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Abstract

We prove a lower bound of Q(m?logm) for the size of any arithmetic circuit for the
product of two matrices, over the real or complex numbers, as long as the circuit doesn’t
use products with field elements of absolute value larger than 1 (where m x m is the
size of each matrix). That is, our lower bound is super-linear in the number of inputs
and is applied for circuits that use addition gates, product gates and products with field
elements of absolute value up to 1.

More generally, for any ¢ = ¢(m) > 1, we obtain a lower bound of Q(m?logy.m)
for the size of any arithmetic circuit for the product of two matrices (over the real or
complex numbers), as long as the circuit doesn’t use products with field elements of
absolute value larger than c.

We also prove size-depth tradeoffs for such circuits.

1 Introduction

Matrix product is among the most studied computational problems. Surprising upper bounds
of O(m**®) (where a < 1, and m X m is the size of each matrix) were obtained by Strassen
in [Str] and improved in many other works. The best current upper bound (obtained by
Coppersmith and Winograd) achieves o ~ 0.376 [CW]| (see [Gat] for a survey). The best
lower bounds, however, are linear lower bounds of between 2.5 - m? and 3 - m? (depending on
the field) for the number of products needed [Bsh, Bla, Shp].

In particular, the following seminal problem is still open: Can matrix product be computed
by circuits of size O(m?), that is, circuits of size linear in the number of inputs ? Super-linear
lower bounds for matrix product are only known for bounded depth circuits [RS]. Note,
however, that Strassen’s method, as well as many other methods for matrix product, use
circuits of larger depth.

The standard computational model for matrix product is by arithmetic circuits over some
field F'. The inputs for the circuit are the entries of the two matrices, and the allowed gates
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are product and addition over F'. Products with field elements are also allowed. In this work,
we take F' to be the field of real numbers (all of our results hold for the complex numbers
as well), and we restrict our arithmetic circuit in the following way: The circuit cannot use
products with field elements of absolute value larger than 1. We call such a circuit a bounded
coefficients arithmetic circust.

We prove that any such circuit for matrix product is of size Q(m?logm).

More generally, if we require that the circuit doesn’t use products with field elements of
absolute value larger than ¢ = ¢(m) (for any function c¢(m) > 1), we obtain that any such
circuit for matrix product is of size Q(m?log,., m). This follows from the case ¢ = ¢(m) = 1
by a simple reduction (just by replacing each product with a field element of absolute value
smaller or equal to c by up to log, c additions and one product with a field element of absolute
value smaller or equal to 1). Hence, in the rest of the paper, we concentrate on the case ¢ = 1.

Besides our main result, we also prove size-depth tradeoffs for bounded coefficients arith-
metic circuits for matrix product. We show that any such circuit of depth d is of size
Q(m2+1/0@) . Note that for general arithmetic circuits much weaker size-depth tradeoffs are
only known [RS].

1.1 Previous work

Bounded coefficients arithmetic circuits were suggested and motivated as a natural model for
arithmetic computations by Morgenstern [Mor]| (1973) and by Chazelle [Cha] (1994). Mor-
genstern and Chazelle observed that many algorithms for arithmetic problems (e.g., the Fast
Fourier Transform algorithm) do not use field elements at all (or use only small field ele-
ments). Morgenstern and Chazelle were mainly interested in the case of linear functions and
proved lower bounds of 2(nlogn) for several such functions (e.g., for the Fourier transform).
Note that for general arithmetic circuits no super-linear lower bound is known for any linear
function (or any constant degree polynomial).

Several works proved size-depth tradeoffs of Q(n'*'/9(@) for bounded coefficients arith-
metic circuits [NW, Lok, Pud]. Asin [Mor, Chal, the focus of these works was linear functions.
As far as we know, no previous result was obtained for the complexity of matrix product (or
similar functions) in the bounded coefficients model.

1.2 Organization of the paper

The paper is organized as follows. In Section 2, we give some basic definitions. In Section 3,
we give lower bounds for linear functions. These lower bounds are then used in Section 4
to prove our lower bound for matrix product. The proof of the main lemma is deferred to
Section 5. In Section 6, we prove our size-depth tradeoff for matrix product.



2 Preliminaries

As mentioned above, we consider arithmetic circuits over the field of real numbers. All of our
results hold for the complex numbers as well.

An arithmetic circuit is a directed acyclic graph as follows: Nodes of in-degree 0 are called
inputs and are labelled with input variables. Nodes of out-degree 0 are called outputs. Each
edge is labelled with a field element (we think of this element as multiplying the outcome of
the edge). Each node other than an input is labelled with either 4+ or x (in the first case the
node is a plus gate and in the second case a product gate).

The computation is done in the following way. An input just computes the value of the
variable that labels it. For every non-input node v, if vy, ..., vy are the nodes that fan into v
then we multiply the result of each v; with the field element that labels the edge that connects
it to v. If v is a plus gate we sum all the results, otherwise v is a product gate and we
multiply all the results. Obviously, each node in the circuit computes a polynomial in the
input variables.

The size of a circuit C is defined to be the number of edges in it and is denoted by Size(C).
The depth of a circuit C is defined to be the length of the longest directed path between an
input and an output in C and is denoted by Depth(C').

We say that an arithmetic circuit (over the real numbers) is a bounded coefficients arith-
metic circuit if all field elements labelling the edges of the circuit are of absolute value smaller
or equal to 1.

We say that an arithmetic circuit is linear if all gates in it are plus gates (i.e., the circuit
contains no product gates). Obviously, the outputs of a linear circuit are linear functions in
the input variables. Let Ly, ..., Ly be k linear functions (in the variables zi, ..., z,). It is well
known (and easy to prove) that (over any field with characteristic 0) any arithmetic circuit
for Ly, ..., Ly can be translated into a linear circuit for L4, ..., Ly, with only a constant-factor
increase in the size and depth of the circuit. In the same way, any bounded coefficients
arithmetic circuit for Lq, ..., Ly can be translated into a bounded coefficients linear circuit for
Ly, ..., Ly, with only a constant-factor increase in the size and depth of the circuit. We can
hence assume w.l.o.g. that linear forms Ly, ..., L; are computed by linear circuits. Given an
n X n matrix H, we say that a linear circuit computes H if it computes the linear functions
that correspond to the rows of H, that is, the circuit computes the functions >°7_; H; ; - zj,
where 21, ..., z,, are the input variables for the circuit.

In this paper, we prove lower bounds on the size of circuits for the product of two m x m
matrices. The input for such a circuit is of size 2m?, and it consists of two m X m matrices
X,Y. The output is the matrix X - Y. That is, there are m? outputs, and the (i, 7)* output
is: Y5, Xik - Yz ; - Each output is a bilinear form in X and Y.

Since the product of two matrices is a bilinear form, it is natural to consider bilinear
arithmetic circuits for it. We say that an arithmetic circuit is bilinear if each product gate
in it computes the product of two linear functions, one in the variables {X; ;} and the other
in the variables {Y;;}. Thus, a bilinear circuit have the following structure. First, there are



many plus gates, computing linear forms in X and linear forms in Y. Then, there is one
level of product gates that compute bilinear forms. Finally, there are many plus gates that
eventually compute the outputs.

Obviously, the outputs of a bilinear circuit are bilinear functions in the input variables
of X and Y. Let fi,..., fr be k bilinear functions (in the variables of X and Y). It is well
known (and easy to prove) that (over any field with characteristic 0) any arithmetic circuit
for fi,..., fr can be translated into a bilinear circuit for fi, ..., fx, with only a constant-factor
increase in the size and depth of the circuit. In the same way, any bounded coefficients
arithmetic circuit for fi,..., fr can be translated into a bounded coefficients bilinear circuit
for fi,..., fx, with only a constant-factor increase in the size and depth of the circuit. We can
hence assume w.l.o.g. that bilinear forms fi, ..., fx are computed by bilinear circuits.

3 Lower Bounds for Linear Functions

In this section, we prove lower bounds for the size of bounded coefficients linear circuits. In
all that comes below, we assume w.l.o.g. that all gates in the circuit are of fan-in 2.

Lower bounds for the size of bounded coefficients linear circuits were first proved by Mor-
genstern [Mor|. Morgenstern observed that for any matrix H, the size of any bounded coef-
ficients linear circuit for H is bounded from below by log, |Det[H]|. For our purpose, we will
need the following simple generalization of this result (Lemma 3.1).

Let L4, ..., Ly be k linear functions in the variables zq, ..., z,. We think of each L; as a
vector in the vector space R". For every 1 < r < n, denote by Vol.[Ly, ..., L;| the maximal
volume spanned by 7 vectors from {L,,..., Ly} and n — r arbitrary unit vectors (i.e., vectors
with L2-norm equal to 1). That is,

VOlr[Ll, ceey Lk] = MAXil,...,ir,eT_;_l,...,en|Det[Li17 ceey Liﬂ Cri1yeeny €n]|,
where €,,1, ..., e, are arbitrary unit vectors in R".

In the same way, for a matrix H of size n x n, we define for every 1 < r <n,

Vol,[H] = Vol,[L4, ..., L],
where L, ..., L,, are the linear forms corresponding to the rows of H.

Lemma 3.1 Let C be a bounded coefficients linear circuit for Lq,...,L,. Then, for every
1 <r<n,
Size(C) > logy(Vol.[Ly, ..., Lg]).

Proof:

Let s = Size(C). Note that since C is a directed acyclic graph, it induces a partial order
on its nodes (a node v is larger than a node u if there exists a directed path from u to v).
Let fi, ..., fs be the linear functions corresponding to all nodes in C', and such that the order
of fi,..., fs agrees with the order induced by the circuit C and f; = z,..., f, = 2z, (where
21, ..., 2, are the input variables for the circuit).
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Since the order of fi, ..., f; agrees with the order of the circuit, for every 7 > n there exist
11,19 < 1 and ¢y, ¢y of absolute value < 1, such that, f; = c¢; - fi; + ¢ - fi,- Hence, by the linear
property of the determinant, it is easy to verify that

Vol,.[f1, ..., fi] <2-Vol,.[f1, ..., fi_1],
and since Vol,[f1, ..., fu] = 1, we have
Vol [f1, ..., fs] <2577 < 2%,
Since {fi, ..., fs} include the functions Ly, ..., L, we have
Vol,[L1, ..., L) < VoL[fi, ..., fs] < 2°.

O

For a linear function L in n variables and for a vector space V' C R", denote by Dist|L, V]
the L2-distance between L and V (as before, we think of L as a vector in R"). For r linear
functions, L, ..., L,, denote by Span|Ly, ..., L,] the vector space in R"™ spanned by Ly, ..., L.
Let Ly, ..., Ly be k linear functions in n variables. For every 1 < r < n, denote

Rig,[L1, ..., Lx] = MIN, MAX;(Dist[L;, V]),
where V' C R" is a vector space of dimension r.

In the same way, for a matrix H of size n x n, we define for every 1 < r <n,

Rig,[H] = Rig,[L, ..., L,],
where Ly, ..., L, are the linear forms corresponding to the rows of H.

A notion similar (but not identical) to Rig,[H] was defined in [Lok] and was used there
to prove size-depth tradeoffs for bounded coefficients arithmetic circuits. Here, we connect
Rig,[L1, ..., Lg] to Vol,[L1, ..., Lg], and hence to the size of the smallest bounded coefficients
arithmetic circuit for Ly, ..., L.

Lemma 3.2 For every k linear functions Ly, ..., Ly, and every 1 < r <n,

IOgQ(VOZT[Ll, ceey Lk]) 2 T - 10g2(RZ'g7,[L1, ceny Lk])

Proof:

Assume w.l.o.g. that r < k (otherwise, Rig,[L1, ..., Ly] = 0). Assume w.l.o.g. that the order
of Ly,...,Ly is as follows: L, is the function L € {Ly, ..., Ly} such that Vol;[L] is maximal.
L, is the function L € {L,, ..., Ly} such that Voly[L, L] is maximal, and so on (i.e., for every
1 < ¢ < k, we have that L; is the function L € {L;,..., Ly} such that Vol;[L4, ..., L;_1, L] is
maximal).



Denote v; = Vol;[L,], and for every 1 < i < k denote v; = Vol;[L, ..., L;] /Vol;_1[L1,

Then, by our assumption on the order of L, ..., L, it is easy to verify that
Ul 2 Uy 2 2 Ve
Therefore,
Vol,[Ly,...,L,] = ﬁvi > (Upg1)"
i=1
At the other hand (again by our assumption on the order of L, ..., L),
vr11 = MAX;(Dist[L;, V),
where V = Span[Ly, ..., L,], and hence,
Rig,[L1, ..., L] < Upy1-

Thus,

VOIT[Ll, ,Lk] 2 VOIT[Ll, ...,LT] 2 (UT+1)T 2 (ngT[Ll, ,Lk])T

o L],

O

Given a matrix H of size m X m, we can use Lemma 3.1 and Lemma 3.2 to prove lower
bounds for bounded coefficients arithmetic circuits for H. For our purpose, we will also need
to prove lower bounds for bounded coefficients arithmetic circuits for the tensor product I ® H
(where I is the identity matrix of size m x m). Recall that I ® H is a matrix of size m? x m?
that consists of m x m blocks of size m x m each, such that the m blocks on the diagonal
contain copies of the matrix H and all other blocks contain the zero matrix (of size m x m).

We will use the following proposition.

Proposition 3.3 Let H be an arbitrary matriz of size m X m and let I be the identity matriz

of size m X m. Then, for every 1 <r < m,

logy (Vol..,[I @ H]) > m - logy( Vol.[H]).

Proof:
By the properties of the determinant, for every matrix A (of size m x m),

Det[I ® A] = (Det[A])™.
Hence, by the definition of Vol,

Vol,.[I ® H] > (Vol.[H])™.



Corollary 3.4 Let H be an arbitrary matriz of size m x m and let I be the identity matrix
of size m x m. Let C be a bounded coefficients linear circuit for I ® H. Then, for every
1<r<m,

Size(C') > r - m - logy(Rig,[H)).

Proof:
By Lemma 3.1, Proposition 3.3, and Lemma 3.2,

Size(C') > log,y(Vol,..,[I ® H]) > m - logy(Vol.[H]) > m - r - log,(Rig,[H]).

4 Lower Bounds for Matrix Product

In this section, we prove a lower bound for the size of bounded coefficients arithmetic circuits
for matrix product. Our bound is based on the lower bounds given in the previous section
and on the following Lemma 4.1. The proof of Lemma 4.1 is given in the next section. In the
following lemma, we assume for simplicity that m is large enough and that m /10 is integer.

Lemma 4.1 (main lemma) Let Ly, ..., Ly, be k linear functions (over R) in the m* variables
Y11y ooy Ymom (WE think of Y11, ..., Ymm as the entries of a matriz of size m X m). Denote,
r =m/10, and assume (for simplicity) that m is large enough (i.e., m > my, for some global
constant mg). Then, there exists a matriz Y of size m x m (over R), such that:

1. For every 1 <1 <k,

ILi(Yi1, s Youm)| < Rigpn]Li, -, L) - (2Ink + 10)'/2 .

Rig,[Y] > y/m/9.

We will now state and prove our main result.

Theorem 1 Let C be a bounded coefficients arithmetic circuit (over the real or complex num-
bers) for the product of two matrices of size m x m. Then,

Size(C) = Q(m?*logm).

Proof:

First note that w.l.o.g. we can assume that the circuit is over the real numbers. This is true
because any circuit over the complex numbers can be translated into a circuit over the real
numbers (and vice-versa) with a constant-factor increase in its size. As before, we assume
w.l.o.g. that all gates in the circuit are of fan-in 2. Recall also that we can assume w.l.o.g.
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that the circuit is bilinear. We assume w.l.0.g. that m is large enough (and in particular,
m > mg, where my is the global constant from Lemma 4.1), and we assume for simplicity that
m/10 is integer. Define,

r =m/10.

Assume, for a contradiction to the statement of the lemma, that

Size(C) < 0.001 - m? log, m.

Denote by vy, ..., vx the product gates of the circuit C'. Since the circuit is bilinear, each
product gate v; computes the product of two linear functions, one in the variables {z; ;} (of
the first matrix) and the other in the variables {y; ;} (of the second matrix). Denote the first
linear function by R; and the second linear function by L;. Thus, v; computes the product of
Ri(x11, oy Tmm) and Li(y1.1, -, Ymm)-

Consider the linear functions L1, ..., L;. These functions are computed by a linear circuit of
size smaller than 0.001 - m?log, m (in the input variables y1 1, ..., Ym.m). Hence, by Lemma 3.1
and Lemma 3.2,

r-m -logy(Rig,.,.[L1, -, Lx]) < 0.001 - m?log, m.

That is,

Rig,. [L1, ..., Ly] < m'/'%,

Hence, by Lemma 4.1, there exists a matrix Y of size m x m (over R), such that:
1. For every 1 <i <k,
|Li(Yv1,17 s Ym,m)' S ml/lOO : (2 Ink + 10)1/2 < m1/99

(for large enough m).

Rig,[V] > y/m/9.

We fix the input variables y; 1, ..., Ym, m to be the entries Y7 1, ..., Y}, . Denote the obtained
circuit by C’. Since we fixed ¥y 1, ..., Ym,m, €ach product gate v; in C turned into a product
with the field element L;(Y). The circuit C’ is hence a linear arithmetic circuit, and it is not
hard to see that it computes the matrix / ® Y in the input variables z1 1, ..., Ty m-

The circuit C’ is not a bounded coefficients arithmetic circuit, because the absolute value
of each field element L;(Y') is not bounded by 1. We would like to convert C' into a bounded
coefficients arithmetic circuit C”. This could be done by replacing the product with each
field element L;(Y) by up to log, |L;(Y)| additions plus one product with a field element of
absolute value < 1. Note, however, that & may be almost as large as the size of C’ and
hence this method may increase the size of C’ by more than a constant factor. Instead, we
will convert C' into C” by the following two steps: First, replace the product with each field
element L;(Y) by a product with the field element L;(Y)/m'/% (which is of absolute value



< 1) and multiply each output of the circuit by the field element m!/*°. (Since the original
circuit C' was bilinear, it is not hard to see that this step doesn’t change the outputs of the
circuit and the circuit still computes I ® Y'). Then, replace each product (of an output) with
the field element m!/%? by up to log,(m'/*?) additions plus one product with a field element
of absolute value < 1. Since the number of outputs is m?, this increases the size of the circuit
by at most (1/99) - m? log, m.

Thus, the obtained circuit C” is a bounded coefficients arithmetic circuit that computes
the matrix I ® Y, and such that

Size(C") < (1/98) - m* log, m.
However, by Corollary 3.4,
Size(C") > r - m - log,(Rig,[Y]) > (1/20) - m? log,(m/9),

which is a contradiction (for large enough m). O

5 Proof of the Main Lemma

In this section, we give the proof of Lemma 4.1.

We think of each linear function L in the variables y; 1, ..., Ym = also as a vector in R™*™,
and we think of each vector in R™*™ also as a linear function in the variables y1 1, ..., Ymm-
Assignments to the variables y; 1, ..., Ym,m are matrices Z of size m x m. We think of each
such matrix also as a vector in R™*™, and we think of each vector in R™*™ also as a matrix
of size m x m. Given a linear function L in the variables y; 1, ..., Ym m and an assignment Z to
Y11, -y Ymm, the value L(Z) is the value of the function L on the assignment Z. The norm
that we use in R™*™ is the L2-norm. This norm is used to measure distances between vectors
and lengths of vectors in R™*™. Hence, it is also used to measure distances between matrices
and norms of matrices, and distances between linear functions and norms of linear functions.
We denote the L:-norm of a linear function L by ||L||, and we denote the L?>-norm of a matrix
Z by || Z|| (this is known as the Frobenius norm of the matrix 7).

Denote,
R = Rig,«.m[Ll, ceey Lk]

By the definition of Rig, there exists a vector space V' C R™*™ of dimension r - m, such that
for every 1 <17 <k,
Dist[L;, V] < R.

Denote by V+ C R™*™ the vector space orthogonal to V. Note that V= is a vector space of
dimension (m — r) - m. For every 1 <i < k, we can write L; as

Li=L!+ L.,



where L” € V and L, € V*. Since ||L}|| = Dist[L;, V], we have for every 1 <i < k,

1L < .

Recall that we can think of V' and V* also as subspaces of matrices Z of size m x m.
Obviously, V* is the vector space of all matrices Z € R™*™, such that every L € V satisfies
L(Z) = 0. In the same way, V is the vector space of all matrices Z € R™*™, such that every
L € V1 satisfies L(Z) = 0.

Our construction for the matrix Y will be probabilistic. We will define a random matrix Y
that will satisfy the requirements of the lemma with high probability. The definition of Y will
be in two stages. First, define the matrix W in the following way. Each entry W; ; is defined
to be an independently chosen Gaussian random variable with expectation 0 and variance 1
(i.e., W; ; is chosen independently according to the distribution N(0,1)). Thus, the entries of
the matrix W form a multi-normal distribution. We can write the matrix W as

W — WII + WI’
where W” € V and W' € V+. We define,
Y =W

(i.e., Y is the projection of W on V1). We will show that with high probability Y satisfies
the requirements of the lemma.

Claim 5.1 With high probability (say, with probability of at least 0.98), for every 1 <i <k,
ILi(Y)| < R-(2Ink + 10)*/* .

Proof:
Note that LY(Y) = LY(W') = 0 and that L;(W") = 0. Hence, for every 1 < i < k,
Li(Y) = Li(Y) = L(W).
Each L{(W) is a weighted sum of independently chosen Gaussian random variables with

expectation 0 and variance 1, and hence L,(W) is a Gaussian random variable with expectation
0 and variance | Lf||*.

Since ||L}|| < R, the probability of the event [L;(W)| > R-(2Ink + 10)*/* can be bounded
by 2/(e®-k) (see for example [ASE], Appendix A). Hence, by the union bound, with probability
of at least 0.98, for every 1 <17 <k,

IL(Y)| = |L}(W)| < R- (2Ink + 10)"/2.

|

Thus, with high probability, the matrix Y satisfies the first requirement of the lemma. To
prove the second requirement, we will need the following claim.

10



Claim 5.2 Assume that m is large enough (i.e., m > mq, for some global constant mg). With
high probability (say, with probability of at least 0.97), for any matriz D of size m x m and
rank r,

|Y = D|| = m/3.

Proof:

For the proof of the claim, we will use the spectral method developed by Lokam in [Lok].
Lokam proves a similar lemma for the Hadamard matrix (and for a generalized Hadamard
matrix). We will use a similar method, plus some additional facts and observations, to prove
our claim for the matrix Y.

Let A be a matrix of size m x m (of real or complex numbers). The i* singular value,

0i(A), is defined by
0'1(14) = \/)\i(AA*),

where A* is the conjugate transpose of A, and \;(AA*) is the ™" largest eigenvalue of AA*
(for 1 <i < m).

It is well known that for every matrix A (of size m X m), there exist unitary matrices U,V
(of size m x m), such that U*AV is a diagonal matrix with values o1(A), ..., 0,,(A) on the
diagonal (see, e.g., [GV], Sec. 2.3.).

For the proof of the claim we will need the following six facts. The facts are true for any
constant € > 0. The global constant my (from the statement of the claim) depends on the
actual e chosen (i.e., we assume that m > mg(e)).

1. With high probability (say, with probability of at least 0.99),
Wl = (1 —e¢)-m.

Proof:

Note that ||[W]|? is the sum of the squares of m? standard Gaussian random variables.
Hence, ||W]|? is a random variable with expectation m? and variance 2m? and (by the
central limit theorem) with very high probability its value is very close to its expectation.
In particular, for large enough m, the probability for |W|| < (1 — €) - m is smaller than
0.01 (this follows, e.g., by Chernoff bounds, see e.g., [ASE| Appendix A).

2. With high probability (say, with probability of at least 0.99),

IW"|| < (1+¢€)- 1 -m.

Proof:

Recall that the entries of W form a multi-normal distribution. Since a multi-normal
distribution doesn’t change under unitary transformations and since W" is the projection
of W on V, we can present ||[W”||? as the sum of the squares of r - m standard Gaussian
random variables. Hence, ||W”||? is a random variable with expectation rm and variance
2rm and (by the central limit theorem) with very high probability its value is very
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close to its expectation. In particular, for large enough m, the probability for |W"|| >
(14€)-+/7 - m is smaller than 0.01 (this follows, e.g., by Chernoff bounds, see e.g., [ASE]
Appendix A).

3. With high probability (say, with probability of at least 0.99),

al(W) < (2+€)-vm.

Proof:
The proof was given in [Gem] (see also [Sil]).

4. For any matrix D of size m x m and rank r,
0r11(D), ey om(D) = 0.

Proof:

As mentioned above, there exist unitary matrices U,V (of size m x m), such that U*DV
is a diagonal matrix with values o;(D), ..., 0,,(D) on the diagonal. Since unitary trans-
formations do not change the rank of a matrix, we conclude that o,.1(D), ..., 0.,(D) = 0.

5. For any matrix A of size m x m,
JAII* = o1(A) + -+ + o7 (A).

Proof:

As mentioned above, there exist unitary matrices U,V (of size m x m), such that
U*AV is a diagonal matrix with values o;(A),...,0m(A) on the diagonal. Since uni-
tary transformations do not change the norm of a matrix, we conclude that ||A|*> =

o1 (A) + - -+ o2, (A).
6. For any two matrices A, B of size m x m,

> loi(A) = oi(B)]” < [|A - BJ*.

i—1
Proof:
This inequality is know as Hoffman-Wielandt inequality [HW]. For a proof of this version
of the inequality, see [GV] Sec. 8.3.

We are now ready to complete the proof of the claim. Assume that the above 6 facts are
all true for e = 0.01 (for large enough m, this happens with probability of at least 0.97). Let
D be any matrix of size m x m and rank r. By fact 6 and fact 4,

W = DI > o(W) D) > > (WP,
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By fact 5, fact 3 and fact 1 (and since € = 0.01 and » = m/10),

7 (e = W12 = [:(W)]? > ||[W]|* — 4.0401 - 7 - m > 0.98 - m® — 0.40401 - m>.

1=r+1 =1
Hence,
|W — D|”> > (0.75 - m)?,
and by the triangle inequality and fact 2,

|Y = D|| > |[W - D[ - ||[W =Y >0.75-m — 0.32- m > m/3.

O

Let us now finish the proof of Lemma 4.1. Note that if Rig,[Y] < 4/m/9 then (by the
definition of Rig) there exists a matrix D of rank 7, such that, all rows of Y — D are of L?-norm
< 4/m/9, and hence ||Y — D||> < m-m/9 (in contradiction to Claim 5.2).

Thus, by Claim 5.1 we know that with high probability Y satisfies the first requirement
of the lemma, and by Claim 5.2 we know that with high probability Y satisfies the second
requirement of the lemma. Altogether, with probability of at least 0.95, the matrix Y satisfies
both requirements. O

6 Size-Depth Tradeoffs

The following lemma is implicit in [Lok].

Lemma 6.1 Let C be a bounded coefficients linear circuit of size s and depth d for the linear
functions Ly, ..., Ly (in n variables). Then, for every 1 <r < n,

2d

r
Proof:

Let vq,...,u; be all nodes in C' of in-degree larger than s/r. Obviously, I < r. Denote by
f1,.-., fi the [ linear functions outputted at the nodes vy, ...,v;. Denote by C’ the circuit C
after removing from it the [ nodes vy, ...,v; and all edges connected to them. Then, each L;
can be written as L; = L! + L., where L! is a linear combination of the functions fi, ..., fi,
and L' is the i output of the circuit C".

Since the maximal in-degree in C’ is at most s/r and since C' is of depth d, the L'-norm
of each L’ is bounded by (s/r)¢, and hence, its L2-norm is bounded by (s/r)??. Hence, if we
denote V = Span|[fi, ..., fi] then for every 1 < i < k, we have Dist[L;, V] < (s/r)??. Thus,
Rig,[L1, ..., Ly < Rig)[L1, ..., L] < (s/7)%. O
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For our size-depth tradeoff for matrix product, we will also need the following version of
Lemma 4.1. Note that for the proof of Theorem 1 we could have used Lemma 6.2 rather than
Lemma 4.1. We preferred to use Lemma 4.1 because it makes the proof of Theorem 1 more
intuitive.

Lemma 6.2 Let Li,...,L; be k linear functions (over R) in the m? variables Y115 -y Ym,m
(we think of Y11, ..., Ymm as the entries of a matriz of size m x m). Denote, r = m/10, and
assume (for simplicity) that m is large enough (i.e., m > my, for some global constant my).
Then, there erists a matriz 'Y of size m x m (over R), such that:

1. For every1 <1<k,

1Li(Yi1, oo, Yium)| < Rigy [Ln, -y Li] - (2Ink + 10)'/2.

Rig,,[I @ Y] > y/m/9.

Proof:
The proof is similar to the proof of Lemma 4.1.

We define R,W,W" and Y as in the proof of Lemma 4.1. Thus, by Claim 5.1, with high
probability, the matrix Y satisfies the first requirement of the lemma. To prove the second
requirement, we will need the following version of Claim 5.2.

Claim 6.1 Assume that m is large enough (i.e., m > mq, for some global constant mg). With
high probability (say, with probability of at least 0.97), for any matriz D of size m* x m? and
rank r - m,

| ®Y)—D| >m'°/3.

Proof:

The proof is similar to the proof of Claim 5.2. The first three facts (out of the six given in
Claim 5.2) are replaced by the following three facts. As before, the facts are true for any
constant € > 0. The global constant my (from the statement of the claim) depends on the
actual e chosen (i.e., we assume that m > mg(e)).

1. With high probability (say, with probability of at least 0.99),
e W[ > (1~-e¢-m™

Proof:
Obvious, since ||[I @ Wl =m®® - |W]].

2. With high probability (say, with probability of at least 0.99),
IT@W"|| < (1+¢)-r"°-m.

Proof:
Obvious, since |[I @ W"|| = m®® - |[W"||.
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3. With high probability (say, with probability of at least 0.99),
o (I@W) < (2+¢€)-mb.

Proof:
Obvious, since o1(I @ W) = o1 (W).

The proof of the claim is now completed as before. Assume that the above 6 facts are all
true for € = 0.01 (for large enough m, this happens with probability of at least 0.97). Let D
be any matrix of size m? x m? and rank 7 - m. By fact 6 and fact 4,

2 2

[tew)~DIP>Yln W)~ o> 3 lodew)

By fact 5, fact 3 and fact 1 (and since € = 0.01 and r = m/10),

2

Yo oW =T W|*=>[o:(I ® W)]* > 0.98 - m® — 0.40401 - m?.
1=r-m+1 =1

Hence,
(I @ W) - D|*> > (0.75 - m*®)?,

and by the triangle inequality and fact 2,
(I@Y)-Dl| > [[IeW)-D||-[[IeW)-(IeY)|>m"/3.

O

Let us now finish the proof of Lemma 6.2. Note that if Rig, ,,[/®Y] < /m/9 then (by the
definition of Rig) there exists a matrix D of rank r - m, such that, all rows of (I® Y) — D are

of L?>-norm < y/m/9, and hence ||(I ® Y) — D||*> < m? - m/9 (in contradiction to Claim 6.1).

Thus, by Claim 5.1 we know that with high probability Y satisfies the first requirement
of the lemma, and by Claim 6.1 we know that with high probability Y satisfies the second
requirement of the lemma. Altogether, with probability of at least 0.95, the matrix ¥ satisfies
both requirements. O

We will now state and prove our size-depth tradeoff for matrix product. We didn’t attempt
here to optimize the constant e.

Theorem 2 Let C' be a bounded coefficients arithmetic circuit of depth d (over the real or
complex numbers) for the product of two matrices of size m x m. Then, for some global
constant € > 0 (say, e =1/20),

Size(C) = Q(m*</%).
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Proof:

The proof follows the lines of the proof of Theorem 1. As before, w.l.o.g. we assume that the
circuit is over the reals and that the circuit is bilinear. We assume w.l.o.g. that m is large
enough (and in particular, m > mg, where mq is the global constant from Lemma 6.2), and
we assume for simplicity that m /10 is integer. Define,

r =m/10.
Assume, for a contradiction to the statement of the lemma, that

Size(C) < 0.001 - m>*</?,

As before, denote by w1, ..., vx the product gates of the circuit C'. Since the circuit is bilinear,
each product gate v; computes the product of two linear functions, one in the variables {z; ;}
(of the first matrix) and the other in the variables {y; ;} (of the second matrix). Denote the
first linear function by R; and the second linear function by L;. Thus, v; computes the product
of Ri(%11, s Tmm) and Li(Y1.1, -, Ym,m)-

Consider the linear functions L1, ..., Ly. These functions are computed by a linear circuit
of depth at most d and size at most 0.001-m>*¢/¢ (in the input variables y1 1, ..., Ym.m). Hence,
by Lemma 6.1,

Rig,.,n[L1, -y Li] < (0.01)%% - m?.

Hence, by Lemma 6.2, there exists a matrix Y of size m x m (over R), such that:

1. For every 1 < <k,
1Li(Yia, ooy Vo) | < (0.01)2% - m2 - (2In k + 10)? < (0.01)%¢ - m? - Inm,

(for large enough m).

Rig,.,.,[l ® Y] > y/m/9.

Denote,
c=(0.01)%* . m* - Inm.

We fix the input variables yi 1, ..., Ym,m to be the entries Y7 1, ..., ¥, m. Denote the obtained
circuit by C’. Since we fixed y11, ..., Ym,m, €ach product gate v; in C turned into a product
with the field element L;(Y'). The circuit C' is hence a linear arithmetic circuit for the matrix
I ® Y in the input variables z1 1, ..., Ty m-

As before, the circuit C’ is not a bounded coefficients arithmetic circuit. We will convert
C' into a bounded coefficients arithmetic circuit C” by the following two steps: First, replace
the product with each field element L;(Y") by a product with the field element L;(Y")/c (which
is of absolute value < 1) and multiply each output of the circuit by the field element c. Then,
replace each product (of an output) with the field element ¢ by 2d consecutive additions of
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fan-in c'/?? each (plus one product with a field element of absolute value < 1). Since the
number of outputs is m?, this increases the size of the circuit by at most m? - 2d - ¢'/?* and
hence the size of C" is at most 0.01 - m?>t</? . Inm (for large enough m).

Thus, the obtained circuit C” is a bounded coefficients arithmetic circuit of depth 3d that
computes the matrix I ® Y, and such that

Size(C") < 0.01 - m?*</% . Inm.
However, since C” is of depth 3d, by Lemma 6.1,
Size(C") > 7 - m - (Rig,.,,[[ ® Y])/%* > 0.01 - m* /124,

which is a contradiction (for large enough m and, say, e = 1/20). O
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