about the correctness of the algorithm: First observe that if \mathcal{C} does not contain a contradictory pair $\{l, \neg l\}$, then there exists some l such that $\mathcal{C} \cup\{l\}$ contains more unit clauses than \mathcal{C}. Since $n+1$ unit clauses must contain some contradictory pair $\{l, \neg l\}$, the recursion tree will achieve depth at most $n+1$. For the running time, observe that if there is a tree-like Resolution refutation of size S, then one of the two subtrees of the root must have size at most $S / 2$. Thus, the running time is dominated by the recurrence

$$
\begin{aligned}
F(n, S) & =2 n\left(2^{0}+2^{1}+\cdots+2^{\log (F(n-1, S / 2))}\right)+F(n-1, S) \\
& =O(n) F(n-1, S / 2)+F(n-1, S)
\end{aligned}
$$

which can be seen to be $S^{O(\log n)}$. On the other hand, we note that the space usage (other than the output itself) can be bounded by $O\left(n^{2}\right)$ since the recursion tree achieves depth at most $n+1$ and we only need to keep track of a partial restriction to the variables.

Now we turn to the algorithm that fi nds tree-like $\operatorname{Res}(k)$ refutations. We are given a set of clauses \mathcal{C}, and a parameter k. We start by pre-computing the set of clauses \mathcal{C}_{k} with a new propositional variable for each conjunction of up to k literals. Then we call the algorithm of Beame and Pitassi on the set of clauses \mathcal{C}_{k}. If \mathcal{C} has a tree-like $\operatorname{Res}(k)$ refutation of size S, this call will return a tree-like Resolution refutation of \mathcal{C}_{k} in time $(c \cdot k S)^{O\left(\log \left(n+n^{k}\right)\right)}$. Here c is the hidden constant in Lemma 1, and recall that the number of variables of \mathcal{C}_{k} is $n+n^{k}$. Then we translate the tree-like Resolution refutation of \mathcal{C}_{k} into a tree-like $\operatorname{Res}(k)$ refutation using (the proof of) Lemma 2. Since this translation is essentially costless, the overall running time is $(k S)^{o(k \log n)}$.

Finally, we describe an algorithm \mathcal{A} for finding Resolution refutations if such refutations of size S exist. Given an unsatisfi able set of clauses \mathcal{C} and S, we run the above procedure for increasing values of k for $\left(d \cdot k^{2} S\right)^{O(k \log n)}$ steps until one of the calls succeeds. Here d is the hidden constant in Lemma 2. At that point we will have a tree-like $\operatorname{Res}(k)$ refutation of \mathcal{C}. Then, using (the proof of) Lemma 4, we translate this refutation into a non-necessarily tree-like Resolution refutation.

If \mathcal{C} has a Resolution refutation of size S, the running time of this algorithm is bounded by $\left(d \cdot k^{2} S\right)^{O(k \log n)}$ where k is the minimal integer so that \mathcal{C} has a tree-like $\operatorname{Res}(k)$ refutation of size $d \cdot k S$. Note that by Lemma 2 , this value of k never exceeds the minimal width of refuting \mathcal{C}. Thus, the running time of our algorithm is comparable with the one of Ben-Sasson and Wigderson when S is small. On the other hand, the space usage of this algorithm is $O\left(n^{2 k}\right)$ which again is no much worse than the one of Ben-Sasson and Wigderson. However, as the next two lemmas show, in some cases the space bound is a quasipolynomial improvement, and the running time is an exponential improvement over the algorithm of Beame and Pitassi and any DLL procedure.

In the following, let $\tau(G)$ be the pebbling tautology in [5] and let $P H P_{n^{\prime}}^{n}$ be the Weak Pigeonhole Principle with n pigeons and n^{\prime} holes.

Lemma 5 On $\tau(G)$, algorithm \mathcal{A} takes time $n^{o(\log n)}$ while the algorithm of Beame and Pitassi takes time $2^{\Omega(n / \log n)}$.

Proof: As mentioned in [5], the set of clauses of $\tau(G)$ has a polynomial-size Resolution refutation of width $O(1)$, in fact width 3 . Therefore, by Lemma 2, it has a polynomial-size tree-like Res(3) refutation. It follows that the running time of algorithm \mathcal{A} is $n^{O(\log n)}$ (we note that [17] proved that $\tau(G)$ has a polynomial-size tree-like $\operatorname{Res}(2)$ refutation). On the other hand, it is known [5] that every tree-like Resolution refutation of $\tau(G)$ requires size $2^{\Omega(n / \log n)}$.

Lemma 6 On PHP $P_{n^{\prime}}^{n}$ where $n^{\prime}=\log n / \log \log n$, algorithm \mathcal{A} takes time $n^{O(\log n)}$ and space $O\left((n \log n)^{2}\right)$ while the algorithm of Ben-Sasson and Wigderson takes time $O\left(n^{\log n / \log \log n}\right)$ but space $\Omega\left(n^{\log n / \log \log n}\right)$.

Proof: Dantchev and Riis [14] proved that $P H P_{n^{\prime}}^{n}$ has tree-like Resolution refutations of size $2^{O\left(n^{\prime} \log n^{\prime}\right)}$ which in this case is $n^{O(1)}$. On the other hand, a standard width lower bound argument proves that the same set of clauses requires width $\Omega(\log n / \log \log n)$.

4 Reflection Principles and Weak Automatizability

Let \mathcal{S} be a refutational proof system. Following Razborov [28] (see also [26]), let $R E F(\mathcal{S})$ be the set of pairs (\mathcal{C}, m), where \mathcal{C} is a CNF formula that has an \mathcal{S}-refutation of size m. Furthermore, let $S A T^{*}$ be the set of pairs (\mathcal{C}, m) where \mathcal{C} is a satisfi able CNF. Observe that when m is given in unary, both $\operatorname{REF}(\mathcal{S})$ and $S A T^{*}$ are in the complexity class NP. Pudlák called ($R E F(\mathcal{S}), S A T^{*}$) the canonical NP-pair of \mathcal{S}. Note also that $\operatorname{REF}(\mathcal{S}) \cap S A T^{*}=\emptyset$ since \mathcal{S} is supposed to refute unsatisfi able CNF formulas only. Interestingly enough, there is a tight connection between the complexity of the canonical NP-pair of \mathcal{S} and the weak automatizability of \mathcal{S}. Namely, Pudlák [26] showed that \mathcal{S} is weakly automatizable if and only if the canonical NP-pair of \mathcal{S} is polynomially separable, which means that a polynomial-time algorithm returns 0 on every input from $R E F(\mathcal{S})$ and returns 1 on every input from $S A T^{*}$. We will use this connection later.

The disjointness of the canonical NP-pair for a proof system \mathcal{S} is often expressible as a contradictory set of clauses. Suppose that one is able to write down a CNF formula $S A T_{r}^{n}(x, z)$ meaning that " z encodes a truth assignment that satisfi es the CNF encoded by x. The CNF is of size r and the underlying variables are v_{1}, \ldots, v_{n} ". Similarly, suppose that one is able to write down a CNF formula $R E F_{r, m}^{n}(x, y)$ meaning that " y encodes an \mathcal{S}-refutation of the CNF encoded by x. The size of the refutation is m, the size of the CNF is r, and the underlying variables are v_{1}, \ldots, v_{n} ". Under these two assumptions, the disjointness of the canonical NP-pair for \mathcal{S} is expressible by the contradictions $R E F_{r, m}^{n}(y, z) \wedge S A T_{r}^{n}(x, z)$. This collection of CNF formulas is referred to as the Reflection Principle of \mathcal{S}. Notice that $R E F_{r, m}^{n}(y, z) \wedge S A T_{r}^{n}(x, z)$ is a form of consistency of S.

We turn next to the concept of Feasible Interpolation introduced by Krajicek [20] (see also [10,24]). Suppose that $A_{0}\left(x, y_{0}\right) \wedge A_{1}\left(x, y_{1}\right)$ is a contradictory CNF formula, where x, y_{0}, and y_{1} are disjoint sets of variables. Note that for every given truth assignment a for the variables x, one of the formulas $A_{0}\left(a, y_{0}\right)$ or $A_{1}\left(a, y_{1}\right)$ must be contradictory by itself. We say that a proof system \mathcal{S} has the Interpolation Property in time $T=T(m)$ if there exists an algorithm that, given a truth assignment a for the common variables x, returns an $i \in\{0,1\}$ such that $A_{i}\left(a, y_{i}\right)$ is contradictory, and the running time is bounded by $T(m)$ where m is the minimal size of an \mathcal{S}-refutation of $A_{0}\left(x, y_{0}\right) \wedge A_{1}\left(x, y_{1}\right)$. Whenever $T(m)$ is a polynomial, we say that \mathcal{S} has Feasible Interpolation.

The following result by Pudlák connects feasible interpolation with the reffection principle and weak automatizability.

Theorem 1 [26] If the reflection principle for \mathcal{S} has polynomial-size refutations in a proof system that has the feasible interpolation, then the canonical NP-pair for \mathcal{S} is polynomially separable, and therefore \mathcal{S} is weakly automatizable.

For the rest of this section, we will need a concrete encoding of the reffection principle for Resolution. We start with the encoding of $S A T_{r}^{n}(x, z)$. The encoding of the set of clauses by the variables in x is as follows. There are variables $x_{e, i, j}$ for every $e \in\{0,1\}, i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, r\}$. The meaning of $x_{0, i, j}$ is that the literal v_{i} appears in clause j, while the meaning of $x_{1, i, j}$ is that the literal $\neg v_{i}$ appears in clause j.

The encoding of the truth assignment $a \in\{0,1\}^{n}$ by the variables z is as follows. There are variables z_{i} for every $i \in\{1, \ldots, n\}$, and $z_{e, i, j}$ for every $e \in\{0,1\}, i \in\{1, \ldots, n+1\}$ and $j \in\{1, \ldots, r\}$. The meaning of z_{i} is that variable v_{i} is assigned true under the truth assignment. The meaning of $z_{0, i, j}$ is that clause j is satisfi ed by the truth assignment due to a literal among
$v_{1}, \neg v_{1}, \ldots, v_{i-1}, \neg v_{i-1}$. Similarly, the meaning of $z_{1, i, j}$ is that clause j is satisfi ed by the truth assignment due to a literal among $v_{1}, \neg v_{1}, \ldots, v_{i-1}, \neg v_{i-1}, v_{i}$. We formalize this as a set of clauses as follows:

$$
\begin{align*}
& \neg z_{0,1, j} \tag{3}\\
& z_{0, i, j} \vee \neg x_{0, i, j} \vee z_{i} \vee \neg z_{1, i, j} \tag{5}\\
& z_{0, i, j} \vee x_{0, i, j} \vee \neg z_{1, i, j} \tag{7}
\end{align*}
$$

$$
\begin{align*}
& z_{0, n+1, j} \tag{4}\\
& z_{1, i, j} \vee \neg x_{1, i, j} \vee \neg z_{i} \vee \neg z_{0, i+1, j} \tag{6}\\
& z_{1, i, j} \vee x_{1, i, j} \vee \neg z_{0, i+1, j} \tag{8}
\end{align*}
$$

The encoding of $R E F_{r, m}^{n}(x, y)$ is also quite standard. The encoding of the set of clauses by the variables in \bar{x} is as before. The encoding of the Resolution refutation by the variables in \bar{y} is as follows. There are variables $y_{e, i, j}$ for every $e \in\{0,1\}, i \in\{1, \ldots, n\}$, and $j \in\{1, \ldots, m\}$. The meaning of $y_{0, i, j}$ is that the literal v_{i} appears in clause j of the refutation. Similarly, the meaning of $y_{1, i, j}$ is that the literal $\neg v_{i}$ appears in clause j of the refutation. There are variables $p_{j, k}$ and $q_{j, k}$ for every $j \in\{1, \ldots, m\}$ and $k \in\{r, \ldots, m\}$. The meaning of $p_{j, k}$ (of $q_{j, k}$) is that clause C_{k} was obtained from clause C_{j} and some other clause, and C_{j} contains the resolved variable positively (negatively). Finally, there are variables $w_{i, k}$ for every $i \in\{1, \ldots, n\}$ and $k \in\{r, \ldots, m\}$. The meaning of $w_{i, k}$ is that clause C_{k} was obtained by resolving upon v_{i}. We formalize this by the following set of clauses:

$$
\begin{array}{lcl}
\neg x_{e, i, j} \vee y_{e, i, j} & (9) & \neg y_{e, i, m} \\
\neg y_{0, i, j} \vee \neg y_{1, i, j} & (11) & p_{1, k} \vee \ldots \vee p_{k-1, k} \\
q_{1, k} \vee \ldots \vee q_{k-1, k} & (13) & \neg p_{j, k} \vee \neg q_{j, k} \\
\neg p_{j, k} \vee \neg p_{j^{\prime}, k} & (15) & \neg q_{j, k} \vee \neg q_{j^{\prime}, k} \\
\neg p_{j, k} \vee \neg w_{i, k} \vee y_{0, i, j} & (17) & \neg q_{j, k} \vee \neg w_{i, k} \vee y_{1, i, j} \\
\neg p_{j, k} \vee w_{i, k} \vee \neg y_{e, i, j} \vee y_{e, i, k} & (19) & \neg q_{j, k} \vee w_{i, k} \vee \neg y_{e, i, j} \vee y_{e, i, k} \\
w_{1, k} \vee \ldots \vee w_{n, k} & (21) & \neg w_{i, k} \vee \neg w_{i^{\prime}, k}
\end{array}
$$

Notice that this encoding has the appropriate form for the monotone interpolation theorem.
Theorem 2 The reflection principle for Resolution $S A T_{r}^{n}(x, z) \wedge R E F_{r, m}^{n}(x, y)$ has Res(2) refutations of size $(n r+n m)^{O(1)}$.

Proof: Our goal is to get the following 2-disjunction

$$
D_{k} \equiv \bigvee_{i=1}^{n}\left(y_{0, i, k} \wedge z_{i}\right) \vee\left(y_{1, i, k} \wedge \neg z_{i}\right)
$$

for every $k \in\{1, \ldots, m\}$. The empty clause will follow by resolving D_{m} with (10).
The case $k \leq r$ is easier and is included in Appendix A. For the case $r<k \leq m$, we show how to derive D_{k} from D_{1}, \ldots, D_{k-1}. First, we derive $\neg p_{j, k} \vee \neg q_{l, k} \vee D_{k}$. From (18) and (11) we get $\neg q_{l, k} \vee \neg w_{q, k} \vee \neg y_{0, q, l}$. Resolving with D_{l} on $y_{0, q, l}$ we get

$$
\begin{equation*}
\neg q_{l, k} \vee \neg w_{q, k} \vee\left(y_{1, q, l} \wedge \neg z_{q}\right) \vee \bigvee_{\substack{i=1 \\ i \neq q}}^{n}\left(y_{0, i, l} \wedge z_{i}\right) \vee\left(y_{1, i, l} \wedge \neg z_{i}\right) \tag{23}
\end{equation*}
$$

A cut with $z_{q} \vee \neg z_{q}$ on $y_{1, q, l} \wedge \neg z_{q}$ gives

$$
\begin{equation*}
\neg q_{l, k} \vee \neg w_{q, k} \vee \neg z_{q} \vee \bigvee_{\substack{i=1 \\ i \neq q}}^{n}\left(y_{0, i, l} \wedge z_{i}\right) \vee\left(y_{1, i, l} \wedge \neg z_{i}\right) \tag{24}
\end{equation*}
$$

Let $q^{\prime} \neq q$. A cut with $z_{q^{\prime}} \vee \neg z_{q^{\prime}}$ on $y_{0, q^{\prime}, l} \wedge z_{q^{\prime}}$ gives

$$
\begin{equation*}
\neg q_{l, k} \vee \neg w_{q, k} \vee \neg z_{q} \vee z_{q^{\prime}} \vee\left(y_{1, q^{\prime}, l} \wedge \neg z_{q^{\prime}}\right) \vee \bigvee_{i \neq q, q^{\prime}}\left(y_{0, i, l} \wedge z_{i}\right) \vee\left(y_{1, i, l} \wedge \neg z_{i}\right) \tag{25}
\end{equation*}
$$

From (20) and (22) we get $\neg q_{l, k} \vee \neg w_{q, k} \vee \neg y_{0, q^{\prime}, l} \vee y_{0, q^{\prime}, k}$. Resolving with (24) on $y_{0, q^{\prime}, l} \wedge z_{q^{\prime}}$ gives

$$
\begin{equation*}
\neg q_{l, k} \vee \neg w_{q, k} \vee \neg z_{q} \vee y_{0, q^{\prime}, k} \vee\left(y_{1, q^{\prime}, l} \wedge \neg z_{q^{\prime}}\right) \vee \bigvee_{i \neq q, q^{\prime}}\left(y_{0, i, l} \wedge z_{i}\right) \vee\left(y_{1, i, l} \wedge \neg z_{i}\right) \tag{26}
\end{equation*}
$$

An introduction of conjunction between (25) and (26) gives

$$
\begin{equation*}
\neg q_{l, k} \vee \neg w_{q, k} \vee \neg z_{q} \vee\left(y_{0, q^{\prime}, k} \wedge z_{q^{\prime}}\right) \vee\left(y_{1, q^{\prime}, l} \wedge \neg z_{q^{\prime}}\right) \vee \bigvee_{i \neq q, q^{\prime}}\left(y_{0, i, l} \wedge z_{i}\right) \vee\left(y_{1, i, l} \wedge \neg z_{i}\right) \tag{27}
\end{equation*}
$$

From (20) and (22) we also get $\neg q_{l, k} \vee \neg w_{q, k} \vee \neg y_{1, q^{\prime}, l} \vee y_{1, q^{\prime}, k}$. Repeating the same procedure we get

$$
\begin{equation*}
\neg q_{l, k} \vee \neg w_{q, k} \vee \neg z_{q} \vee\left(y_{0, q^{\prime}, k} \wedge z_{q^{\prime}}\right) \vee\left(y_{1, q^{\prime}, k} \wedge \neg z_{q^{\prime}}\right) \vee \bigvee_{i \neq q, q^{\prime}}\left(y_{0, i, l} \wedge z_{i}\right) \vee\left(y_{1, i, l} \wedge \neg z_{i}\right) \tag{28}
\end{equation*}
$$

Now, repeating this two-step procedure for every $q^{\prime} \neq q$, we get

$$
\begin{equation*}
\neg q_{l, k} \vee \neg w_{q, k} \vee \neg z_{q} \vee \bigvee_{i \neq q}\left(y_{0, i, k} \wedge z_{i}\right) \vee\left(y_{1, i, l} \wedge \neg z_{i}\right) \tag{29}
\end{equation*}
$$

A dual argument yould yield $\neg p_{j, k} \vee \neg w_{q, k} \vee z_{q} \vee \bigvee_{i \neq q}\left(y_{0, i, k} \wedge z_{i}\right) \vee\left(y_{1, i, k} \wedge \neg z_{i}\right)$. A cut with (29) on z_{q} gives $\neg p_{j, k} \vee \neg q_{l, k} \vee \neg w_{q, k} \vee \bigvee_{i \neq q}\left(y_{0, i, k} \wedge z_{i}\right) \vee\left(y_{1, i, k} \wedge \neg z_{i}\right)$. Weakening gives then $\neg p_{j, k} \vee \neg q_{l, k} \vee \neg w_{q, k} \vee D_{k}$. Resolving with (21) gives $\neg p_{j, k} \vee \neg q_{l, k} \vee D_{k}$. Coming to the end, we resolve this with (12) to get $p_{l, k} \vee \neg q_{l, k} \vee D_{k}$. Then resolve it with (14) to get $\neg q_{l, k} \vee D_{k}$, and resolve it with (13) to get D_{k}.

An immediate consequence of Theorems 2 and 1 is that if $\operatorname{Res}(2)$ has feasible interpolation, then Resolution is weakly automatizable. The reverse implication holds too.

Theorem 3 Resolution is weakly automatizable if and only if Res(2) has feasible interpolation.

Proof: Suppose Resolution is weakly automatizable. Then by Corollary 10 in [26], the NP-pair of resolution is polynomially separable. We claim that the canonical pair of $\operatorname{Res}(2)$ is also polynomially separable. Here is the separation algorithm: Given a set of clauses \mathcal{C} and a number S, we build \mathcal{C}_{2} and run the separation algorithm for the canonical pair of Resolution on \mathcal{C}_{2} and $c \cdot 2 S$, where c is the hidden constant in Lemma 1. For the correctness, note that if \mathcal{C} has a $\operatorname{Res}(2)$ refutation of size S, then \mathcal{C}_{2} has a Resolution refutation of size $c \cdot 2 S$ by Lemma 1, and the separation algorithm for the canonical pair of Resolution will return 0 on it. On the other hand, if \mathcal{C} is satisfi able, so is \mathcal{C}_{2} and the separation algorithm for Resolution will return 1 on it. Now, for the feasible interpolation of $\operatorname{Res}(2)$, consider the following algorithm. Let $A_{0}(x, y) \wedge A_{1}(x, z)$ be a contradictory set of clauses with a Res(2) refutation Π of size S. Given a truth assignment a for the variables x, run the separation algorithm for the canonical pair of $\operatorname{Res}(2)$ on inputs $A_{0}(a, y)$ and S. For the correctness, observe that if $A_{1}(a, z)$ is satisfi able, say by $z=b$, then $\Pi_{x=a, z=b}$ is a $\operatorname{Res}(2)$ refutation of $A_{0}(a, y)$
of size at most S and the separation algorithm will return 0 on it. On the other hand, if $A_{0}(a, y)$ is satisfi able, the separation algorithm will return 1 , which is correct. If both are unsatisfi able, any answer is fine.

The previous theorem works for any k constant. If $k=\log n$, then we get that if Resolution is weakly automatizable then $\operatorname{Res}(\log)$ has feasible interpolation in quasipolynomial time. The positive interpretation of these results is that to show that Resolution is weakly automatizable, then we only have to prove that $\operatorname{Res}(2)$ has feasible interpolation. The negative interpretation is that to show that resolution is not weakly automatizable we only have to prove that $\operatorname{Res}(\log)$ doesn't have feasible interpolation in quasipolynomial time.

It is not clear whether $\operatorname{Res}(2)$ has feasible interpolation. We know, however, that $\operatorname{Res}(2)$ does not have monotone feasible interpolation (see [3] and Corollary 1 in this paper). On the other hand, tree-like $\operatorname{Res}(2)$ has feasible interpolation (even monotone) since Resolution polynomially simulates it by Lemma 4.

A natural question to ask is whether the refection principle for Resolution has Resolution refutations of moderate size. Since Resolution has feasible interpolation, a positive answer would imply that Resolution is weakly automatizable by theorem 1. Unfortunately, as the next theorem shows, this will not happen. The proof of this result uses an idea due to Pudlak.

Theorem 4 For some choice of n, r, and m of the order of a quasipolynomial $s^{O(\log s)}$ on the parameter s, every Resolution refutation of $R E F_{r, m}^{n}(x, y) \wedge S A T_{r}^{n}(x, z)$ requires size at least $2^{\Omega\left(s^{1 / 4}\right)}$.

Proof sketch: Suppose for contradiction that there is a Resolution refutation of size $S=2^{o\left(s^{1 / 4}\right)}$. Let $k=s^{1 / 2}$, and let $C O L_{k}(p, q)$ be the CNF formula expressing that the graph on s nodes encoded by $\left\{p_{i, j}\right\}$ is k-colorable. See Defi nition 7.1 in [20] for an explicit encoding of this formula. Obviously, if G is k-colorable, then $C O L_{k}(G, q)$ is satisfi able, and if G contains a $2 k$-clique, then $\operatorname{COL}_{k}(G, q)$ is unsatisfi able. More importantly, if G contains a $2 k$-clique, then the clauses of $P H P_{k}^{2 k}$ are contained in $C O L_{k}(G, q)$. Now, for every graph G on s nodes, let $\mathcal{F}(G)$ be the clauses $C O L_{k}(G, q)$ together with all clauses defi ning the extension variables for the conjunctions of up to $c \log k$ literals on the q-variables. Here, c is a constant so that the $k^{O(\log k)}$ upper bound on PH $P_{k}^{2 k}$ of [23] can be done in $\operatorname{Res}(c \log k)$. From its very defi nition and Lemma 1, if G contains a $2 k$-clique, then $\mathcal{F}(G)$ has a Resolution refutation of size $k^{O(\log k)}$. Finally, for every graph G, let $x(G)$ be the encoding of the formula $\mathcal{F}(G)$. With all this notation, we are ready for the argument.

In the following, let n be the number of variables of $\mathcal{F}(G)$, let r be the number of clauses of $\mathcal{F}(G)$, and let $m=k^{O(\log k)}$. By assumption, the formulas $R E F_{r, m}^{n}(x(G), y) \wedge S A T_{r}^{n}(x(G), z)$ have Resolution refutations of size at most S. Let C be the monotone circuit that interpolates these formulas given $x(G)$. The size of C is $S^{O(1)}$. Moreover, if G is k-colorable, then $S A T_{r}^{n}(x(G), z)$ is satisfi able, and C must return 0 on $x(G)$. Also, if G contains a $2 k$-clique, then $R E F_{r, m}^{n}(x(G), y)$ is satisfi able, and C must return 1 on $x(G)$. Now, an anti-monotone circuit for separating $2 k$ cliques from k-colorings can be built as follows: given a graph G, build the formula $x(G)$ (antimonotonically, see Appendix B for details), and apply the monotone circuit given by the monotone interpolation. The size of this circuit is $2^{o\left(s^{1 / 4}\right)}$, and this contradicts Theorem 3.11 of Alon and Boppana [2].

An immediate corollary of the last two results is that $\operatorname{Res}(2)$ is exponentially more powerful than resolution. In fact, the proof shows a lower bound for the monotone interpolation of $\operatorname{Res}(2)$ improving over the quasipolynomial lower bound in [3].

Corollary 1 Monotone circuits that interpolate Res(2) refutations require size $2^{\Omega\left(s^{1 / 4}\right)}$ on $\operatorname{Res}(2)$ refutations of size $s^{O(\log s)}$.

Theorem 4 is in sharp contrast with the fact that an appropriate encoding of the refection principle for $\operatorname{Res}(2)$ has polynomial-size proofs in $\operatorname{Res}(2)$. This encoding incorporates new z variables for the truth values of conjunctions of two literals, and new y-variables encoding the presence of conjunctions in the 2-disjunctions of the proof. The resulting formula preserves the form of the feasible interpolation. We leave the tedious details to the interested reader.

Theorem 5 The reflection principle for Res(2) has Res(2) refutations of size $\left(n^{2} r+m r\right)^{O(1)}$. More strongly, the reflection principle for Res(k) has Res(2) refutations of size $\left(n^{k} r+m r\right)^{O(1)}$.

We observe that there is a version of the reflection principle for Resolution that has polynomialsize proofs in Resolution. Namely, let \mathcal{C} be the CNF formula $S A T_{r}^{n}(x, z) \wedge R E F_{r, m}^{n}(y, z)$. Then, \mathcal{C}_{2} has polynomial-size Resolution refutations by Lemma 1 and Theorem 2. However, this does not imply the weak automatizability of Resolution since the set of clauses does not have the appropriate form for the feasible interpolation theorem.

5 Short Proofs that Require Large Width

Bonet and Galesi [9] gave an example of a CNF expressed in constant width, with small Resolution refutations, and requiring relatively large width (square root of the number of variables). This showed that the size-width trade-off of Ben-Sasson and Wigderson could not be improved. Also it showed that the algorithm of Ben-Sasson and Wigderson for fi nding Resolution refutations could perform very badly in the worst case. This is because their example requires large width, and the algorithm would take almost exponential time, while we know that there is a polynomial size Resolution refutation.

Alekhnovich and Razborov [1] posed the question of whether more of these examples could be found. They say this is a necessary first step for showing that Resolution is not automatizable in quasipolynomial-time. Here we give a way of producing such bad examples for the algorithm. Basically the idea is fi nding CNFs that require suffi ciently high width in Resolution, but that have polynomial size $\operatorname{Res}(k)$ refutations for small k, say $k \leq \log n$. Then the example consists of adding to the formula the clauses defi ning the extension variables for all the conjunctions of at most k literals. Below we ilustrate this technique by giving a large class of examples that have small Resolution refutations, require large width. Moreover, deciding whether a formula is in the class is hard (no polynomial-time algorithm is known).

Let $G=(U \cup V, E)$ be a bipartite graph on the sets U and V of cardinality m and n respectively, where $m>n$. The $G-P H P_{n}^{m}$, defi ned by Ben-Sasson and Wigderson [5], states that there is no
matching from U into V. For every edge $(u, v) \in E$, let $x_{u, v}$ be a propositional variable meaning that u is mapped to v. The principle is then formalized as the conjunction of the following clauses:

$$
\begin{array}{rl}
x_{u, v_{1}} \vee \cdots \vee x_{u, v_{r}} & u \in U, N_{G}(u)=\left\{v_{1}, \ldots, v_{r}\right\} \\
\bar{x}_{u, v} \vee \bar{x}_{u^{\prime}, v} & v \in V, u, u^{\prime} \in N_{G}(v), u \neq u^{\prime} .
\end{array}
$$

Here, $N_{G}(w)$ denotes the set of neighbors of w in G. Note that if G has left-degree at most d, then the width of the initial clauses is bounded by d.

Ben-Sasson and Wigderson proved that whenever G is expanding in a sense defi ned next, every Resolution refutation of $G-P H P_{n}^{m}$ must contain a clause with many literals. We observe that this result is not unique to Resolution and holds in a more general setting. Before we state the precise result, let us recall the defi nition of expansion:

Definition 1 [5] Let $G=(U \cup V, E)$ be a bipartite graph where $|U|=m$, and $|V|=n$. For $U^{\prime} \subset U$, the boundary of U, denoted by ∂U^{\prime}, is the set of vertices in V that have exactly one neighbor in U^{\prime}; that is, $\partial U^{\prime}=\left\{v \in V:\left|N(v) \cap U^{\prime}\right|=1\right\}$. We say that G is (m, n, r, f)-expanding if every subset $U^{\prime} \subseteq U$ of size at most r is such that $\left|\partial U^{\prime}\right| \geq f \cdot\left|U^{\prime}\right|$.

The proof of the following statement is the same as in [5] for Resolution.
Theorem 6 [5] Let \mathcal{S} be a sound refutation system with all rules having fan-in at most two. Then, if G is (m, n, r, f)-expanding, every \mathcal{S}-refutation of G - $P H P_{n}^{m}$ must contain a formula that involves at least $r f / 2$ distinct literals.

Now, for every bipartite graph G with $m \geq 2 n$, let $\mathcal{C}(G)$ be the set of clauses defi ning G $P H P_{n}^{m}$ together with the clauses defi ning all the conjunctions up to $c \log n$ literals, where c is a large constant.

Theorem 7 Let G be an $\left(m, n, \Omega(n / \log m), \frac{3}{4} \log m\right)$ with $m \geq 2 n$ and left-degree at most $\log m$. Then $(i) \mathcal{C}(G)$ has initial width $\log m$, (ii) any Resolution refutation of $\mathcal{C}(G)$ requires width at least $\Omega(n / \log n)$, and (iii) $\mathcal{C}(G)$ has polynomial-size Resolution refutations.

Proof: Part (i) is obvious. For (ii), suppose for contradiction that $\mathcal{C}(G)$ has a Resolution refutation of width $w=o(n / \log n)$. Then, by the proof of Lemma 2, G-PHP ${ }_{n}^{m}$ has a $\operatorname{Res}(c \log n)$ refutation in which every $(c \log n)$-disjunction involves at most $w c \log n=o(n)$ literals. This contradicts Theorem 6. For (iii), recall that $P H P_{n}^{m}$ has a $\operatorname{Res}(c \log n)$ refutation of size $n^{O(\log n)}$ by [23] since $m \geq 2 n$. Now, setting to zero the appropriate variables of $P H P_{n}^{m}$, we get a $\operatorname{Res}(c \log n)$ refutation of $G-P H P_{n}^{m}$ of the same size. By Lemma $1, \mathcal{C}(G)$ has a Resolution refutation of roughly the same size, which is polynomial in the size of the formula.

It is known that deciding whether a bipartite graph is an expander (for a slightly different defi nition than ours) is coNP-complete [6]. Although we have not checked the details, we suspect that deciding whether a bipartite graph is an (m, n, r, f)-expander in the sense of Defi nition 1 is also coNP-complete. However, we should note that the class of formulas $\{\mathcal{C}(G): G$ expander, $m \geq$ $2 n\}$ is contained in $\{\mathcal{C}(G): G$ bipartite, $m \geq 2 n\}$ which is decidable in polynomial-time, and that all formulas of this class have short Resolution refutations that are easy to fi nd. This is so because the proof of $P H P_{n}^{2 n}$ in [23] is given explicitely.

6 Conclusions and Open Problems

We showed that our algorithm of section 3 is exponentially more efficient than the one of Beame and Pitassi, and can have better space usage than the one of Ben-Sasson and Wigderson. It is still open whether our algorithm is better than both these algorithms at the same time. Otherwise we could run in parallel the two algorithms, to see if one of them gives us a refutation. To show this we need a CNF unsatisfi able formula that has a width lower bound of $\Omega(\log n)$, requires exponential size tree-like Resolution refutations, but that it has polynomial size tree-like $\operatorname{Res}(k)$ proofs for k constant.

It is surprising that the weak pigeonhole principle $P H P_{n}^{2 n}$ has short Resolution proofs when encoded with the clauses defi ning the extension variables. This suggests that to prove Resolution lower bounds that are robust, one should prove $\operatorname{Res}(k)$ lower bounds for relatively large k. In fact, at this point the only robust lower bounds we know are the ones for $A C^{0}$-Frege.

Of course, it remains open whether Resolution is weakly automatizable, or automatizable in quasipolynomial-time.
Acknowledgement. We are grateful to Pavel Pudl'ak for stimulating discussions on the idea of Theorem 4.

References

[1] M. Alekhnovich and A. A. Razborov. Resolution is not automatizable unless $\mathrm{W}[\mathrm{P}$] is tractable. In 42nd Annual IEEE Symposium on Foundations of Computer Science, 2001.
[2] N. Alon and R. B. Boppana. The monotone circuit complexity of boolean functions. Combinatorica, 7:1-22, 1987.
[3] A. Atserias, M. L. Bonet, and J. L. Esteban. Lower bounds for the weak pigeonhole principle and random formulas beyond resolution. Accepted for publication in Information and Computation. A preliminary version appeared in ICALP'01, Lecture Notes in Computer Science 2076, Springer, pages 1005-1016., 2001.
[4] P. Beame and T. Pitassi. Simplified and improved resolution lower bounds. In 37th Annual IEEE Symposium on Foundations of Computer Science, pages 274-282, 1996.
[5] E. Ben-Sasson and A. Wigderson. Short proofs are narrow-resolution made simple. J. ACM, 48(2):149-169, 2001.
[6] M. Blum, R. M. Karp, O. Vornberger, C. H. Papadimitriou, and M. Yannakakis. The complexity of testing whether a graph is a superconcentrator. Information Processing Letter, 13:164-167, 1981.
[7] M. L. Bonet, C. Domingo, R. Gavald`a, A. Maciel, and T. Pitassi. Non-automatizability of boundeddepth Frege proofs. In 14th IEEE Conference in Computational Complexity, pages 15-23, 1999.
[8] M. L. Bonet, J. L. Esteban, N. Galesi, and J. Johansen. On the relative complexity of resolution refinements and cutting planes proof systems. SIAM Journal of Computing, 30(5):1462-1484, 2000.
[9] M. L. Bonet and N. Galesi. Optimality of size-width trade-offs for resolution. Journal of Computational Complexity, 2001. To appear. A preliminary version appeared in FOCS'99.
[10] M. L. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting planes proofs with small coefficients. Journal of Symbolic Logic, 62(3):708-728, 1997.
[11] M. L. Bonet, T. Pitassi, and R. Raz. On interpolation and automatization for Frege systems. SIAM Journal of Computing, 29(6):1939-1967, 2000.
[12] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. Journal of Symbolic Logic, 44:36-50, 1979.
[13] S. A. Cook and A. Haken. An exponential lower bound for the size of monotone real circuits. Journal of Computer and System Sciences, 58:326-335, 1999.
[14] S. Dantchev and S. Riis. Tree resolution proofs of the weak pigeon-hole principle. In 16th IEEE Conference in Computational Complexity, pages 69-75, 2001.
[15] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Communications of the ACM, 5:394-397, 1962.
[16] M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM, 7:201-215, 1960.
[17] J. L. Esteban, N. Galesi, and J. Messner. Personal communication. Manuscript, 2001.
[18] R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper and lower bounds for tree-like cutting planes proofs. In 9th IEEE Symposium on Logic in Computer Science, pages 220-228, 1994.
[19] J. Kraj' 1 cek. Lower bounds to the size of constant-depth propositional proofs. Journal of Symbolic Logic, 39(1):73-86, 1994.
[20] J. Kraj' 1 cek. Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. Journal of Symbolic Logic, 62:457-486, 1997.
[21] J. Kraj' 1 cek. On the weak pigeonhole principle. To appear in Fundamenta Mathematica, 2000.
[22] J. Kraj'ı 1 cek and P. Pudl'ak. Some consequences of cryptographical conjectures for ${ }_{2}^{1}$ sand ef. Information and Computation, 140(1):82-94, 1998.
[23] A. Maciel, T. Pitassi, and A. R. Woods. A new proof of the weak pigeonhole principle. In 32nd Annual ACM Symposium on the Theory of Computing, 2000.
[24] P. Pudl'ak. Lower bounds for resolution and cutting plane proofs and monotone computations. Journal of Symbolic Logic, 62(3):981-998, 1997.
[25] P. Pudl'ak. On the complexity of the propositional calculus. In Sets and Proofs, Invited Papers from Logic Colloquium '97, pages 197-218. Cambridge University Press, 1999.
[26] P. Pudl'ak. On reducibility and symmetry of disjoint NP-pairs. In 26th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, pages 621-632. Springer-Verlag, 2001.
[27] P. Pudl'ak and J. Sgall. Algebraic models of computation and interpolation for algebraic proof systems. In P. W. Beame and S. R. Buss, editors, Proof Complexity and Feasible Arithmetic, volume 39 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 279-296. American Mathematical Society, 1998.
[28] A. A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of bounded arithmetic. Izvestiya of the RAN, 1995.

A Appendix: Derivation of D_{k} in the case $k \leq r$

We will derive D_{k} by successive steps as follows. Let $D_{q, k}^{0}$ be the following 2-disjunction

$$
D_{q, k}^{0} \equiv z_{0, q, k} \vee \bigvee_{i=q}^{n}\left(y_{0, i, k} \wedge z_{i}\right) \vee\left(y_{1, i, k} \wedge \neg z_{i}\right),
$$

and let $D_{q, k}^{1}$ be the following 2-disjunction

$$
D_{q, k}^{1} \equiv z_{1, q, k} \vee\left(y_{1, q, k} \wedge \neg z_{q}\right) \vee \bigvee_{i=q+1}^{n}\left(y_{0, i, k} \wedge z_{i}\right) \vee\left(y_{1, i, k} \wedge \neg z_{i}\right)
$$

Observe that $D_{n+1, k}^{0}$ is simply $z_{0, n+1, k}$ which is the clause (4) in $S A T_{r}^{n}(\bar{x}, \bar{z})$. We obtain $D_{q-1, k}^{1}$ from $D_{q, k}^{0}$ as follows. Cut $D_{q, k}^{0}$ with (8) and (6) on $z_{0, q, k}$ to get

$$
\begin{equation*}
z_{1, q-1, k} \vee x_{1, q-1, k} \vee \bigvee_{i=q}^{n}\left(y_{0, i, k} \wedge z_{i}\right) \vee\left(y_{1, i, k} \wedge \neg z_{i}\right), \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{1, q-1, k} \vee \neg x_{1, q-1, k} \vee \neg z_{q-1} \vee \bigvee_{i=q}^{n}\left(y_{0, i, k} \wedge z_{i}\right) \vee\left(y_{1, i, k} \wedge \neg z_{i}\right), \tag{31}
\end{equation*}
$$

respectively. A cut between (30) and (31) on $x_{1, q-1, k}$ gives

$$
\begin{equation*}
z_{1, q-1, k} \vee \neg z_{q-1} \vee \bigvee_{i=q}^{n}\left(y_{0, i, k} \wedge z_{i}\right) \vee\left(y_{1, i, k} \wedge \neg z_{i}\right) \tag{32}
\end{equation*}
$$

On the other hand, a cut between (30) and (9) on $x_{1, q-1, k}$ gives

$$
\begin{equation*}
z_{1, q-1, k} \vee y_{1, q-1, k} \vee \bigvee_{i=q}^{n}\left(y_{0, i, k} \wedge z_{i}\right) \vee\left(y_{1, i, k} \wedge \neg z_{i}\right), \tag{33}
\end{equation*}
$$

Finally, an introduction of conjunction between (32) and (33) on $\neg z_{q-1}$ and $y_{1, q-1, k}$ gives $D_{q-1, k}^{1}$ as claimed. Next, we show how to get $D_{q, k}^{0}$ from $D_{q, k}^{1}$. Cut $D_{q, k}^{1}$ with (7) and (5) on $z_{1, q, k}$ to get

$$
\begin{equation*}
z_{0, q, k} \vee x_{0, q, k} \vee\left(y_{1, q, k} \wedge \neg z_{q}\right) \vee \bigvee_{i=q+1}^{n}\left(y_{0, i, k} \wedge z_{i}\right) \vee\left(y_{1, i, k} \wedge \neg z_{i}\right), \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{0, q, k} \vee \neg x_{0, q, k} \vee z_{q} \vee\left(y_{1, q, k} \wedge \neg z_{q}\right) \vee \bigvee_{i=q+1}^{n}\left(y_{0, i, k} \wedge z_{i}\right) \vee\left(y_{1, i, k} \wedge \neg z_{i}\right), \tag{35}
\end{equation*}
$$

respectively. A cut between (34) and (35) on $x_{0, q, k}$ gives

$$
\begin{equation*}
z_{0, q, k} \vee z_{q} \vee\left(y_{1, q, k} \wedge \neg z_{q}\right) \vee \bigvee_{i=q+1}^{n}\left(y_{0, i, k} \wedge z_{i}\right) \vee\left(y_{1, i, k} \wedge \neg z_{i}\right) \tag{36}
\end{equation*}
$$

On the other hand, a cut between (34) and (9) on $x_{0, q, k}$ gives

$$
\begin{equation*}
z_{0, q, k} \vee y_{0, q, k} \vee\left(y_{1, q, k} \wedge \neg z_{q}\right) \vee \bigvee_{i=q+1}^{n}\left(y_{0, i, k} \wedge z_{i}\right) \vee\left(y_{1, i, k} \wedge \neg z_{i}\right) . \tag{37}
\end{equation*}
$$

Finally, an introduction of conjunction between (36) and (37) on z_{q} and $y_{0, q, k}$ gives $D_{q, k}^{0}$ as desired.
We have shown how to obtain $D_{1, k}^{0}$. In order to obtain D_{k}, we only need to cut $D_{1, k}^{0}$ with (3) on $z_{0,1, k}$.

B Appendix: Monotone construction of $x(G)$

We build a circuit C that, on input $G=\left\{p_{u v}\right\}$, produces outputs of the form $x_{e, i, j}$ that correspond to the encoding of $\mathcal{F}(G)$ in terms of the x-variables.

- Clauses of the type $\bigvee_{l=1}^{k} q_{i l}$: Let t be the numbering of this clause in $\mathcal{F}(G)$. Then, its encoding in terms of the x-variables is produced by plugging the constant 1 to the outputs $x_{1, q_{i 1}, t}, \ldots, x_{1, q_{i k}, t}$. The rest of outputs get plugged the constant 0 .
- Clauses of the type $\neg q_{i l} \vee \neg q_{j l} \vee \neg p_{i j}$: Let t be the numbering of this clause in $\mathcal{F}(G)$. The encoding is $x_{0, q_{i l}, t}=1, x_{0, q_{j l}, t}=1, x_{0, p_{i j}, t}=\neg p_{i j}$ and the rest are zero. Notice that this encoding is anti-monotone in the $p_{i j}$'s.
- Finally, the clauses defi ning the conjunctions of up to $c \log k$ literals are independent of G since only the q-variables are relevant here. Therefore, the encoding is done as in the first case.

The reader can easily verify that when G contains a $2 k$-clique, the encoded formula contains the clauses of $P H P_{k}^{2 k}$ and the defi nitions of the conjunctions up to $c \log k$ literals. Therefore $R E F(x(G), y)$ is satisfi able given that $P H P_{k}^{2 k}$ has a small $\operatorname{Res}(c \log k)$ refutation. Similarly, if G is k-colorable, the formula $S A T(x(G), z)$ is satisfi able by setting $z_{p_{i j}}=p_{i j}$ and $q_{i l}=1$ if and only if node i gets color l.

[^0]: *Partially supported by CICYT TIC2001-1577-C03-02 and ALCOM-FT IST-99-14186.
 ${ }^{\dagger}$ Partially supported by MEC through grant PB98-0937-C04 (FRESCO project), CICYT TIC 98-0410-C02-01 and TIC2001-1577-C03-02.

