Electronic Collogquium on Computational Complexity, Report No. 13 (2002)

Quantum and Stochastic Branching Programs of
Bounded Width

Farid Ablayev!, Cristopher Moore?, and Christopher Pollett?

! Dept. of Theoretical Cybernetics
Kazan State University
420008 Kazan, Russia
ablayev@ksu.ru

2 Computer Science Department
University of New Mexico
Albuquerque, New Mexico 87131
moore@cs.unm.edu

3 Dept. of Math and Computer Science
San Jose State University
One Washington Square
San Jose, California 95192
pollett@mathcs.sjsu.edu

Abstract. We prove upper and lower bounds on the power of quantum
and stochastic branching programs of bounded width. We show any NC*
language can be accepted exactly by a width-2 quantum branching pro-
gram of polynomial length, in contrast to the classical case where width
5 is necessary unless NC* = ACC. This separates width-2 quantum pro-
grams from width-2 doubly stochastic programs as we show the latter
cannot compute the middle bit of multiplication. Finally, we show that
bounded-width quantum and stochastic programs can be simulated by
classical programs of larger but bounded width, and thus are in NC'.

ISSN 1433-8092

1 Introduction

Interest in quantum computation has been steadily increasing since Shor’s dis-
covery of a polynomial time quantum algorithm for factoring [13]. A number
of models of quantum computation have been considered, including quantum
versions of Turing machines, simple automata, circuits, and decision trees. The
goal of much of this research has been to understand in what ways quantum
algorithms do and do not offer a speed-up over the classical case, and to under-
stand what classical techniques for proving upper and lower complexity bounds
transfer to the quantum setting.

Branching programs have proven useful in a variety of domains, such as
hardware verification, model checking, and other CAD applications [14]. Re-
cently, several models of quantum branching programs have been proposed [1,
10]. Ablayev, Gainutdinova, and Karpinski [1] gave a matrix-based definition
of quantum branching programs as a natural generalization of quantum finite
automata [7,8]. In contrast to what had been shown about one-way quantum
automata [4], they showed that arbitrary boolean functions can be computed
by one-way quantum branching programs. They exhibited a symmetric boolean
function which could be computed with log-width, leveled, oblivious read-once
quantum programs which require linear width for classical programs of this type.
Finally, they gave a lower bound on the width of a read-once quantum program
computing a boolean function in terms of the minimal width of a classical ordered
binary decision diagram (OBDD) for the same function. Nakanishi, Hamaguchi,
and Kashiwabara [10] took a graph-based approach to defining quantum branch-
ing programs. They give a language Luar which can be recognized by ordered
bounded-width quantum branching programs of polynomial length but which
cannot be recognized by probabilistic programs of this type.

In this paper we prove several new results for quantum branching programs
of bounded width. After reviewing the definition of [1], we show that width-2
quantum programs are more powerful than width-2 doubly stochastic programs,
and are as strong as deterministic branching programs of width 5. Specifically,
we show that polynomial-length, width-2 quantum branching programs can rec-
ognize any NC' language exactly. This is surprising, since such programs act
on a single qubit. On the other hand, we show that polynomial-length, width-2
doubly stochastic programs cannot compute the middle bit of the multiplication
function. In the classical case, Yao [15] showed that width-2 deterministic pro-
grams require superpolynomial length to compute the majority function, and
Barrington [5] showed that width 5 is sufficient for deterministic programs to
capture NC!.

Finally, we improve the result of Ablayev, Gainutdinova, and Karpinski [1]
by showing that bounded-probability quantum and stochastic programs can be
simulated by deterministic programs of the same length and larger, but still
bounded, width. Therefore these classes are contained in NC*, and in fact for
bounded-width quantum programs exact acceptance is just as strong as ac-
ceptance with bounded probability. We use the techniques of this result to
show that polynomial-length width-2 stochastic programs accepting with er-

ror margin more than € = 1/4 cannot compute majority. In addition, we show
that polynomial-length width-2 stochastic programs accepting with error margin
more than e = 1/8 and polynomial-length width-3 stochastic programs accepting
with error margin more than e = 1/1/5 must compute functions in ACC.

2 Preliminaries

We begin by discussing the classical model of branching programs and then
show how to quantize it. A good source of information on branching programs
is Wegener’s book [14], and for an introduction to quantum computation see
Nielsen and Chuang [11].

Definition 1 A branching program is a finite directed acyclic graph which rec-
ognizes some subset of {0,1}". Each node (except for the sink nodes) is labelled
with an integer 1 < ¢ < n and has two outgoing arrows labelled 0 and 1. This
corresponds to querying the ith bit x; of the input, and making a transition along
one outgoing edge or the other depending on the value of x;. There is a single
source node corresponding to the start state, and there is a subset A of the sink
nodes corresponding to accepting states. An input x is accepted if and only if it
induces a chain of transitions leading to a sink node in A.

A branching program is oblivious if the nodes can be partitioned into levels
Vi,..., Vi such that the nodes in V; are the sink nodes, nodes in each level V;
with j <1 have outgoing edges only to nodes in the next level V1, and all nodes
in a given level V; query the same bit x;; of the input. Such a program is said
to have length [, and width k if each level has at most k nodes.

Oblivious branching programs have an elegant algebraic definition. Recall
that a monoid is a set with an associative binary operation - and an identity 1
such that 1-a =a-1 = a for all a.

Definition 2 Let M be a monoid and S C M an accepting set. Let x;, 1 <i<mn
be a set of Boolean variables. A branching program over M of length [is a string
of l instructions; the jth instruction is a triple (i;,a;,b;) € {1,... ,n} x M x M,
which we interpret as a; if x;; =0 and b; if x;; = 1. Given an input x, the yield
Y (x) of the program is the product in M of all its instructions. We say that the
input x is accepted if Y (z) € S, and the set of such inputs is the language L
recognized by the program.

Such programs are often called non-uniform deterministic finite automata
(NUDFAs); a computation over a deterministic finite automaton consists of tak-
ing a product in its syntactic monoid, while in a NUDFA we allow the same
variable to be queried many times, and for “true” and “false” to be mapped into
a different pair of monoid elements in each query.

A common monoid is Tk, the set of functions from a set of k objects into itself.
Then the program makes transitions among k states, and we can equivalently
define oblivious, width-k branching programs by choosing an initial state and a

set of accepting states, where the k states correspond, according to an arbitrary
ordering, to the k vertices in each level V.

Definition 3 An oblivious width-k branching program is a branching program
over Ty, where the accepting set S C T} consists of those elements of T}, that
map an initial state s € {1,... ,k} to a final state t € A for some subset A C

,...,k}.

We define language classes recognized by (non-uniform) families of bounded-
width branching programs whose length increases polynomially with n:

Definition 4 k-BWBP is the class of languages recognized by polynomial-length
branching programs of width k, and BWBP = U, k-BWBP.

Recall that a group is a monoid where every element has an inverse, and a
group is Abelian if ab = ba for all a,b. A subgroup H C G is normal if the left
and right cosets coincide, aH = Ha for all a € G. A group is simple if it has no
normal subgroups other than itself and {1}.

Barrington [5] studied branching programs over the permutation group on
k objects Sy C Ty; such programs are called permutation programs. He showed
that polynomial-length programs over S;, and therefore width-5 branching pro-
grams, can recognize any language in NC*, the class of languages recognizable
by boolean circuits of polynomial width and logarithmic depth. The version of
Barrington’s result that we will use is:

Theorem 1 ([5,9]). Let G be a non-Abelian simple group, and let a # 1 be
any non-identity element. Then any language L in NC' can be recognized by a
family of polynomial-length branching programs over G such that their yield is
Y(z) =a if x € L and 1 otherwise.

Since the smallest non-Abelian simple group is As C Ss, the group of even
permutations of 5 objects, and since we can choose a to map some initial state s
to some other final state ¢, width 5 suffices. Conversely, note that we can model
a width-k branching program as a boolean product of [transition matrices of
dimension k, and a simple divide-and-conquer algorithm allows us to calculate
this product in O(log!) depth. Thus BWBP C NC!, so we have

5-BWBP = BWBP = NC! .

To define stochastic and quantum branching programs, we write the proba-
bility of acceptance as an inner product. Let es; and e; be k-dimensional vectors
whose entries are 1 for the initial state and accepting final states respectively
and 0 otherwise, and M; the matrix corresponding to the jth instruction. Then
write

!
P(z) = <es HM]- et>

In the deterministic case P = 1 or P = 0 for all z, since the transition matrix
corresponding to an element of T} has exactly one 1 in each column. For a group
this is true of the rows as well, in which case the M; are permutation matrices.
We can generalize this by letting the M; be stochastic matrices, i.e. matrices with
non-negative entries where each column sums to 1, and letting es; be an initial
probability distribution over the set of states. Then P is the probability that the
program accepts. If the transpose of a stochastic matrix is also stochastic the
matrix is called doubly stochastic. If all the matrices in a program are doubly
stochastic then we say the program is a doubly stochastic program.

In the quantum case, we let the M; be complex-valued and wunitary, i.e.
M J-_l =M ; where 1 denotes the Hermitian conjugate, and es and e; be initial
and final state vectors with |es|? = |e;|> = 1. Then the program accepts with
probability

2

l
P(z) = <es HM]- et>

Note that this is a “measure-once” model analogous to the quantum finite au-
tomata of [8], in which the system evolves unitarily except for a single mea-
surement at the end. We could also allow multiple measurements during the
computation, by representing the state as a density matrix and making the M;
superoperators instead of purely unitary operators; we do not do this here.

We can define recognition in several ways for the quantum case. We say that
a language L is accepted with bounded probability if there is some ¢ > 0 such
that P(z) >1/2+e€eif x € L and P(z) < 1/2 —€eif ¢ L, and accepted ezactly
if P(#) =1ifz € L and P(z) =0if ¢ L as in the deterministic case.

We denote by B- (where we will drop the ¢’ when clear) the language classes
recognized with bounded probability, and E- those recognized exactly. Writing
SBP and QBP for stochastic and quantum branching programs respectively, we
define the classes of languages recognized by width-k stochastic and quantum
programs of polynomial length k-BSBP, k-BQBP, and k-EQBP. Note that we
remove “BW” to avoid acronym overload. We write BSBP for Upk-BSBP and
define BQBP and EQBP similarly. We have

BWBP C EQBP C BQBP
and
BWBP C BSBP
but in principle k-BSBP could be incomparable with k-EQBP or k-BQBP.

3 Width-2 Doubly Stochastic and Quantum Programs

In this section we show that width-2 quantum programs with exact acceptance
contain NC! and also show that these programs are stronger than width-2 doubly
stochastic programs.

First we note that stochastic programs are stronger than permutation pro-
grams for width 2. It is easy to see that any program over Zs simply yields the
parity of some subset of the x;. The AND,, function, which accepts only the
input with z; = 1 for all ¢, is not of this form, and so this language cannot be
recognized by a width-2 permutation program. However, it can easily be recog-
nized by a stochastic program P with bounded error which queries each variable

once as follows: for i < n it maps z; = 1 and 0 to the identity (é (1)> and the
. 1/21/2 . . 3/41/4
matrix (1 /21 /2> respectively, and for x,, it maps 1 and 0 to (0 1 and

3/85/8

state, P accepts with probability 3/4 if z; = 1 for all ¢ and 3/8 otherwise. Note
that except for one matrix this is in fact a doubly stochastic program. If we had
treated the variable z,, in the same fashion as the other variables we would have
gotten a doubly stochastic program accepting AND,, with one-sided error.

Despite being stronger than their permutation counterparts, the next result
shows width-2 doubly stochastic branching programs are not that strong. Let
MULT?Y; be the boolean function which computes the kth bit of the product of
two n-bit integers. Define MULT™ to be MULT) _;. i.e., the middle bit of the
product. We will argue that this function requires at least exponential lengthed
width 2 stochastic programs.

(3/ 85/ 8) respectively. Taking the first state to be both the initial and final

Lemma 1. Any width-2 doubly stochastic program on n variables is equivalent
to one which queries each variable once and in the order 1,23, ... n.

Proof. Any 2 x 2 stochastic matrix can be written as (1 fp 1 ;p) for some
p € [0,1]. It is easy to verify that matrices of this kind commute. Hence, if we
have a product of such matrices H? M,;, we can rewrite it so that we first take
the product of all the matrices that depend on z1, then those that depend on
T2, and so on. To finish the proof we note that products of doubly stochastic
matrices are again doubly stochastic, so we can use a single doubly stochastic
matrix for the product of all the matrices that depend on a given x;.

The above lemma shows we can convert any width-2 doubly stochastic pro-
gram into one which is read-once and with a fixed variable ordering. i.e. a ran-
domized ordered binary decision diagram (OBDD). The next result is proved in
Ablayev and Karpinski [2].

Theorem 2. A BP-OBDD that correctly computes MULT™ has length at least
2Q(n/log n)'

So by Lemma 1 we have immediately:

Corollary 1 Any width 2 doubly stochastic program correctly computing MULT™
with bounded error has length at least 2(n/108m)

So width-2 stochastic programs are not that strong. However, width-2 quan-
tum programs are surprisingly strong, as the next result shows. Note that a
width-2 quantum program has a state space equivalent to a single qubit such as
a single spin-1/2 particle [11].

Theorem 3. NC' is contained in 2-EQBP.

Proof. First, recall that As, the smallest non-Abelian simple group, is the set of
rotations of the icosahedron. Therefore, the group SO(3) of rotations of R?, i.e.
the 3x 3 orthogonal matrices with determinant 1, contains a subgroup isomorphic
to A5.

There is a well-known 2-to-1 mapping from SU(2), the group of 2 x 2 unitary
matrices with determinant 1, to SO(3). Consider a qubit a|0) + b|1) with |a|> +
|b]> = 1; we can make a real by multiplying by an overall phase. The Bloch
sphere representation (see e.g. [11]) views this state as the point on the unit
sphere with latitude 6 and longitude ¢ , i.e. (cos ¢ cos8,sin ¢ cos 6, sin @), where
a=cosf/2 and b = €?sin §/2.

Given this representation an element of SU(2) is equivalent to some rotation
of the unit sphere. Recall the Pauli matrices

01 0 10
w=(00): »=(50) = o3)

Then we can rotate an angle a around the z, y or z axes with the following
operators:

_ ila/2)o.
Ry(a)=e = (—isina/Z cos /2

_ i(a/2)e, _ [cOSa/2 —sina/2
Ry(a) =e = (sina/Z cosa/2)’ and

. —ia/2 0
RZ(O[) = ei(a/2)0'z = (6 0 eia/2)

cosa/2 —i sina/2)

This makes SU(2) a double cover of SO(3), where each element of SO(3) cor-
responds to two elements U in SU(2). (Note that angles get halved by this
mapping.) Therefore, SU(2) has a subgroup which is a double cover of A5. One
way to generate this subgroup is with 27/5 rotations around two adjacent ver-
tices of an icosahedron. Since two such vertices are an angle tan~! 2 apart, if one
is pierced by the z axis and the other lies in the x-z plane we have

ei7r/5 0
a=R,(2r/5) = (0 ei7r/5>
b= Ry(tan '2)-a- R,(—tan"'2)

B i et /5 4 g—im/5,—1 —9 sin7r/5
B \/5 —2i sin7r/5 e_i7"/57— + eiﬂ/57_—1

where 7 = (1 + v/5)/2 is the golden ratio. Now consider the group element
¢ = a - b- a; this rotates the icosahedron by 7 around the midpoint of the edge
connecting these two vertices. In SU(2), this maps each of the eigenvectors of o
to the other times an overall phase. Taking these as the initial and final state,

0 +i1) [0 —if1)
v2 V2

€s =

we have
{eslcle)] =1
while, since the two eigenvectors are orthogonal,
|{es|1le)|* =0 .

Now, Theorem 1 tells us that for any language in NC' we can construct a
polynomial-length program over Aj that yields the element equivalent to c if the
input is in the language and 1 otherwise. Mapping this language to SU(2) gives
a program which yields ¢ or 1, and accepts with probability 1 or 0.

4 Classical Simulations of Stochastic and Quantum
Branching Programs

In this section we give general results on simulating stochastic and quantum
programs by classical ones. We use this to show that width-2 quantum programs
can be simulated by bounded-width deterministic programs, and to show that if
€ > 1/4 then width-2 stochastic programs for majority require super-polynomial
length. We also get that polynomial-length width-2 stochastic programs accept-
ing with error margin more than e = 1/8 and polynomial-length width-3 stochas-
tic programs accepting with error margin more than € = 1/ v/5 must compute
functions in ACC.

Theorem 4. If a language is recognized with bounded probability 1/2 + € by a
width-w stochastic branching program, then it is also recognized by a determin-
istic branching program of the same length, and width

we < I_e_(w_l)J

Similarly, if a language is recognized with bounded probability 1/2 + € by a width-
wg quantum branching program, it is recognized by a deterministic program of
the same length, and width

we < |(e/2)7 7]

The proof uses essentially the same techniques as were used for Theorem
3 of [12] and Proposition 6 of [7], which show that stochastic and quantum
finite state automata that accept with bounded probability can be simulated by

deterministic finite state automata and therefore accept regular languages. Here
we are extending this method to branching programs where the automaton is
non-uniform; this was done for read-once branching programs in [1].

The idea is that if two state vectors are within a distance 6 of each other,
where 6 depends on e, then if the same operators are applied to both they
must either both accept or both reject, and so are equivalent. Since only a finite
number of balls of radius 6/2 can fit into the state space we end up with a finite
number of states. We start with the following lemmas. Note that we use the L,
norm |v|; =), |v;| in the stochastic case, and the Ly norm |[v|s = /), |vi|? in
the quantum case.

As shorthand, say that a final probability distribution or state vector is ac-
cepting if it causes the program to accept with probability at least 1/2 + € and
rejecting if it causes the program to accept with probability at most 1/2 — .

Lemma 2. Consider a stochastic or quantum branching program. Let v, v' be
two probability distributions or state vectors such that v is accepting and v' is
rejecting. Then |v — v'|y > 4e in the stochastic case, or |v — v'|y > 2€ in the
quantum case.

Proof. We prove the stochastic case first. As in the definition above, let A C
{1,... ,k} be the set of accepting states. By hypothesis) .. , v; > 1/2 4+ € and
2 iga Vi <1/2—¢, and vice versa for v'. Then

Su-Yu

i€EA i€A

+ Zvi—Zv§

i¢A igA

> 4e .

lo—v'ls = |vi —vj] >
7

In the quantum case, let e; be the accepting final state. Write vace = (v]er)ey
and vrej = v — Vacc for the components of v parallel to e; and orthogonal to it,
and similarly for v'. By hypothesis |vacc|3 > 1/2 + € and |vrej]3 < 1/2 — €, and
vice versa for v'. Then

|UaCC - v;ccla |'Urej - 'U;ej| > \/1/2 +e— \/1/2 —¢€

SO

|U - UI|2 = \/|'Uacc - Ufacc'% + |'Urej - Ullrej % = \/1 + 2e - \/1 — 2 > 2
where the final inequality comes from some simple algebra.

Given a set D in a metric space (see e.g. [3]) with metric p, we say two points
z, y in D are 0-equivalent if they are connected by a chain of points where each
step has distance less than 6; that is, ~ y if there are 2y,...,2, € D such
that © = 20, ¥ = 2m, and p(2;, z;41) < 8 for all 0 < i < m. Call the equivalence
classes of this relation the 6-components of D. Then:

Lemma 3. Suppose a stochastic or quantum branching program P accepts a
language with bounded probability 1/2+€. Then it is equivalent to a deterministic
branching program of the same length where the states are the 8-components of
the set of possible states at each step, where 6 is given by Lemma 2.

Proof. Since stochastic matrices never increase the L; distance, and unitary
matrices preserve the Ly distance, the #-component of the P’s state on a given
step is a function only of the #-component it was in on the previous step, and
the value of variable queried on that step. This defines a deterministic branching
program D on the set of #-components of the same length as P. Lemma 2 shows
that if two final states are in the same 6-component where § = 4e or 2¢ as
applicable, they either both accept or both reject. Therefore, whether the final
state is accepting or rejecting depends only on its #-component, and D accepts
if and only if P does.

Now all that remains is to bound the number of §-components, or equivalently
the maximum number of balls of radius 6/2, that can fit in the state space of
a stochastic or quantum program of width w. The w-dimensional probability
distributions form a flat (w — 1)-dimensional manifold of volume V' and diameter
2, and a ball of radius /2 = 2¢ has volume at least e*~'V. Similarly, the set
of w-dimensional state vectors v with |v|> = 1 forms the complex sphere C%, a
(2w — 1)-dimensional manifold of volume V' and diameter 2. Due to the positive
curvature of C%, a ball of radius #/2 = € has volume at least (¢/2)*~'V.
This completes the proof of Theorem 4 (note that both these bounds can be
significantly improved with a little more work).

While we may need an exponentially larger width to simulate a stochastic or
quantum branching program, the width is still constant. Thus bounded-width
programs of all three types are equivalent, and since bounded-width classical
programs are contained in NC* they all are. Conversely, we showed in Theorem 3
that NC! is contained in width-2 quantum programs, so we have

Corollary 2.
2-EQBP = 2-BQBP = BQBP = BSBP = BWBP = NC! .

In other words, width-2 quantum programs with exact acceptance are exactly
as strong as quantum or stochastic programs of arbitrary bounded width, with
exact or bounded-probability acceptance.

A more careful analysis of the number of §-components can also be used
to derive lower bounds on the capabilities of width-2 stochastic programs. For
instance:

Corollary 3. Any width-2 stochastic program recognizing magjority with bounded
probability 1/2 + € where € > 1/4 must have superpolynomial length.

Proof. In the width-2 case the state space of a stochastic program consists of
the pairs of points on the line from (1,0) to (0,1) in the plane. This line has
Lq-length 2. If we allow 6-chains which might be centered on the end points, the
maximum number of f-components that can fit into this space is bounded by
| (2+4€)/4€] = [14+1/2€¢|. When € > 1/4 this gives 2, so using Lemma 3 a width-
2 stochastic program with € > 1/4 can be simulated by a width-2 deterministic
program of the same length. Finally, Yao [15] showed that deterministic width-2
programs for majority require super-polynomial length.

Recall that ACCJk] is the class of langauges computed by families of polynomial-
sized, unbounded fan-in, AND, OR, NOT, MOD;, circuits of constant depth.
The class ACC is Uy ACC[k]. Our techniques above can also be used to get the
following result.

Corollary 4. Polynomial-length width-2 stochastic programs accepting with er-
ror margin more than € = 1/8 and polynomial-length width-3 stochastic programs
accepting with error margin more than € = 1/ V5 must compute functions in

ACC.

Proof. By Barrington and Therien [6], we know that polynomial length width-4
deterministic programs compute functions in ACC. By our analysis in Corol-
lary 3, if |1 + 1/2¢| <=4 then a polynomial-length width-2 stochastic program
can be simulated by a width-4 deterministic program of the same length. This in-
equality holds provided € > 1/8. For the width-3 case we apply Theorem 4 to get
the bound on simulating width-3 stochastic programs by width-4 deterministic
ones.

Acknowledgments. We are grateful to Alexander Russell, Eric Allender,
David Mix Barrington, and Azaria Paz for helpful conversations and e-mails.
C.M. is supported by NSF grant PHY-0071139 and the Sandia University Re-
search Program.

References

1. F. Ablayev, A. Gainutdinova, and M. Karpinski. On computational Power of quan-
tum branching programs. Proc. FCT 2001, Lecture Notes in Computer Science
2138: 59-70, 2001.

2. F. Ablayev and M. Karpinski. A lower bound for integer multiplication on ran-

domized read-once branching programs. FElectronic Colloquium on Computational

Complezity TR 98-011, 1998. http://wuw.eccc.uni-trier.de/eccc

P. Alexandrov. Introduction to set theory and general topology. Berlin, 1984.

4. A. Ambainis and R. Freivalds. 1-way quantum finite automata: strengths, weakness,
and generalizations. Proc. 39th IEEE Symp. on Foundations of Computer Science
(FOCS), 332-342, 1998.

5. D.A. Barrington. Bounded-width polynomial branching programs recognize exactly
those languages in NC'. Journal of Computer and System Sciences 38(1): 150-164,
1989.

6. D.A. Barrington and D. Therien. Finite Monoids and the Fine Structure of NC*
Journal of the ACM 35(4): 941-952, 1988.

7. A. Kondacs and J. Watrous On the power of quantum finite automata. Proc. of the
38th IEEE Symp. on Foundations of Computer Science (FOCS), 66-75, 1997.

8. C. Moore and J.P. Crutchfield. Quantum automata and quantum grammars. The-
oretical Computer Science 237: 275-306, 2000.

9. C. Moore, D. Thérien, F. Lemieux, J. Berman, and A. Drisko. Circuits and Expres-
sions with Non-Associative Gates. Journal of Computer and System Sciences 60:
368-394, 2000.

©w

10. M. Nakanishi, K. Hamaguchi, and T. Kashiwabara. Ordered quantum branching
programs are more powerful than ordered probabilistic branching programs under
a bounded-width restriction. Proc. 6th Annual International Conference on Com-
puting and Combinatorics (COCOON) Lecture Notes in Computer Science 1858:
467-476, 2000.

11. M.A. Nielson and I.L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press. 2000.

12. M. Rabin. Probabilistic automata. Information and Control 6: 230-245, 1963.

13. P. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Journal on Computing 26(5): 1484-1509,
1997.

14. Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM Mono-
graphs on Discrete Mathematics and Applications. 2000.

15. A.C. Yao. Lower Bounds by Probabilistic Arguments Proc. of the 2/th IEEE
Symp. on Foundations of Computer Science (FOCS), 420-428, 1983.

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

