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Abstract

The problem of predicting a sequence x1, x2, .... where each xi belongs to a finite
alphabet A is considered. Each letter xt+1 is predicted using information on the
word x1, x2, ...., xt only. We use the game theoretical interpretation which can be
traced to Laplace where there exists a gambler who tries to estimate probabilities for
the letter xt+1 in order to maximize his capital . The optimal method of prediction is
described for the case when the sequence x1, x2, .... is generated by a stationary and
ergodic source. It turns out that the optimal method is based only on estimations of
conditional probabilities. In particular, it means that if we work in the framework
of the ergodic and stationary source model, we cannot consider pattern recognition
and other complex and interesting tools, because even the optimal method does not
need them. That is why we suggest a so-called nonprobabilistic approach which
is not based on the stationary and ergodic source model and show that complex
algorithms of prediction can be considered in the framework of this approach.

The new approach is to consider a set of all infinite sequences (over a given finite
alphabet) and estimate the size of sets of predictable sequences with the help of the
Hausdorff dimension. This approach enables us first, to show that there exist large
sets of well predictable sequences which have zero measure for each stationary and
ergodic measure. (In fact, it means that such sets are invisible in the framework
of the ergodic and stationary source model and shows the necessity of the new
approach.) Second, it is shown that there exist quite large sets of such sequences
that can be predicted well by complex algorithms which use not only estimations
of conditional probabilities.

Index terms: prediction, learning, stationary and ergodic source, Hausdorff dimen-
sion, Kolmogorov complexity, Turing machine.

1 Introduction

Presently, the problem of prediction is investigated by many researches because its practi-
cal applications and importance for probability theory , machine intelligence, learning and
other theoretical sciences: see, for example, [1]. We shall investigate a model of prediction
of time series which can be traced to Laplace (cf. [4] where the problem is referred to as the
problem of succession). Namely, we consider the finite alphabet A = {a1, . . . , am}, m ≥ 2,
and an infinite sequence x1, x2, .... , where xi ∈ A. Let us assume that gambler I has capi-
tal Vt at moment t = 0, 1, . . . ; V0 = 1. Each moment t that the gambler divides the capital
Vt into |A| parts equals VtPI(a/x1, . . . , xt), a ∈ A. (The Stakes on the xt+1 = a ∈ A).
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PI(a/x1, . . . , xt) reflects the I- gambler’s confidence in the appearance of a ∈ A at the
moment t + 1. (Here and in the sequel |X| denotes the number of letters , if X is an
alphabet or a set, and the length of X, if the X is a word).

The gambler I learns xt+1 at the moment t + 1 and his capital becomes equal to
|A|VtPI(xt+1/x1, . . . , xt). (i.e., the stake on the right letter is increasing |A| times).

This model was suggested in [6] and used by many authors, see, for example,[3], [9]. It
seems that this model is the simplest and can be considered as the useful tool for making
first steps towards an understanding of the connection between complexity of prediction
algorithms and their efficiency.

Denote the win by the method (or gambler) I with WI(x1, . . . , xt) :

WI(x1, . . . , xt) =

t
∏

i=1

(|A|PI(xi+1/x1, . . . , xi)) (1)

In this case the gambler divides his capital into |A| parts each moment (stakes on the
letter of A), and at the moment (t + 1) his capital should be equal to

WI(x1, . . . , xt)(|A|PI(xi+1/x1, . . . , xi)),

i.e., the stake on the letter that actually appears, increases |A| times.
Our goal is to find the algorithms maximizing (1). From the mathematical point of

view it is convenient to study the logarithm of WI(x1, . . . , xt) divided by t. Let

LI(x1, . . . , xt) = log(WI(x1, . . . , xt))/t.

(Here and below log x = log2 x ). Then

LI(x1, . . . , xt) = log |A| +

t
∑

i=1

log PI(xi/x1, . . . , xi−1)/t. (2)

We note that, if at the word x1, . . . , xt strategy I recommends staking all the capital
V0 (V0 = 1) on x1 (that is unknown), then the capital V1 = |A| on x2 and so on. This
results in a maximal win equal to |A|t after t games.

If the gambler breaks up all his capital into |A| equal parts each time and stakes those
parts on the letters of A, then the win is equal to 0 and the capital remains the same:
V0 = V1 = ... = Vt = 1. In general, LI(x1, . . . , xt) is the mean value of the exponent of
the capital increase over the first t games: Vt = |A|2tLI(x1,...,xt). This value characterizes
quantitatively the efficiency of prediction I.

It is natural to look for the gambler’s srategy which gives the maximal asymptotic
value of LI(x1, ..., xt) in (2). In the next section we consider this problem when it is
known that the sequence x1...xt is generated by an ergodic and stationary source but
parameters of the source are not known (ESS model sometimes called as a problem of
universal prediction). The main result of that part is the asymptotically optimal ( for
the ESS model ) method of prediction named ρ . This method can find each periodicity.
For example, let A = {0, 1} and x1....x4 = 0101. The described below optimal method ρ
predicts

Pρ(0/0101) = 33/52, Pρ(1/0101) = 19/52.

Thus, the stake on 0 after 0101 is almost twice as high as the stake on 1.
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The method ρ is based on estimations of conditional probabilities. In particular, it
means that the optimal (for the ESS) method ρ does not use even simple regularities. As
an example, consider two infinite sequences

x1 = 1010010001000010....., x2 = 0100011011000001010011...... (3)

The structure of the first sequence is obvious. In order to understand regularities in x2

it is enough to figure out that it is the sequence of the all lexicographically ordered binary
words (0, 1, 00, 01, 10, 11, 000, 001, ...,.) It is easy to show that the method ρ does not use
regularities of the x1 and x2, and that is why its prediction is not efficient. In fact, the
sequences like x1 and x2 are invisible in the framework of the ESS model because they
belong to the set which measure is equal to zero according to any ergodic and stationary
measure.

So, on the one hand the method ρ is optimal in framework of the ESS model, on
the other hand, it cannot find even quite simple regularities and use them for predicting.
Moreover, it is shown in the third part of the paper, that the invisible set is quite large. In
order to measure the ’size’ of sets we use the Hausdorff dimension. (Hausdorff dimension,
best known as a poweful tool of fractal geometry, has been known for over fifty years, to
be closely related to information theory and prediction ,see, for example, [2, 9, 10].)

Thus, we know that the set of sequences which cannot be investigated in the framework
of the ESS model is large. But how many sequences from this set can be predicted quite
well ? This question is considered in the last part of the paper. It is shown that there
exists a large subset of sequences from the ’invisible’ set which can be predicted well
by algorithms realizable by Turing machine. It turns out that the efficiency of the best
algorithms is closely related with Kolmogorov complexity.

2 A method which is asymptotically optimal for er-

godic and stationary sources

We shall describe the optimal method ρ which is based on results from universal coding
theory [9]. First, we give some definitions. Let An, A∗ and A∞ be the sets of all n−
length words, all finite words and all infinite words over the alphabet A, respectively.
Let u1u2 . . . un and v1v2 . . . vk be two words of A∗ and k ≤ n. By τv(u) we denote the
rate of the word v occurring in the sequence u1u2 . . . uk , u2u3 . . . uk+1, u3u4 . . . uk+2, . . .,
un−k+1 . . . un . For example, τ00(000100) = 3. For k = 0, 1, 2. . . . denote the mapping ρk

that assigns to each word u ∈ A∗ the value

pk(u) =







|A|−|u|, for |u| ≤ k
( Γ(|A|/2)

Γ(1/2)|A|

)|A|k

· 1
|A|k

∏

α∈Ak

�
a∈A

Γ(ταa(u)+1/2)

Γ(τ∗
α(u)+|A|/2)

, for |u| > k

where τ ∗
α =

∑

a∈A ταa(u) and Γ() is a gamma function. Now, define the probability
distribution λ on the set of nonnegative integers 0,1,2,... using the code from [7]. Let
log(0)(x) = x, log(i)(x) = log2(log(i−1)(x)) for i ≥ 1 and m(x) = i, so that 0 ≤ log(i)(x) ≤
1. For n = 0, 1, 2, . . . , define

w(n) =

m(n)
∑

i=1

blog(i)(n)c + m(n) + 1, λ(n) = 2−w(n).
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It is known that
− log λ(n) = log n + O(log log n)

when n → ∞ [9].
We define the measure ρ by

ρ =
∞

∑

k=0

λ(k)ρk(u).

The method of prediction is defined by

Pρ(a/x1x2 . . . xt) = ρ(x1x2 . . . xta)/ρ(x1x2 . . . xt).

As an example, consider the prediction computation on x = 0101, A = {0, 1} by the
method ρ. We have

ρ(01010) = 33/210, ρ(01011) = 19/210.

Hence, the prediction follows:

Pρ(0/0101) = 33/52, Pρ(1/0101) = 19/52.

Thus, the stake on 0 after 0101 is almost twice as high as the stake on 1.
From the definition of ρk and ρ we can see that the prediction method ρ uses the

rates of the subwords occurring in the sequence x1x2 . . . xt . In fact, those rates are the
estimations of the conditional probabilities.

The theorem below shows that the metod ρ is close to being optimal when t → ∞.

Theorem 1 For any stationary and ergodic process over A∞ with probability equal to 1,

lim
t→∞

Lρ(x1x2 . . . xt) = log |A| − h

where h is the Shannon entropy of the process. (The limit does exist with probability equal
to 1.)

On the other hand, any prediction method α is asymptotically no better than ρ, so the
following inequality is valid with probability equal to 1:

lim
t→∞

Lα(x1x2 . . . xt) ≤ log |A| − h

The proof is given in [9]. The definition of the Shannon entropy can be found, for
example, in [5] .

3 The new approach

Let us consider the performance of the prediction method ρ when it is applied to the
sequences x1 and x2, which are defined by (3). In both cases ρ does not recognize regu-
larities. When ρ is applied to x1 and t → ∞, the gambler will stake almost all money on
’0’ and will not be able to predict appearances of 1’s because, informally speaking, the
sequence x1 does not contain subwords which are repeated periodically. It is not the case
when ρ is applied to x2 because it is known that any subword u ∈ {0, 1}n, n ≤ 1 has the

4



frequency of occurrence 2−n in x2. That is why the gambler will stake around a half of his
capital on ’0’ and the other half on ’1’, when t → ∞, and his capital remains the same.
On the other hand, if the gambler finds the regularity his capital will grow exponentially.

So, on the one hand, Theorem 1 claims that the prediction method ρ is asymptotically
optimal when it is applied to a stationary and ergodic source. On the other hand, we
have seen that ρ is completely inefficient when it is applied to sequences with regularities.
In order to get over the paradox we suggest a new approach. First we give some new
definitions. For simplicity sake, we consider only the case of A = {0, 1} in this section
, but all results can be easely extended to the general case . Let µ be a stationary and
ergodic measure on {0, 1}∞ and x ∈ {0, 1}∞.The sequence x is defined to be µ− typical
if for any word u ∈ {0, 1}∗

lim
n→∞

(τu(x|
n
1 )/(n − |u| + 1)) = µ(u)

where x|n1 = x1, ..., xn. Informally, it means that the frequency of occurrences of the word
u in the x is equal to the probability of u according to the measure µ. Let T be the set
all typical sequences:

T = {x ∈ {0, 1}∞ : x is typical for some stationary ergodic measure }.
First, we show that the set of untypical sequences which is defined as follows:

T ∗ = {0, 1}∞ − T

is ’invisible’ and quite large.

Theorem 2 i) µ(T ∗) = 0 for any ergodic and stationary measure µ.
ii) dimH(T ∗) = 1

Proof of the Theorem 2 as well as the definition of the Hausdorff dimension is given in
Appendix.(See also [2]for the definition.)

From i) we can see that the set T ∗ has the measure 0 for each ergodic stationary
measure. That is why T ∗ is invisible in the framework of the ESS model. On the other
hand, it is known that dimH(S) ≤ 1 for each subset S from {0, 1}∞ . So, the size of the
invisible set T ∗ is maximal.

But how many well predictable sequences does the set T ∗ contain? If there does not
exist many such sequences we may not look for new models and approaches. The informal
answer is following: the set of well predictable but invisible sequences is as large as the
set of predictable and ’visible’ sequences. Theorem 3 gives a more formal answer on that
question.But first, we have to specify the notation of a prediction method. Since this
moment we will consider only algorithmically realizable prediction methods because only
such methods are interesting from practical point of view. (Algorithmically realizable
prediction methods can be defined by using each ’standard’ notation of the algorithm.
For example, we may think that such algorithms are described as the Turing machines ).

Theorem 3 For every α ∈ [0, 1] there exists the set Wα such that
i) there exists the prediction method γ for which limn→∞ Lγ(x|

n
1 ) ≥ 1−α for all x ∈ Wα

ii) dimH(Wα) = α
iii) µ(Wα) = 0 for every stationay and ergodic measure µ.
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The proof is given in Appendix.
We define Uα as the set of all sequences x such that there exists an algorithmically

realizable prediction method δ(x) for which limn→∞ Lδ(x)(x|
n
1 ) ≥ 1 − α.

The set Uα is worth considering because it contains all well predictable sequences. It
turns out that this set is closely connected with Kolmogorov complexity (the definition
of Kolmogorov complexity can be found, for instance, in [?].)

Theorem 4 i) For each x ∈ Uα

lim
n→∞

KC(x|n1 )/n ≤ α

where KC(u) is the Kolmogorov complexity of the word u.
ii)

dimH(Uα) = α.

The proof may be easily obtained from results of the papers [8, 9].
By definition, Uα contains all well predictable sequences. Hence, it contains the set

Wα which is also well predictable and invisible in the framework of the ESS model. So,
Theorems 3 and 4 show that the invisible set Wα has the maximal size.

4 Appendix

The definition of the Hausdorff dimension.
A set S consisting of subsets in A∗ is called a ρ-cover of Y ⊂ A∞ for ρ > 0 if

1. x ∈ Y has σ ∈ S as its prefix; and

2. 2−|σ| ≤ ρ for ∀σ ∈ S.

Let C(Y, ρ) denote the set of such S’s, and

l(α)(Y, ρ) = inf
S∈C(Y,ρ)

∑

σ∈S

2−α|σ|.

Then, the Hausdorff dimension of the set Y is defined by

dimH(Y ) = inf{α : lim
ρ→0

l(α)(Y, ρ) = 0} = sup{α : lim
ρ→0

l(α)(Y, ρ) = ∞} .

Proof of Theorem 3.
It is easy to see that for every α ∈ [0, 1] there exists π for which −(π log π + (1 −

π) log(1 − π)) = α where, by definition, −(π log π + (1 − π) log(1 − π)) is the Shannon
entropy h(π). We consider two Bernoulli sources µ1, µ2 over {0, 1}∞ such that

µ1(0) = π, µ1(1) = 1 − π, µ2(0) = 1 − π, µ2(1) = π

and let B1 and B2 be the sets of all µ1− typical sequences and µ2− typical sequences ,
respectively. In order to define the set Wα we take any sequences b1 = b1

1b
1
2 . . . ∈ B1 and

b2 = b2
1b

2
2 . . . ∈ B2 and define the sequence w ∈ Wα as follows:

w = b1
1b

2
2b

2
3b

1
4b

1
5b

1
6b

1
7b

2
8b

2
9b

2
10 . . . b2

15b
1
16b

1
17 . . . b1

31b
2
32 . . .

6



It is known that the Hausdorff dimension of the set of all typical sequences of an ergodic
stationary source is equal to the Shannon entropy of the source [2]. So, dimH(B1) =
dimH(B2) = h(π) = −(π log π+(1−π) log(1−π) = α. On the other hand, in [9] it is shown
that there exists a strategy B such that for each x ∈ B1 the equality limn→∞ LB(x|n1 ) =
−(π log π + (1 − π) log(1 − π) = α is valid. (This strategy is quite simple; we should
stake the share of capital π on ’0’ and the share of capital 1 − π on ’1’ .) It is obvious
how to change this strategy in order to obtain the strategy γ from the statement i) of the
theorem. On the other hand, it is intuitively clear that Wα can be transformed into B1

(or B2) without any compression and expansion. That is why all three sets have the same
Hausdorff dimension α and we obtain the statement ii). In order to prove iii) we should
take into account that all sequences in Wα are untypical for each stationary and ergodic
measure simply because limn→∞(τ0(x|

n
1 )/(n − |u| + 1)) does not exist. (According to the

definition of typical sequences all such limits should exist.) Theorem is proved.
Proof of Theorem 2. It is known that for any ergodic stationary measure µ the following

equality is valid :
µ ( the set of all µ- typical seuences) =1,
see [2]. From this equality and the definition of T we can see that µ(T ) = 1. Hence,

µ(T ∗) = µ({0, 1}∞ − T ) = 0. In order to prove the second statement of the theorem it is
enough to note that T contains the sets Wα which are described in Theorem 3. So, we
obtain the statement ii) from Theorem 3 if the parameter α → 1. (That is why the proof
of Theorem 3 is given before the proof of Theorem 2.)
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