
On the Automatizability of Resolution
and Related Propositional Proof Systems

Albert Atserias
�

Marı́a Luisa Bonet
�

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

C/Jordi Girona Salgado, 1-3, Edif. C6.
08034 Barcelona - Spain.

Tel: +34 93 401 69 94
Fax: +34 93 401 70 14�

atserias,bonet � @lsi.upc.es

January 21, 2002

Abstract

Having good algorithms to verify tautologies as efficiently as possible is of prime interest
in different fields of computer science. In this paper we present an algorithm for finding Res-
olution refutations based on finding tree-like Res(k) refutations. The algorithm is based on the
one of Beame and Pitassi [4] for tree-like Resolution, but it is provably more efficient. On the
other hand our algorithm is also more efficient than Davis-Putnam and better in the sense of
space usage than the one of Ben-Sasson and Wigderson [5]. We also analyse the possibility
that a system that simulates Resolution is automatizable. We call this notion ”weak automati-
zability”. We prove that Resolution is weakly automatizable if and only if Res(2) has feasible
interpolation. In order to prove this theorem, we show that Res(2) has polynomial-size proofs
of the reflection principle of Resolution (and of any Res(k)), which is a version of consistency.
We also show that Resolution proofs of its own reflection principle require slightly subexpo-
nential size. This gives a slightly subexponential lower bound for the monotone interpolation
of Res(2) and a better separation from Resolution as a byproduct. Finally, the techniques for
proving these results give us a way to obtain a large class of examples that have small Resolu-
tion refutations but require relatively large width. This answers a question of Alekhnovich and
Razborov [1] related to whether Resolution is automatizable in quasipolynomial-time.

�
Partially supported by CICYT TIC2001-1577-C03-02 and ALCOM-FT IST-99-14186.�
Partially supported by MEC through grant PB98-0937-C04 (FRESCO project), CICYT TIC 98-0410-C02-01 and

TIC2001-1577-C03-02.

1

Electronic Colloquium on Computational Complexity, Report No. 10 (2002)

ISSN 1433-8092

1 Introduction

In several areas of Computer Science there has been important efforts in studying algorithms for
satisfiability, despite the problem is NP-complete, and also in studying the complementary problem
of verifying tautologies.

By the theorem of Cook and Reckhow [12], there is strong evidence that for every propositional
proof system there is a class of tautologies whose shortest proofs are super-polynomial in the size
of the tautologies. From this we conclude that given a propositional proof system � , there will
not be an algorithm that will produce � -proofs of a tautology in time polynomial in the size of
the tautology. This is because in some cases we might require exponential time just to write down
the proof. Considering this limitation of proof systems, Bonet, Pitassi and Raz [10] proposed the
following definition. A propositional proof system � is automatizable if there exists an algorithm
that, given a tautology, it produces an � -proof of it in time polynomial in the size of the smallest
� -proof of the tautology.

In the sequel of papers [22, 11, 7] it was proved that no proof system that simulates ����� -
Frege is automatizable, unless some widely accepted cryptographic conjecture is violated. Later,
Alekhnovich and Razborov [1] proved that under a reasonable assumption in parameterized com-
plexity, Resolution is not automatizable. The drawback of this result is that it is weaker than the
others in the sense that we do not know whether a system that simulates Resolution can be au-
tomatizable. This problem suggests the following definition. We say a proof system � is weakly
automatizable if there is a proof system that polynomially simulates � and is automatizable. At
this point it is still open whether Resolution is weakly automatizable. In this paper we characterize
the question of whether Resolution is weakly automatizable as whether the extension of Resolu-
tion Res(�) (or Res(�) for � constant) has feasible interpolation. This notion will be defined in
Section 4. Let us say for the moment, that Resolution, Cutting Planes, Relativized Bounded Arith-
metic, Polynomial Calculus, Lovász-Schrijver and Nullstellensatz have feasible interpolation (see
[18, 10, 24, 13, 20, 28, 27, 25]). On the other hand, the stronger system Frege, and any system
that simulates ��� � -Frege do not have feasible interpolation under a cryptographic conjecture. To
obtain this characterization we show that Res(2) has polynomial-size proofs of the reflection prin-
ciple of Resolution, which is a form of consistency. We also show that Resolution requires almost
exponential size to prove its own reflection principle. As a corollary we get an almost exponential
lower bound for the monotone interpolation of Res(2) improving over the quasipolynomial lower
bound in [3].

Despite the discouraging results just mentioned, there is still some effort put in finding good
algorithms for proof systems such as Resolution. The first implementations were variants of the
Davis-Putnam procedure [16, 15] for testing unsatisfiability that consists of either producing a tree-
like Resolution refutation (if one exists), or giving a satisfying assignment. For various versions
of this algorithm, one can prove that is it not an automatization procedure even for tree-like Reso-
lution. A better algorithm for finding tree-like Resolution refutations was proposed by Beame and
Pitassi [4]. They give an algorithm that works in time quasipolynomial in the size of the small-
est proof of the tautology. So tree-like Resolution is automatizable in quasipolynomial time, but
the algorithm is not a good automatization procedure for general Resolution (see [8]). A more
efficient algorithm is the one of Ben-Sasson and Wigderson based on the width of a refutation.
This algorithm weakly automatizes tree-like Resolution in quasipolynomial time and Resolution

1

in subexponential time. On the other hand, Bonet and Galesi gave a class of tautologies for which
the algorithm will take subexponential time to finish, matching the upper bound. In this paper
we show that this is not an isolated example. We describe a method to produce tautologies that
have small Resolution refutations but require relatively large width, answering an open problem
of Alekhnovich and Razborov [1]. As they claim, this is a necessary step towards proving that
Resolution is not automatizable in quasipolynomial-time.

Even though the algorithm of Ben-Sasson and Wigderson is not an automatization procedure
according to our definition, it is one of the best algorithms in terms of time performance. However,
an important limitation of the procedure is the space it uses. This is because the number of clauses
that have to be kept in memory is enormous. The algorithm we present here has a comparable
performance as far as time, the space usage is never worse, and we prove that the space is at least
quasipolynomially smaller in a number of cases. Moreover, our algorithm is exponentially more
efficient than the one of Beame and Pitassi and any Davis-Putnam procedure.

2 Definitions

Resolution is a refutational proof system for CNF formulas, that is, conjunctions of clauses. The
system has one inference rule, the resolution rule:

����� �������
�	���

where � is a literal, and � and � are clauses. The refutation finishes with the empty clause. The size
of a Resolution refutation is the number of clauses in it. The system tree-like Resolution requires
that each clause is used at most once in the proof. When this restriction is not fulfilled, we say that
the refutation is in DAG form.

Following [5] the width of a refutation
 is defined as the number of literals of the greatest
clause appearing in
 . The main observation in [5] is a relation between the size and the width
of Resolution refutations. They show that if a set of clauses has a tree-like Resolution refutation
of size ��� , then it has a Resolution refutation of width
���� ��� . Similarly, if it has a Resolution
refutation of size � , then it has a Resolution refutation of width ����� ��
���� ��� . Ben-Sasson and
Wigderson used this size-width trade-off to obtain an algorithm that finds Resolution refutations.
It consists in deriving all posible clauses of increasing width until the empty clause is found. The
time of the algorithm is �����! #" where $ is the minimal width of a Resolution refutation of the initial
set of clauses. Notice that the space used by the algorithm can only be bounded by �%�&�' (" since
all derivable clauses of width)�*+$ are needed to obtain the clauses of width $. Recall that the
minimal width $ is at most
,�-� ��� in the tree-like case, where ��� is the minimal tree-like size to
refute the initial set of clauses. Therefore, the algorithm takes time � �&�'.0/21435"� in this case. Also, the
minimal width $ is at most � ��
���� � in the general case, where � is the minimal size to refute the

set of clauses. This gives an � � 36.0/21�7 bound on the running time.
A � -term is a conjunction of up to � literals. A � -disjunction is an (unbounded fan-in) disjunc-

tion of � -terms. The refutation system Res(�), defined by Krajı́ček [21], works with � -disjunctions.
There are three inference rules in Res(�): Weakening, 8 -Introduction, and Cut.

�
�	���

�	�9�;: �<���=�?>@8BA4A4AC89�?DE�
�F�G�<���H�;:%8�A5A4AI8��?DJ�

���B�=�;:&8�A4A5AI8��?DE� �K�G���;:%��A4A5A��G���?D
�	�G�

2

Here � and � are � -disjunctions and the ��� ’s are literals. As usual, if � is a literal, ��� denotes the
oposite literal. We also allow the axioms ������� . Observe that Res(1) is equivalent to Resolution.
The size of a Res(�) refutation is the number of � -disjunctions in it. As in Resolution, the tree-like
version of Res(�) requires each � -disjunction in the proof to be used only once.

3 Some Simple Lemmas and an Algorithm

For every set of literals �H:��4A5A4A�� �?D we define a new variable ���	��

�
�
�
 ��� meaning �=: 8 A4A4A�8 �?D . The
following clauses define ���	��

�
�
�
 ��� :

��������

�
�
�
 � � ����� for every
������� �4A5A4A������ (1)

��� : ��A5A4A��G��� D ��� ����

�
�
�
 � � (2)

Let ! be a set of clauses on the variables)(:��5A4A4A��) 3 . For every integer �#"%$, we define !�& as the
union of ! with all the defining clauses for the variables �'�	��

�
�
�

 � � for all �)(� .
Lemma 1 If the set of clauses ! has a Res(�) refutation of size � , then ! & has a Resolution refuta-
tion of size ��� � ��� . Furthermore, if the Res(�) refutation is tree-like, then the Resolution refutation
is also tree-like.

Proof : Let
 be a Res(�) refutation of size � . To get a Resolution refutation of !*& , we will first
get a clause for each � -disjunction of
 . The translation consists in substituting each conjunction
�;: 8 A4A4A 8��?D for �+(� in a clause of
 by �,����

�
�
�

 � � . Also we have to make sure that we can make
this new sequence of clauses into a Resolution refutation so that if
 is tree-like, then the new
refutation will also be. We have the following cases:

Case 1: In
 we have the step:

�	�B�=�;:&8�A4A5A�89�?DE� - �����;:&� A4A4A��G���?D
�K��-

The corresponding clauses in the translation will be: �). �/������

�
�
�
 � � , -).4� ���;:#� A5A4A�� ���?D and �0. �1-2. .
To get a tree-like derivation of �3.6�4-2. from the two other ones, first obtain �5� ����

�
�
�
 � � �4-2. in a
tree-like way from -6.C�9� �;:��9A4A4A4� ���?D and the clauses �5�7�	��

�
�
�

 � � � ��� . Finally resolve �5�,����

�
�
�
 � � �8-2.
with �0.��9�7����

�
�
�
 � � to get �0.��#-). .

Case 2: In
 we have the step:

�	���;: -+���=�?> 8 A4A4AI8 �?DE�
�K�+-+���=�;:&8BA4A4AC89�?DE�

The corresponding clauses in the translation will be: � . � � : , - . ��� �;:<

�
�
�
 � � and � . ��- . �#� ����

�
�
�

 ��� .
Notice that there is a tree-like derivation of ��� : ���5� �=:�

�
�
�

 � � ��� ����

�
�
�
 � � from the clauses of ! & . Using
this clause and the translation of the premises, we get � . �+- . �8� ����

�
�
�
 ��� .

Case 3: The Weakening rule turns into a weakening rule for Resolution which can be eliminated
easily.

At this point we have obtained a Resolution refutation of !>& that may use axioms of the type
����� � . These can be eliminated easily too. ? @

3

Lemma 2 If the set of clauses ! & has a Resolution refutation of size � , then ! has a Res(�) refuta-
tion of size ��� � ��� . Furthermore, if the Resolution refutation is tree-like, then the Res(�) refutation
is also tree-like.

Proof : We first change each clause of the Resolution refutation by a � -disjunction of Res(�) by
translating � ����

�
�
�
 ��� by � : 8 A5A4A 8B� D and ��� �	��

�
�
�
 ��� by ��� : � A4A5A � ��� D . At this point the rules of the
Resolution refutation turn into valid rules of Res(�).

Now we only need to produce derivations of the defining clauses of the � variables in Res(�)
to finish the simulation. The clauses ��� ����

�
�
�
 ��� � � � get translated into ��� : �FA4A4A � ��� D � � � , which
is a weakening of the axiom � �@�F����� . The clause ���=: � A4A4A#�F���?D � ������

�
�
�

 � � gets translated into
���;:��9A5A4A �9���?D����H�;:689A4A4A48 �?DE� which can be proved form the axioms � � � ����� using the rule for the
introduction of the 8 . ? @

The next lemmas are essentially Proposition 1.1 and 1.2 of [19].

Lemma 3 Any Resolution refutation of width � and size � can be translated into a tree-like Res(�)
refutation of size � � � ��� .
Proof sketch: Let
 be a Resolution refutation of width � and size � . Every non-initial clause � of

 is derived from two other clauses, say � : and � > . Note that the � -disjunction � � : ��� � > � � ,
where � � � is the conjunction of the negated literals of � � , has a very simple tree-like Res(�)
derivation. The rest of the proof goes as in [19]. ? @
Lemma 4 ([19, 23, 17]) Any tree-like Res(�) refutation of size � can be translated into a Resolu-
tion refutation of size ��� � > �

We will describe an algorithm that finds tree-like Res(�) refutations in time � � ��� �&� & .0/21C34" if such
proofs of size � exist. Here, � is the number of variables of the set of clauses. Before that, however,
let us recall the algorithm of Beame and Pitassi for finding tree-like Resolution refutations.

Given an unsatisfiable set of clauses ! , we first check whether ! contains two contradictory
literals � and � � . In such a case, the refutation is clear. Otherwise, for every possible literal � , we
run the algorithm recursively on ! � � ��� for � � steps for increasing values of

��� $ � � � ���4A4A4A until
some recursive call succeeds. Let � be the literal on which the call ! � � ��� succeeded in � � steps.
Then we run the recursive call on ! � � ����� to completion. At the end, we will have produced tree-
like Resolution refutations of ! � � ��� and ! � � ����� . Finally, one can build a tree-like Resolution
refutation of ! as follows: Take the refutation of ! � � ��� and ignore all cuts with the literal � . This
will produce a derivation of � � from ! . Then proceed with the refutation of ! � � � ��� to obtain the
empty clause.

Let us now reason about the correctness of the algorithm: First observe that if ! does not
contain a contradictory pair

� ��� � ��� , then there exists some � such that ! � � ��� contains more unit
clauses than ! . Since ��� �

unit clauses must contain some contradictory pair
� ��� ����� , the recursion

tree will achieve depth at most ��� �
. For the running time, observe that if there is a tree-like

Resolution refutation of size � , then one of the two subtrees of the root must have size at most
��� � . Thus, the running time is dominated by the recurrence� �H� � ��� � ���
	 � � � � : ���
�
��� � .0/21 �����!3�� :�
 7�� > ","�� � � �=��� � � ���� ���H�&� � �=��� � � ��� � ��� � �=��� � � � � A

4

which can be seen to be �����!.0/21434" . On the other hand, we note that the space usage (other than the
output itself) can be bounded by � �=� > � since the recursion tree achieves depth at most ��� �

and
we only need to keep track of a partial restriction to the variables.

Now we turn to the algorithm that finds tree-like Res(�) refutations. We are given a set of
clauses ! , and a parameter � . We start by pre-computing the set of clauses !*& with a new proposi-
tional variable for each conjunction of up to � literals. Then we call the algorithm of Beame and
Pitassi on the set of clauses ! & . If ! has a tree-like Res(�) refutation of size � , this call will return
a tree-like Resolution refutation of ! & in time ��� � � � �H�&�'.0/21E�!3 � 3 � "�" . Here � is the hidden constant in
Lemma 1, and recall that the number of variables of ! & is ��� � & . Then we translate the tree-like
Resolution refutation of ! & into a tree-like Res(�) refutation using (the proof of) Lemma 2. Since
this translation is essentially costless, the overall running time is � � ���E�&� & .0/21C34" .

Finally, we describe an algorithm
�

for finding Resolution refutations if such refutations of size
� exist. Given an unsatisfiable set of clauses ! and � , we run the above procedure for increasing
values of � for ��� � � > ���H�&� & .0/J1C35" steps until one of the calls succeeds. Here � is the hidden constant
in Lemma 2. At that point we will have a tree-like Res(�) refutation of ! . Then, using (the proof
of) Lemma 4, we translate this refutation into a non-necessarily tree-like Resolution refutation.

If ! has a Resolution refutation of size � , the running time of this algorithm is bounded by
��� � � > ���=��� & .0/21�35" where � is the minimal integer so that ! has a tree-like Res(�) refutation of size
� � � � . Note that by Lemma 2, this value of � never exceeds the minimal width of refuting ! . Thus,
the running time of our algorithm is comparable with the one of Ben-Sasson and Wigderson when
� is small. On the other hand, the space usage of this algorithm is � �=� >�& � which again is no much
worse than the one of Ben-Sasson and Wigderson. However, as the next two lemmas show, in some
cases the space bound is a quasipolynomial improvement, and the running time is an exponential
improvement over the algorithm of Beame and Pitassi and any DLL procedure.

In the following, let ���	� � be the pebbling tautology in [5] and let
��

 33�� be the Weak Pigeon-
hole Principle with � pigeons and � . holes.

Lemma 5 On ���	� � , algorithm
�

takes time � �&�!.0/J1C35" while the algorithm of Beame and Pitassi
takes time ��� �!3
�C.0/J1-34" .
Proof : As mentioned in [5], the set of clauses of ���	� � has a polynomial-size Resolution refutation
of width ��� � � , in fact width � . Therefore, by Lemma 2, it has a polynomial-size tree-like Res(�)
refutation. It follows that the running time of algorithm

�
is �&�&�'.0/21C34" (we note that [17] proved

that ����� � has a polynomial-size tree-like Res(�) refutation). On the other hand, it is known [5] that
every tree-like Resolution refutation of ���	� � requires size ��� �'3 �I.0/21-34" . ? @
Lemma 6 On
���
�33 � where � . �
,�-� � �&
����
���� � , algorithm

�
takes time �����!.0/21I35" and space

���E�=��
,�-� ��� > � while the algorithm of Ben-Sasson and Wigderson takes time ���=��.0/21-3
�C.0/J1C.0/21�3 � but
space � �H��.0/21-3
�C.0/J1C.0/21C3 � .
Proof : Dantchev and Riis [14] proved that
���
 33�� has tree-like Resolution refutations of size
�I�&�!3 � .0/21-3 � " which in this case is ���&� : " . On the other hand, a standard width lower bound argument
proves that the same set of clauses requires width � �
,��� ���&
,�-�
,��� �&� . ? @

5

4 Reflection Principles and Weak Automatizability

Let � be a refutational proof system. Following Razborov [28] (see also [26]), let ��� � ����� be the
set of pairs ��! ���G� , where ! is a CNF formula that has an � -refutation of size � . Furthermore,
let � ���	� be the set of pairs ��!��
� � where ! is a satisfiable CNF. Observe that when � is given in
unary, both ��� � ��� � and � ����� are in the complexity class NP. Pudlák called ����� � ��� ��� � ���
�E�
the canonical NP-pair of � . Note also that ��� � ������� � ����� ���

since � is supposed to refute
unsatisfiable CNF formulas only. Interestingly enough, there is a tight connection between the
complexity of the canonical NP-pair of � and the weak automatizability of � . Namely, Pudlák [26]
showed that � is weakly automatizable if and only if the canonical NP-pair of � is polynomially
separable, which means that a polynomial-time algorithm returns $ on every input from ��� � �����
and returns

�
on every input from � ����� . We will use this connection later.

The disjointness of the canonical NP-pair for a proof system � is often expressible as a contra-
dictory set of clauses. Suppose that one is able to write down a CNF formula � ��� 3� ��� ��� � meaning
that “ � encodes a truth assignment that satisfies the CNF encoded by � . The CNF is of size � and
the underlying variables are) : �5A4A4A��) 3 ”. Similarly, suppose that one is able to write down a CNF
formula ��� � 3�
 � ��� ���#� meaning that “ � encodes an � -refutation of the CNF encoded by � . The
size of the refutation is � , the size of the CNF is � , and the underlying variables are) : �5A4A4A��) 3 ”.
Under these two assumptions, the disjointness of the canonical NP-pair for � is expressible by the
contradictions ��� � 3�
 � ��� ��� ��8 � ��� 3� ��� � � � . This collection of CNF formulas is referred to as the
Reflection Principle of � . Notice that ��� � 3�
 � ��� � � ��8 � ��� 3� ��� ��� � is a form of consistency of � .

We turn next to the concept of Feasible Interpolation introduced by Krajicek [20] (see also
[10, 24]). Suppose that � � ��� ��� � �&8 � : ��� ��� : � is a contradictory CNF formula, where � , � � , and � :
are disjoint sets of variables. Note that for every given truth assignment � for the variables � , one
of the formulas � � ��� ��� � � or � : ��� ��� :2� must be contradictory by itself. We say that a proof system
� has the Interpolation Property in time � � � ���G� if there exists an algorithm that, given a truth
assignment � for the common variables � , returns an

����� $ � � � such that � � ��� ��� � � is contradictory,
and the running time is bounded by � ��� � where � is the minimal size of an � -refutation of
� � ��� ��� � �&8 � : ��� ��� : � . Whenever � ���G� is a polynomial, we say that � has Feasible Interpolation.

The following result by Pudlák connects feasible interpolation with the reflection principle and
weak automatizability.

Theorem 1 [26] If the reflection principle for � has polynomial-size refutations in a proof system
that has the feasible interpolation, then the canonical NP-pair for � is polynomially separable,
and therefore � is weakly automatizable.

For the rest of this section, we will need a concrete encoding of the reflection principle for
Resolution. We start with the encoding of � ��� 3� ��� ��� � . The encoding of the set of clauses by the
variables in � is as follows. There are variables ���
 ��
 � for every � � � $�� � � ,

�/� ��� �4A4A4A�� � � and� ����� �4A4A4A ����� . The meaning of � �
 ��
 � is that the literal) � appears in clause
�
, while the meaning of

� :�
 ��
 � is that the literal ��) � appears in clause
�
.

The encoding of the truth assignment � � � $ � � � 3 by the variables � is as follows. There are
variables �7� for every

� � ��� �5A4A4A � � � , and � �
 ��
 � for every � � � $�� � � ,
�8� ��� �4A4A4A�� ��� � � and�#� ��� �4A4A5A ����� . The meaning of �,� is that variable) � is assigned true under the truth assignment.

The meaning of � �
 ��
 � is that clause
�

is satisfied by the truth assignment due to a literal among

6

) : � ��) : �4A5A4A �) � � : � �),� � : . Similarly, the meaning of � :�
 ��
 � is that clause
�

is satisfied by the truth
assignment due to a literal among)(: � ��) : �4A4A5A �),� � : � ��),� � : �),� . We formalize this as a set of clauses
as follows:

�5� �
0:�
 � ��� � � �
 3 � :�
 � ��� �
� �
 ��
 � �G� � �
 �'
 � �8� � ����� :�
 ��
 � ��� � � :�
 ��
 � �G� � :�
 ��
 � ���5� � ���5� �
 � � :�
 � ��� �
� �
 ��
 � � � �
 ��
 � ����� :�
 ��
 � ����� � :�
 ��
 � � � :�
 ��
 � ���5� �
 � � :�
 � ��� �

The encoding of ��� � 3�
 � ��� ���#� is also quite standard. The encoding of the set of clauses by the
variables in � is as before. The encoding of the Resolution refutation by the variables in � is as
follows. There are variables � �
 �'
 � for every � � � $ � � � ,

� � ��� �4A4A5A�� � � , and
�#� ��� �4A4A5A ���+� . The

meaning of � �
 �'
 � is that the literal) � appears in clause
�

of the refutation. Similarly, the meaning
of � :�
 ��
 � is that the literal ��) � appears in clause

�
of the refutation. There are variables � �
 & and 	 ��
 &

for every
���4��� �4A4A5A����+� and � �4� � �4A5A4A �
� � . The meaning of � �
 & (of 	 ��
 &) is that clause � & was

obtained from clause � � and some other clause, and � � contains the resolved variable positively
(negatively). Finally, there are variables $ �'
 & for every

� � ��� �4A5A4A � � � and � � � �,�4A4A5A ���+� . The
meaning of $ ��
 & is that clause � & was obtained by resolving upon) � . We formalize this by the
following set of clauses:

� � �
 �'
 � � � �
 ��
 � ��
 � � � �
 ��
 � � � $ �
� � �
 ��
 ���G� � :�
 ��
 � � ��� � �6:�
 & �BA4A4AC��� & � :�
 & � � � �
	I:�
 & � A4A4AC��	 & � :�
 & � � � � �
� ��
 & �G��	 �
 & � � � �
�
� �
 & �G�
� � �
 & � � � � ��	 �
 & ����	 � �
 & � � � �
�
� �
 & �G��$ ��
 & � � �
 �'
 � � � ��� ��	 �
 & ����$ ��
 & � � :�
 ��
 � � � � �
�
� �
 & �9$ ��
 & �G� � �
 ��
 ��� � �
 ��
 & � �
 � ��	 �
 & ��$ ��
 & ��� � �
 ��
 � � � �
 ��
 & � ��$ �
$�:�
 & � A4A4AI��$ 3
 & � � � � ��$ ��
 & ��� $ � �
 & � � � �

Notice that this encoding has the appropriate form for the monotone interpolation theorem.

Theorem 2 The reflection principle for Resolution � ��� 3� ��� ��� �&8 ��� � 3�
 � ��� ���#� has Res(2) refu-
tations of size �H�����F� �G� �&� : " .
Proof : Our goal is to get the following 2-disjunction

- &�� 3�
���6: ��� �
 ��
 &�8���� �&�B��� :�
 ��
 &�8G�5���;�

for every � � ��� �4A4A5A ���+� . The empty clause will follow by resolving - � with (10).
The case �4(� is easier and is included in Appendix A. For the case �G* �4(� , we show

how to derive -3& from - : �4A4A4A � - & � : . First, we derive �
� ��
 &�����	 �
 & �+- & . From (18) and (11) we
get ��	 �
 & ��� $��
 & �G� � �
 �<
 � . Resolving with -3� on � �
 �<
 � we get

��	 ��
 & ��� $��
 & �B��� :�
 �
 � 8��5��� �&� 3�
��� �������
��� �
 ��
 � 88���;�&� ��� :�
 �'
 � 8��5���;� A (23)

A cut with ��� �G�5��� on � :�
 �<
 � 8������ gives

��	 �
 & ����$ �<
 & �G�5� � � 3�
��� ����� �
��� �
 ��
 � 88� � �&� ��� :�
 ��
 � 8���� � � A (24)

7

Let 	 .��� 	 . A cut with ��� � �G�5��� � on � �
 � �
 � 88��� � gives

��	 �
 & ����$��<
 & �G�5��� �8��� � � ��� :�
 � �
 � 8G�5��� � �&�
�

���� �
 � �
��� �
 ��
 � 88���;�&� ��� :�
 ��
 � 8������ � A (25)

From (20) and (22) we get ��	 �
 &%� ��$��<
 &@� � � �
 � �
 �4� � �
 � �
 & . Resolving with (24) on � �
 � �
 �482��� � gives

��	 ��
 & ����$��<
 & ������� � � �
 � �
 & ����� :�
 � �
 � 8��5��� � �&�
�

���� �<
 � �
��� �
 �'
 � 8����?�%����� :�
 ��
 � 8G�5���;� A (26)

An introduction of conjunction between (25) and (26) gives

��	 �
 & �G��$��<
 & ���5��� ����� �
 � �
 & 8���� � �&�B��� :�
 � �
 � 8G�5��� � �&�
�

���� �<
 � �
��� �
 ��
 � 88���;�&� ��� :�
 ��
 � 8��5���;� A (27)

From (20) and (22) we also get ��	 �
 & �9� $ �
 & �9� � :�
 � �
 � � � :�
 � �
 & . Repeating the same procedure we
get

��	 ��
 & ��� $��
 & �G�5��� �B��� �
 � �
 & 88��� � �&�B��� :�
 � �
 & 8G�5��� � �%�
�

���� �
 � �
��� �
 ��
 � 88��� �&�B��� :�
 ��
 � 8������ � A (28)

Now, repeating this two-step procedure for every 	 .��� 	 , we get

��	 ��
 &���� $��
 & �G�5��� � �
���� � ��� �
 ��
 &�8���� �&�B��� :�
 ��
 � 8G�5���;� A (29)

A dual argument yould yield �
� ��
 & � ��$��<
 & � ��� ��� ���� � ��� �
 ��
 & 8 ���?���F��� :�
 ��
 &�8 �5���;� . A cut with
(29) on ��� gives �
� ��
 & �B��	 ��
 &��B� $��
 &�� � ���� � ��� �
 ��
 & 8#���;�%�F��� :�
 ��
 & 8 �5���;� . Weakening gives then
�
� �
 & �B��	 �
 & � � $��
 &��4- & . Resolving with (21) gives �
� �
 & � ��	 �
 & �4- & . Coming to the end,
we resolve this with (12) to get � ��
 & ����	 �
 & �#- & . Then resolve it with (14) to get ��	��
 & �#- & , and
resolve it with (13) to get -2& . ? @

An immediate consequence of Theorems 2 and 1 is that if Res(2) has feasible interpolation,
then Resolution is weakly automatizable. The reverse implication holds too.

Theorem 3 Resolution is weakly automatizable if and only if Res(2) has feasible interpolation.

Proof : Suppose Resolution is weakly automatizable. Then by Corollary 10 in [26], the NP-pair of
resolution is polynomially separable. We claim that the canonical pair of Res(2) is also polynomi-
ally separable. Here is the separation algorithm: Given a set of clauses ! and a number � , we build
!�> and run the separation algorithm for the canonical pair of Resolution on !&> and ��� � � , where
� is the hidden constant in Lemma 1. For the correctness, note that if ! has a Res(2) refutation of
size � , then ! > has a Resolution refutation of size � � � � by Lemma 1, and the separation algorithm
for the canonical pair of Resolution will return $ on it. On the other hand, if ! is satisfiable, so is
! > and the separation algorithm for Resolution will return

�
on it. Now, for the feasible interpola-

tion of Res(2), consider the following algorithm. Let � � ��� ������8 � : ��� ��� � be a contradictory set of
clauses with a Res(2) refutation
 of size � . Given a truth assignment � for the variables � , run the
separation algorithm for the canonical pair of Res(2) on inputs � � ��� ���#� and � . For the correctness,
observe that if ��: ��� ��� � is satisfiable, say by � ���

, then

	� �
�
 � �
� is a Res(2) refutation of � � ��� �
���

8

of size at most � and the separation algorithm will return $ on it. On the other hand, if � � ��� �
���
is satisfiable, the separation algorithm will return

�
, which is correct. If both are unsatisfiable, any

answer is fine. ? @
The previous theorem works for any � constant. If � �
���� � , then we get that if Resolution

is weakly automatizable then Res(
,�-�) has feasible interpolation in quasipolynomial time. The
positive interpretation of these results is that to show that Resolution is weakly automatizable, then
we only have to prove that Res(2) has feasible interpolation. The negative interpretation is that to
show that resolution is not weakly automatizable we only have to prove that Res(
����) doesn’t have
feasible interpolation in quasipolynomial time.

It is not clear whether Res(2) has feasible interpolation. We know, however, that Res(2) does
not have monotone feasible interpolation (see [3] and Corollary 1 in this paper). On the other
hand, tree-like Res(2) has feasible interpolation (even monotone) since Resolution polynomially
simulates it by Lemma 4.

A natural question to ask is whether the reflection principle for Resolution has Resolution
refutations of moderate size. Since Resolution has feasible interpolation, a positive answer would
imply that Resolution is weakly automatizable by theorem 1. Unfortunately, as the next theorem
shows, this will not happen. The proof of this result uses an idea due to Pudlak.

Theorem 4 For some choice of � , � , and � of the order of a quasipolynomial � �&�'.0/21 D " on the
parameter � , every Resolution refutation of ��� � 3�
 � ��� �
��� 8 � ��� 3� ��� ��� � requires size at least

� � � D ����� " .
Proof sketch: Suppose for contradiction that there is a Resolution refutation of size � � � � � D ����� " .
Let � � � : � > , and let � � � &-� �*� 	 � be the CNF formula expressing that the graph on � nodes
encoded by

� � ��
 � � is � -colorable. See Definition 7.1 in [20] for an explicit encoding of this formula.
Obviously, if � is � -colorable, then ��� � & �	�2� 	 � is satisfiable, and if � contains a � � -clique, then
� � � & ���)� 	 � is unsatisfiable. More importantly, if � contains a � � -clique, then the clauses of

���
 >�&& are contained in ��� � & ���)� 	 � . Now, for every graph � on � nodes, let ���	� � be the
clauses ��� � & ���)� 	 � together with all clauses defining the extension variables for the conjunctions
of up to �6
,�-� � literals on the 	 -variables. Here, � is a constant so that the � �&�'.0/21 & " upper bound on

���
 >�&& of [23] can be done in Res(��
���� �). From its very definition and Lemma 1, if � contains
a � � -clique, then ���	� � has a Resolution refutation of size � �&�'.0/21 & " . Finally, for every graph � , let
�&�	� � be the encoding of the formula �G��� � . With all this notation, we are ready for the argument.

In the following, let � be the number of variables of �G��� � , let � be the number of clauses of
���	� � , and let � � �(�&�!.0/J1 & " . By assumption, the formulas ��� � 3�
 � ���&�	� � ������8 � ��� 3� ���&�	� ��� � �
have Resolution refutations of size at most � . Let � be the monotone circuit that interpolates these
formulas given �&�	� � . The size of � is � �&� : " . Moreover, if � is � -colorable, then � ��� 3� ���&�	� ��� � �
is satisfiable, and � must return $ on �&�	� � . Also, if � contains a � � -clique, then ��� � 3�
 � ���&�	� ���
���
is satisfiable, and � must return

�
on �&�	� � . Now, an anti-monotone circuit for separating � � -

cliques from � -colorings can be built as follows: given a graph � , build the formula �&�	� � (anti-
monotonically, see Appendix B for details), and apply the monotone circuit given by the monotone
interpolation. The size of this circuit is � � � D ����� " , and this contradicts Theorem 3.11 of Alon and
Boppana [2]. ? @

9

An immediate corollary of the last two results is that Res(2) is exponentially more powerful
than resolution. In fact, the proof shows a lower bound for the monotone interpolation of Res(2)
improving over the quasipolynomial lower bound in [3].

Corollary 1 Monotone circuits that interpolate Res(2) refutations require size � � � D ����� " on Res(2)
refutations of size � �&�'.0/21 D " .

Theorem 4 is in sharp contrast with the fact that an appropriate encoding of the reflection
principle for Res(2) has polynomial-size proofs in Res(2). This encoding incorporates new � -
variables for the truth values of conjunctions of two literals, and new � -variables encoding the
presence of conjunctions in the 2-disjunctions of the proof. The resulting formula preserves the
form of the feasible interpolation. We leave the tedious details to the interested reader.

Theorem 5 The reflection principle for Res(2) has Res(2) refutations of size �H� > � � � ��� �&� : " . More
strongly, the reflection principle for Res(�) has Res(2) refutations of size �H� & ��� � ��� �&� : " .

We observe that there is a version of the reflection principle for Resolution that has polynomial-
size proofs in Resolution. Namely, let ! be the CNF formula � ��� 3� ��� ��� �@8 ��� � 3�
 � ��� ��� � . Then,
!�> has polynomial-size Resolution refutations by Lemma 1 and Theorem 2. However, this does not
imply the weak automatizability of Resolution since the set of clauses does not have the appropriate
form for the feasible interpolation theorem.

5 Short Proofs that Require Large Width

Bonet and Galesi [9] gave an example of a CNF expressed in constant width, with small Resolution
refutations, and requiring relatively large width (square root of the number of variables). This
showed that the size-width trade-off of Ben-Sasson and Wigderson could not be improved. Also it
showed that the algorithm of Ben-Sasson and Wigderson for finding Resolution refutations could
perform very badly in the worst case. This is because their example requires large width, and
the algorithm would take almost exponential time, while we know that there is a polynomial size
Resolution refutation.

Alekhnovich and Razborov [1] posed the question of whether more of these examples could
be found. They say this is a necessary first step for showing that Resolution is not automatizable
in quasipolynomial-time. Here we give a way of producing such bad examples for the algorithm.
Basically the idea is finding CNFs that require sufficiently high width in Resolution, but that have
polynomial size Res(�) refutations for small � , say � (
,�-� � . Then the example consists of
adding to the formula the clauses defining the extension variables for all the conjunctions of at
most � literals. Below we ilustrate this technique by giving a large class of examples that have
small Resolution refutations, require large width. Moreover, deciding whether a formula is in the
class is hard (no polynomial-time algorithm is known).

Let � � ��� ��� � � � be a bipartite graph on the sets � and
�

of cardinality � and � respectively,
where � " � . The � -
 �

 �3 , defined by Ben-Sasson and Wigderson [5], states that there is no

10

matching from � into
�

. For every edge ��� �)#� � � , let ����
 � be a propositional variable meaning
that � is mapped to) . The principle is then formalized as the conjunction of the following clauses:

����
 ��� � �
�
��� ����
 ��� � � � � 	�
 ����� � �) :��4A5A4A��) � ������
 ��� ���� �
 �) � � �
� ��� . ��	�
 �=)�� ��� �� � . A
Here,

	�
 �H$ � denotes the set of neighbors of $ in � . Note that if � has left-degree at most � , then
the width of the initial clauses is bounded by � .

Ben-Sasson and Wigderson proved that whenever � is expanding in a sense defined next, every
Resolution refutation of � -
���
 �3 must contain a clause with many literals. We observe that this
result is not unique to Resolution and holds in a more general setting. Before we state the precise
result, let us recall the definition of expansion:

Definition 1 [5] Let � � � � � � � � � be a bipartite graph where 	 � 	 � � , and 	 � 	 � � . For
� .�� � , the boundary of � , denoted by � �0. , is the set of vertices in

�
that have exactly one

neighbor in � . ; that is, � � . � �) � ��� 	 	 �H)#� � � .�	 � � � . We say that � is ���#� � �
� ���&� -expanding
if every subset � .�� � of size at most � is such that 	 � � . 	������ 	 � . 	 .

The proof of the following statement is the same as in [5] for Resolution.

Theorem 6 [5] Let � be a sound refutation system with all rules having fan-in at most two. Then, if
� is ���#� � ���,���&� -expanding, every � -refutation of � -
���
 �3 must contain a formula that involves
at least ����� � distinct literals.

Now, for every bipartite graph � with � � �-� , let ! �	� � be the set of clauses defining � -

���
 �3 together with the clauses defining all the conjunctions up to ��
,�-� � literals, where � is a
large constant.

Theorem 7 Let � be an ���#� � � � �H� �
,��� �G����� %
,��� �G� with �!� ��� and left-degree at most
,��� � .
Then (i) !���� � has initial width
,��� � , (ii) any Resolution refutation of !���� � requires width at least
� �H���&
,�-� �&� , and (iii) !���� � has polynomial-size Resolution refutations.

Proof : Part (i) is obvious. For (ii), suppose for contradiction that !���� � has a Resolution refutation
of width $ �#" �=� �&
���� ��� . Then, by the proof of Lemma 2, � -
 �

 �3 has a Res(�6
,��� �) refutation
in which every ����
,�-� �&� -disjunction involves at most $ ��
,�-� � �$" �=��� literals. This contradicts
Theorem 6. For (iii), recall that
���
 �3 has a Res(�6
,��� �) refutation of size ���&�'.0/21C35" by [23] since
�!� �-� . Now, setting to zero the appropriate variables of
���
 �3 , we get a Res(��
,�-� �) refutation
of � -
���
 �3 of the same size. By Lemma 1, ! �	� � has a Resolution refutation of roughly the same
size, which is polynomial in the size of the formula. ? @

It is known that deciding whether a bipartite graph is an expander (for a slightly different defi-
nition than ours) is coNP-complete [6]. Although we have not checked the details, we suspect that
deciding whether a bipartite graph is an ��� � � ���,����� -expander in the sense of Definition 1 is also
coNP-complete. However, we should note that the class of formulas

� ! �	� � � � expander ��� �
��� � is contained in

� !��	� � � � bipartite ���%� ��� � which is decidable in polynomial-time, and that
all formulas of this class have short Resolution refutations that are easy to find. This is so because
the proof of
 �

 > 33 in [23] is given explicitely.

11

6 Conclusions and Open Problems

We showed that our algorithm of section 3 is exponentially more efficient than the one of Beame
and Pitassi, and can have better space usage than the one of Ben-Sasson and Wigderson. It is still
open whether our algorithm is better than both these algorithms at the same time. Otherwise we
could run in parallel the two algorithms, to see if one of them gives us a refutation. To show this we
need a CNF unsatisfiable formula that has a width lower bound of � �
,�-� ��� , requires exponential
size tree-like Resolution refutations, but that it has polynomial size tree-like Res(�) proofs for �
constant.

It is surprising that the weak pigeonhole principle
���
 > 33 has short Resolution proofs when
encoded with the clauses defining the extension variables. This suggests that to prove Resolution
lower bounds that are robust, one should prove Res(�) lower bounds for relatively large � . In fact,
at this point the only robust lower bounds we know are the ones for ��� � -Frege.

Of course, it remains open whether Resolution is weakly automatizable, or automatizable in
quasipolynomial-time.

Acknowledgement. We are grateful to Pavel Pudl ák for stimulating discussions on the idea of Theorem 4.

References
[1] M. Alekhnovich and A. A. Razborov. Resolution is not automatizable unless W[P] is tractable. In

42nd Annual IEEE Symposium on Foundations of Computer Science, 2001.

[2] N. Alon and R. B. Boppana. The monotone circuit complexity of boolean functions. Combinatorica,
7:1–22, 1987.

[3] A. Atserias, M. L. Bonet, and J. L. Esteban. Lower bounds for the weak pigeonhole principle and
random formulas beyond resolution. Accepted for publication in Information and Computation. A
preliminary version appeared in ICALP’01, Lecture Notes in Computer Science 2076, Springer, pages
1005–1016., 2001.

[4] P. Beame and T. Pitassi. Simplified and improved resolution lower bounds. In 37th Annual IEEE
Symposium on Foundations of Computer Science, pages 274–282, 1996.

[5] E. Ben-Sasson and A. Wigderson. Short proofs are narrow–resolution made simple. J. ACM,
48(2):149–169, 2001.

[6] M. Blum, R. M. Karp, O. Vornberger, C. H. Papadimitriou, and M. Yannakakis. The complexity of
testing whether a graph is a superconcentrator. Information Processing Letter, 13:164–167, 1981.

[7] M. L. Bonet, C. Domingo, R. Gavald à, A. Maciel, and T. Pitassi. Non-automatizability of bounded-
depth Frege proofs. In 14th IEEE Conference in Computational Complexity, pages 15–23, 1999.

[8] M. L. Bonet, J. L. Esteban, N. Galesi, and J. Johansen. On the relative complexity of resolution
refinements and cutting planes proof systems. SIAM Journal of Computing, 30(5):1462–1484, 2000.

[9] M. L. Bonet and N. Galesi. Optimality of size-width trade-offs for resolution. Journal of Computa-
tional Complexity, 2001. To appear. A preliminary version appeared in FOCS’99.

12

[10] M. L. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting planes proofs with small coefficients.
Journal of Symbolic Logic, 62(3):708–728, 1997.

[11] M. L. Bonet, T. Pitassi, and R. Raz. On interpolation and automatization for Frege systems. SIAM
Journal of Computing, 29(6):1939–1967, 2000.

[12] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. Journal of Symbolic
Logic, 44:36–50, 1979.

[13] S. A. Cook and A. Haken. An exponential lower bound for the size of monotone real circuits. Journal
of Computer and System Sciences, 58:326–335, 1999.

[14] S. Dantchev and S. Riis. Tree resolution proofs of the weak pigeon-hole principle. In 16th IEEE
Conference in Computational Complexity, pages 69–75, 2001.

[15] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Communications
of the ACM, 5:394–397, 1962.

[16] M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM, 7:201–215, 1960.

[17] J. L. Esteban, N. Galesi, and J. Messner. Personal communication. Manuscript, 2001.

[18] R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper and lower bounds for tree-like cutting planes
proofs. In 9th IEEE Symposium on Logic in Computer Science, pages 220–228, 1994.

[19] J. Kraj ı́cek. Lower bounds to the size of constant-depth propositional proofs. Journal of Symbolic
Logic, 39(1):73–86, 1994.

[20] J. Kraj ı́cek. Interpolation theorems, lower bounds for proof systems, and independence results for
bounded arithmetic. Journal of Symbolic Logic, 62:457–486, 1997.

[21] J. Kraj ı́cek. On the weak pigeonhole principle. To appear in Fundamenta Mathematicæ, 2000.

[22] J. Kraj ı́cek and P. Pudl ák. Some consequences of cryptographical conjectures for �
:> and �

�
. Informa-

tion and Computation, 140(1):82–94, 1998.

[23] A. Maciel, T. Pitassi, and A. R. Woods. A new proof of the weak pigeonhole principle. In 32nd Annual
ACM Symposium on the Theory of Computing, 2000.

[24] P. Pudl ák. Lower bounds for resolution and cutting plane proofs and monotone computations. Journal
of Symbolic Logic, 62(3):981–998, 1997.

[25] P. Pudl ák. On the complexity of the propositional calculus. In Sets and Proofs, Invited Papers from
Logic Colloquium ’97, pages 197–218. Cambridge University Press, 1999.

[26] P. Pudl ák. On reducibility and symmetry of disjoint NP-pairs. In 26th International Symposium on
Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, pages 621–632.
Springer-Verlag, 2001.

[27] P. Pudl ák and J. Sgall. Algebraic models of computation and interpolation for algebraic proof systems.
In P. W. Beame and S. R. Buss, editors, Proof Complexity and Feasible Arithmetic, volume 39 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, pages 279–296. American
Mathematical Society, 1998.

13

[28] A. A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of bounded arith-
metic. Izvestiya of the RAN, 1995.

A Appendix: Derivation of � � in the case ��� �
We will derive -3& by successive steps as follows. Let - ��<
 & be the following 2-disjunction

- ��<
 & �%� �
 �<
 &��
3�

��� � ��� �
 ��
 &�8��7�?�&�B��� :�
 ��
 &�8G�5���;���

and let - :�<
 & be the following 2-disjunction

- :�<
 & � ��:�
 �
 & �B��� :�
 �<
 &�8G�5��� �&� 3�
� � � � : ��� �
 ��
 &�8����?�&�B��� :�
 ��
 &�8G�5���;� A

Observe that - �3 � :�
 & is simply � �
 3 � :�
 & which is the clause (4) in � ����3� � � � � � . We obtain - :� � :�
 &
from - ��
 & as follows. Cut - ��<
 & with (8) and (6) on � �
 �<
 & to get

��:�
 � � :�
 & � ��:�
 � � :�
 &�� 3�
��� � ��� �
 ��
 &�8���� �&�B��� :�
 ��
 &�8G�5���;� � (30)

and

� :�
 � � :�
 &���� ��:�
 � � :�
 & ������� � :@� 3�
��� � ��� �
 �'
 & 88���;�&� ��� :�
 �'
 & 8��5���;� � (31)

respectively. A cut between (30) and (31) on �%:�
 � � :�
 & gives

��:�
 � � :�
 & ���5��� � :@� 3�
��� � ��� �
 ��
 & 89���;�&����� :�
 ��
 & 8��5�7� � A (32)

On the other hand, a cut between (30) and (9) on �%:�
 � � :�
 & gives

��:�
 � � :�
 & � � :�
 � � :�
 &�� 3�
��� � ��� �
 ��
 &�8��7�?�&�B��� :�
 ��
 &�8G�5���;��� (33)

Finally, an introduction of conjunction between (32) and (33) on ��� � � : and � :�
 � � :�
 & gives - :� � :�
 &
as claimed. Next, we show how to get - ��
 & from - :�
 & . Cut - :�<
 & with (7) and (5) on � :�
 �<
 & to get

� �
 �<
 & � � �
 �<
 & � ��� :�
 �
 & 8G�5� � �&� 3�
��� � � : ��� �
 �'
 & 89� � �&�B��� :�
 �'
 & 8���� � ��� (34)

and

� �
 �<
 &���� � �
 �
 & �����@�B��� :�
 �<
 &�8G�5��� �&� 3�
��� � � : ��� �
 �'
 & 8����?�&�B��� :�
 �'
 & 8������ ��� (35)

14

respectively. A cut between (34) and (35) on � �
 �<
 & gives

� �
 �<
 &������%�B��� :�
 �
 & 8������ �&� 3�
��� � � : ��� �
 ��
 &�8��7�?�&�B��� :�
 ��
 &�8G�5���;� A (36)

On the other hand, a cut between (34) and (9) on � �
 �<
 & gives

� �
 �
 & � � �
 �
 & � ��� :�
 �<
 & 8G�5� � �&� 3�
� � � � : ��� �
 ��
 & 88� � �&�B��� :�
 ��
 & 8G�5� � � A (37)

Finally, an introduction of conjunction between (36) and (37) on � � and � �
 �
 & gives - ��<
 & as desired.
We have shown how to obtain - � :�
 & . In order to obtain -2& , we only need to cut - � :�
 & with (3)

on � �
0:�
 & .

B Appendix: Monotone construction of �
�����

We build a circuit � that, on input � � � � ��� � , produces outputs of the form � �
 ��
 � that correspond
to the encoding of ���	� � in terms of the � -variables.

� Clauses of the type � &� ��: 	 �	� : Let � be the numbering of this clause in �G��� � . Then, its
encoding in terms of the � -variables is produced by plugging the constant

�
to the outputs

� :�
 � � ��
 � �4A4A4A ��� :�
 � � �
 � . The rest of outputs get plugged the constant $.

� Clauses of the type ��	����#����	����#���
� � � : Let � be the numbering of this clause in �G��� � . The
encoding is � �
 � �
	
 �

� �
, � �
 ��� 	
 �

� �
, � �

 � �
 �

� �
� � � and the rest are zero. Notice that this
encoding is anti-monotone in the � � � ’s.

� Finally, the clauses defining the conjunctions of up to ��
���� � literals are independent of �
since only the 	 -variables are relevant here. Therefore, the encoding is done as in the first
case.

The reader can easily verify that when � contains a � � -clique, the encoded formula contains
the clauses of
���
 >�&& and the definitions of the conjunctions up to �6
,�-� � literals. Therefore
��� � ���&��� � ���#� is satisfiable given that
��

 >�&& has a small Res(��
���� �) refutation. Similarly, if �
is � -colorable, the formula � ��� ���&��� � ��� � is satisfiable by setting ��
 � � � ��� � and 	 �	� � �

if and only
if node

�
gets color � .

15

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

