Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 13 (2002)

Quantum and Stochastic Branching Programs of
Bounded Width

Farid Ablayev* Cristopher Mooref Christopher Pollett!

Abstract

In this paper we show that one qubit polynomial time computations
are at least as powerful as NC! circuits. More precisely, we define
syntactic models for quantum and stochastic branching programs of
bounded width and prove upper and lower bounds on their power.
We show any NC' language can be accepted exactly by a width-2
quantum branching program of polynomial length, in contrast to the
classical case where width 5 is necessary unless NC' = ACC. This
separates width-2 quantum programs from width-2 doubly stochastic
programs as we show the latter cannot compute the middle bit of
multiplication. Finally, we show that bounded-width quantum and
stochastic programs can be simulated by classical programs of larger
but bounded width, and thus are in NC'.

1 Preliminaries

Interest in quantum computation has steadily increased since Shor’s discov-
ery of a polynomial time quantum algorithm for factoring [17]. A number of
models of quantum computation have been considered, including quantum
versions of Turing machines, simple automata, circuits, and decision trees.
The goal of much of this research has been to understand in what ways
quantum algorithms do and do not offer a speed-up over the classical case,
and to understand what classical techniques for proving upper and lower
complexity bounds transfer to the quantum setting.

Branching programs have proven useful in a variety of domains, such as
hardware verification, model checking, and other CAD applications; see for
example the book by Wegener [20]. In addition, branching programs are
a convenient model for nonuniform computation with varying restrictions.

*Dept. of Theoretical Cybernetics, Kazan State University. ablayev@ksu.ru ; work
done in part while visiting Institute of Advanced Study and Max-Plnak Institute for
Mathematics, supported by RFBR grant 03-01-00769

tComputer Science Department, University of New Mexico, Albuquerque and the Santa
Fe Institute moore@cs.unm. edu; supported by NSF grant EIA-0218563

iDept. of Computer Science San Jose State University. pollett@cs.sjsu.edu

ISSN 1433-8092

Even oblivious branching programs of constant width — the non-uniform
equivalent of finite-state automata — are surprisingly powerful. Indeed,
Barrington [5] showed that branching programs of width 5 are already as
powerful as circuits of logarithmic depth.

Moreover, branching programs are a very natural model for comparing
the power of quantum computation with classical computation, both deter-
ministic and randomized. Recently, several models of quantum branching
programs have been proposed [1, 2, 4, 12].

In this paper we define and consider syntactic models of stochastic and
quantum branching programs. For this syntactic model we present several
results for quantum branching programs of bounded width [1]. We show
that width-2 quantum programs are more powerful than width-2 doubly
stochastic programs, and are as strong as deterministic branching programs
of width 5. Specifically, we show that polynomial-length, width-2 quantum
branching programs can recognize any language in NC! exactly. Note that
such programs are equivalent to a nonuniform automaton whose only storage
device is a single qubit!

On the other hand, we show that polynomial-length, width-2 doubly
stochastic programs cannot compute the middle bit of the multiplication
function. In the classical case, Yao [21] showed that width-2 deterministic
programs require superpolynomial length to compute the majority function.

Next, we show that bounded-error (syntactic) quantum and stochastic
programs can be simulated by deterministic programs of the same length and
larger, but still bounded, width. Therefore the class of languages recognized
by these programs coincides with (nonuniform) NC!. This also implies that,
for bounded-width quantum programs, exact acceptance is just as strong as
acceptance with bounded error.

To give some flavour of what our syntactic model is, consider the usual
computation of a branching program. When we query a variable we do one
of two actions depending on its values. If we query the variable again we
expect to see the same value. An inconsistent state is one that is reached by
querying a variable more than once and using a different value each time.
Our syntactic models allow for the inclusion of inconsistent final states when
the final bounded error acceptance property is calculated. This enables us
to show that final consistent states of stochastic and quantum programs
recognizing languages with bounded error recognition have a specific metric
property: sets of accepting and rejecting states are isolated from each other.
We define syntactic programs as programs which satisfy the property that
the set of all (consistent as well as inconsistent) final states form a partition
into two sets isolated from each other.

We call this property a syntactic property in analogy with the notion
of syntactic classical read-k-times programs. The definition of classical syn-
tactic read-k-times branching programs [7] includes all their nonconsistent
paths in the general read-k-times variables testing property.

We use the techniques of our result to show that polynomial-length
width-2 stochastic programs that accept with probability 1/2 + € cannot
compute the majority function if ¢ > 1/4. In addition, we show that
polynomial-length stochastic programs with width 2 and € > 1/8, width
3 and € > 1/3, or width 4 and € > 3/8 can only recognize languages in ACC.

2 Branching Programs

We begin by discussing the classical model of branching programs and then
generalize it to the quantum setting. A good source of information on
branching programs is Wegener’s book [20], and for an introduction to quan-
tum computation see Nielsen and Chuang [13].

Definition 1 A branching program is a finite directed acyclic graph which
accepts some subset of {0,1}". Each node (except for the sink nodes) is
labeled with an integer 1 < i < n and has two outgoing arrows labeled 0 and
1. This pair of edges corresponds to querying the i’th bit z; of the input, and
making a transition along one outgoing edge or the other depending on the
value of x;. There is a single source node corresponding to the start state,
and a subset Accept of the sink nodes corresponding to accepting states. An
input © is accepted if and only if it induces a chain of transitions leading to
a node in Accept, and the set of such inputs is the language accepted by the
program. A branching program is oblivious if the nodes can be partitioned
into levels Vi,...,V; and a level Vyyq1 such that the nodes in Vyiq are the
sink nodes, nodes in each level V; with j < £ have outgoing edges only to
nodes in the next level Vi1, and all nodes in a given level V; query the same
bit z;; of the input. Such a program is said to have length £, and width k if
each level has at most k nodes.

Oblivious branching programs have an elegant algebraic definition. Re-
call that a monoid is a set with an associative binary operation - and an
identity 1 such that 1-a =a-1 = a for all a.

Definition 2 Let M be a monoid and S C M an accepting set. Let x;, 1 <
i <n be a set of Boolean variables. A branching program over M of length
¢ is a string of £ instructions; the j’th instruction is a triple (ij,a;,b;) €
{1,...,n} x M x M, which we interpret as a;j if z;; = 0 and b; if z;; = 1.
Given an input x, the yield Y (z) of the program is the product in M of all
its instructions. We say that the input x is accepted if Y (z) € S, and the
set of such inputs is the language recognized by the program.

Such programs are often called non-uniform deterministic finite au-
tomata (NUDFAs). A computation in a deterministic finite automaton can
be thought of as taking a product in its syntactic monoid; in a NUDFA we

generalize this by allowing the same variable to be queried many times, and
allowing “true” and “false” to be mapped into a different pair of monoid
elements in each query.

A common monoid is T}, the set of functions from a set of k£ objects
into itself. Then the program makes transitions among k states, and we can
equivalently define oblivious, width-k branching programs by choosing an
initial state and a set of accepting final states, where the k states correspond
to the k vertices (according to an arbitrary ordering) in each level Vj.

Definition 3 An oblivious width-k branching program is a branching pro-
gram over Ty, where the accepting set S C Ty consists of those elements of
Ty, that map an initial state s € {1,... .k} to a final state t € A for some
subset A C {1,... ,k}.

3 Bounded Width Branching Programs

We define language classes recognized by (non-uniform) families of bounded-
width branching programs whose length increases polynomially with n:

Definition 4 k-BWBP is the class of languages recognized by polynomial-
length branching programs of width k, and BWBP = U, k-BWBP.

Recall that a group is a monoid where every element has an inverse, and
a group is Abelian if ab = ba for all a,b. A subgroup H C G is normal if the
left and right cosets coincide, aH = Ha for all ¢ € G. A group is simple if
it has no normal subgroups other than itself and {1}.

Barrington [5] studied branching programs over the permutation group
on k objects Si C Tj; such programs are called permutation programs. He
showed that polynomial-length programs over S5, and therefore width-5
branching programs, can recognize any language in NC!, the class of lan-
guages recognizable by Boolean circuits of polynomial width and logarithmic
depth [14]. The version of Barrington’s result that we will use is:

Theorem 1 ([5, 11]) Let G be a non-Abelian simple group, and let a # 1
be any non-identity element. Then any language L in NC! can be recognized
by a family of polynomial-length branching programs over G such that their
yield is Y (z) = a if x € L and 1 otherwise.

Since the smallest non-Abelian simple group is A5 C S5, the group of even
permutations of 5 objects, and since we can choose a permutation a that
maps some initial state s to some other final state ¢, width 5 suffices. Con-
versely, note that we can model a width-k branching program as a Boolean
product of £ transition matrices of dimension k, and a simple divide-and-
conquer algorithm allows us to calculate this product in O(log!) depth. Thus

BWBP C NC!, so we have
5-BWBP = BWBP = NC! .

In the stochastic and quantum cases, the state of the program will be
described by a k-dimensional vector . The j'th step of the program will
query a variable z;,, and apply a transition matrix M;(z;;).

Definition 5 We call state (state vector) u of branching program a con-
sistent state if there exists an input x that induces a chain of transitions
leading to the state u from the initial state py. Otherwise, we call the p an
inconsistent state.

If £ = z1,...,x, is the input of a program of length £, then the final con-
sistent state of the program will be

1

(@) = T Mj(i,) o) -

i=t

(This product is in reverse order since we think of each step of the program
as a left multiplication of the state by M;.) In the deterministic case, state x
is a Boolean vector with exactly one 1 and the M; correspond to elements of
T}, and so have exactly one 1 in each column. For branching programs over
groups this is true of the rows as well, in which case the M} are permutation
matrices. We can generalize this by letting u be a probability distribution,
and letting the M; be stochastic matrices, i.e., matrices with non-negative
entries where each column sums to 1, or doubly stochastic where both the
rows and columns sum to 1. Recall that, by Birkhoff’s Theorem [19], doubly
stochastic matrices are convex combinations of permutation matrices [?].

In the deterministic and stochastic cases for sink state vector y € Vpy1,
we define

Pr(p) = Y (i|p) = |Hacceptelly (1)

1€ Accept

and we define the probability of acceptance as Pr(x) = Pr(u(z)). Here |i)
is the basis vector with support on the state 4, and IIaccept 1S a projection
operator on the accepting subspace span{|i) : i € Accept}.

For guantum branching programs, p is a complex state vector with
|lull2 = 1, and the M; are complex-valued unitary matrices. Then we define
Pr(u) for sink state vector u € Vpiq as

Pr(p) = > (i | m)* = [|Maccepsiells (2)
1€ Accept

and the probability of acceptance as Pr(z) = Pr(u(z)) which is the prob-
ability that, that if we measure p(x), we will observe it in the accepting
subspace. Note that this is a “measure-once” model analogous to the model
of quantum finite automata in [10], in which the system evolves unitarily ex-
cept for a single measurement at the end. We could also allow multiple mea-
surements during the computation, by representing A = {u : Pr(u) > 1/2}
the state as a density matrix and making the M; superoperators; we do not
consider this here.

We can define recognition in several ways for the quantum case. We
say that a language L is accepted with unbounded error if Pr(z) > 1/2 if
z € L and Pr(z) <1/2 if x ¢ L. We say that a language L is accepted with
bounded error if there is some € > 0 such that Pr(z) > 1/2+ € if z € L and
Pr(z) <1/2—eif z ¢ L. For the case e = 1/2 we say L is accepted ezactly.
That is, Pr(z) = 1 if z € L and Pr(z) = 0 if z ¢ L as in the deterministic
case.

4 Syntactic Variants of Stochastic and Quantum
Programs

For unbounded and bounded error stochastic and quantum branching pro-
grams we define two subsets A and R of the set of sink state vectors as
follows: For an unbounded error programs, we define

A={p€Vep1: Pr(p)>1/2y and R ={p€Vi1:Pr(p) <1/2}

for bounded error programs,we define

A={pe€Vi1:Pr(u) >1/2+¢e} and R={p € Vi1:Pr(p) <1/2—¢}

We call A the accepting set of state vectors and call R the rejecting set of
state vectors.

Definition 6 We call a stochastic or a quantum branching program a syn-
tactic program if its accepting and rejecting set of state vectors form a par-
tition of the set of sink state vectors for the program. That is Vi1 = AUR.

Observe that deterministic, unbounded error stochastic and quantum
branching programs are syntactic programs. But in the case of bounded
error branching programs it might happen that Vp;1 # AUR. That is, it
might happen that a inconsistent final state vector u € V;, 1 has the property
that 1/2 —e < Pr(u) < 1/2+e.

We denote by B- the language classes recognized by standard (nonsyn-
tactic) programs with bounded error and denote by E- those recognized

exactly. The notations SBP and QBP stand for stochastic and quantum
branching programs, respectively. We denote the classes of languages rec-
ognized by width-£ stochastic and quantum programs of polynomial length
as k-BSBP, k-BQBP, and k-EQBP. Note that we remove “BW” to avoid
acronym overload. We write BSBP for Upk-BSBP and define BQBP and
EQBP similarly. Clearly we have

BWBP C EQBP C BQBP
and
BWBP C BSBP

but in principle k-BSBP could be incomparable with k-EQBP or k-BQBP.

5 Width-2 Doubly Stochastic and Quantum Pro-
grams

In this section we show that width-2 syntactic quantum programs with exact
acceptance contain NC!, and also that this class of programs is stronger than
width-2 syntactic doubly stochastic programs.

Lemma 1 Any width-2 doubly stochastic program on n variables is equiva-
lent to one which queries each variable once and in the order x1,xo,... ,Zy.

Proof. Any 2 x 2 stochastic matrix can be written as () f) 1 ;P) for
some p € [0,1]. It is easy to verify that matrices of this form commute.
Hence, if we have a product of such matrices H;:n Mj(w;;) we can rewrite
it so that we first take the product of all the matrices that depend on z1,
then those that depend on x5, and so on. To finish the proof we note that
products of doubly stochastic matrices are again doubly stochastic, so we
can use a single doubly stochastic matrix for the product of all the matrices
that depend on a given z;. O

The above lemma shows we can convert any width-2 doubly stochastic
program into one which is read-once and with a fixed variable ordering. i.e.,
a randomized ordered binary decision diagram (OBDD). Hence in the case
of width-2 syntactic and nonsyntactic models of programs are equivalent.

First we note that stochastic programs are stronger than permutation
programs for width 2. It is easy to see that any program over Zg simply
yields the parity of some subset of the z;. The AND,, function, which accepts
only the input with z; = 1 for all 4, is not of this form, and so this function
cannot be recognized by a width-2 permutation program. However, it can
easily be recognized by a stochastic program P with bounded error which

queries each variable once as follows: for ¢ < m it maps z; = 1 and 0 to

. . 10 . 1/2 1/2 .
the identity (01) and the matrix (12 1/2) respectively, and for z,

it maps 1 and 0 to (i’;i (1)) and (g;g g;z) respectively. Taking the
first state to be both the initial and final state, P accepts with probability
3/4 if z; = 1 for all 7 and 3/8 otherwise. Note that except for one matrix
this is in fact a doubly stochastic program; if we had treated the variable x,,
in the same fashion as the other variables we would have gotten a syntactic
doubly stochastic program accepting AND,, with one-sided error.

Despite being stronger than their permutation counterparts, the next
result shows width-2 doubly stochastic branching programs are not that
strong. Let MULT}, be the Boolean function which computes the £’th bit
of the product of two n-bit integers. Define MULT"™ to be MULT, ., i.e.,
the middle bit of the product. We will argue that any width-2 stochastic
program that calculates this function (i.e., that recognizes the set of inputs
for which MULT™ = 1) requires at least exponential width.

In [3] Ablayev and Karpinski investigated randomized OBDDs, i.e., those
which accept with bounded error.

Theorem 2 ([3]) Any randomized OBDD that correctly computes MULT™
has width at least 2n/1ogn)

So by Lemma 1 we have immediately:

Corollary 1 MULT™ can not be computed by a width-2 doubly stochastic
program.

While width-2 doubly stochastic programs are quite weak, the next result
shows that width-2 quantum programs are surprisingly strong. Note that
a width-2 quantum program has a state space equivalent to a single qubit,
such as a single spin-1/2 particle.

Theorem 3 NC! is contained in syntactic 2-EQBP.

Proof. Recall that the smallest non-Abelian simple group As is isomorphic
to the set of rotations of the icosahedron. Therefore, the group SO(3) of
rotations of R?, i.e., the 3 x 3 orthogonal matrices with determinant 1,
contains a subgroup isomorphic to As.

There is a well-known 2-to-1 mapping from SU(2), the group of 2 x 2
unitary matrices with determinant 1, to SO(3). Counsider a qubit a|0) + b|1)
with |a|? 4+ |b|> = 1; we can make a real by multiplying by an overall
phase. The Bloch sphere representation (see e.g. [13]) views this state
as the point on the unit sphere with latitude # and longitude ¢ , i.e.,
(cos ¢ cos 0, sin ¢ cos 6, sin §), where a cos 6/2 and b = €*? sin /2.

Given this representation, an element of SU(2) is equivalent to some
rotation of the unit sphere. Recall the Pauli matrices

(01 (0 (10
2=\10)" "= 0/ T \o 41

Then we can rotate an angle o around the z, y or z axes with the following
operators:

Ru(a) = ¢i(e/2)0 cos /2 —z‘sina/2>

- <—isina/2 cos a/2

_ i(a/2ey cosa/2 —sina/2
Ry(a) =€ v (sina/Q cos /2 , and

(0N efia/Z 0
Ru(a) = @20 — (. eim)

This makes SU(2) a double cover of SO(3), where each element of SO(3)
corresponds to two elements +U in SU(2). (Note that angles get halved by
this mapping.) Therefore, SU(2) has a subgroup which is a double cover
of As. One way to generate this subgroup is with 27 /5 rotations a and b
around two adjacent vertices of an icosahedron. Since two such vertices are
an angle tan~! 2 apart, if one lies on the z axis and the other lies in the z-z
plane, we have

e’in/5 0
a = R,(2r/5) = (I)
b = Ry(tan™'2)-a- Ry(—tan™"2)
. L e’i?T/5T + e—’iﬂ/57_—1 _2Z Sin7‘(’/5
RV “isinm/5 e~i/Sr y ein/5r-1

where 7 = (1 + v/5)/2 is the golden ratio. Now consider the group element
¢ = a-b-a; this rotates the icosahedron by 7 around the midpoint of the edge
connecting these two vertices. In SU(2), this maps each of the eigenvectors
of oy to the other times an overall phase. These eigenvectors are

ey o) i)
+ = \/i) - = \/i

so we have
ex| % cle) =1
while, since they are orthogonal,

ex1le)? =0 .

Now, Theorem 1 tells us that for any language L in NC! we can construct
a polynomial-length program over As that yields the element equivalent to
¢ if the input is in the language and 1 otherwise. Using the embedding of
As in SO(3) and then lifting to SU(2) gives a program which yields +¢ or
1. If we take the initial state to be uy = e_ and the accepting subspace to
be that spanned by e, this program accepts L exactly. O

6 Deterministic Simulations of Syntactic Stochas-
tic and Quantum Branching Programs

In this section we give general results on simulating syntactic stochastic and
quantum programs with deterministic ones. Specifically, Theorem 4 shows
that syntactic stochastic and quantum programs that accept with bounded
error can be simulated by deterministic programs of the same length and
larger (but still bounded) width. Below we use this to place upper bounds
on the computational power of stochastic programs with various widths and
error thresholds.

Theorem 4 Let P be a syntactic stochastic or quantum branching program
of width k and length ¢ that recognizes a language L with probability 1/2+ €.
Then, there exists a deterministic branching program P' of width k' and
length £ that recognizes L, where

K< (1)k 3)

if P 1is stochastic, and

if P is quantum.

Proof. Our proof is a simple generalization of arguments of Rabin [15]
and Kondacs and Watrous [9] to the non-uniform case. For each step of
the program, we define an equivalence relation on state vectors, where two
state vectors are equivalent if they lead to the same outcome (acceptance
or rejection). Since P recognizes L with bounded error, inequivalent states
must be bounded away from each other, and since the state space is compact
the number of equivalence classes is finite. These equivalence classes then
become the states of our deterministic program P’.

First, we construct a much larger deterministic branching program P”
whose states at each level j consist of the state vectors (consistent and

10

nonconsitent) y that P can reach after j steps (computational or noncom-
putational). V)" consists of the initial state pg, and for all 1 < j < £ each
p € V' has two outgoing edges to M;(0)u, M;(1)p € VJ';. The syntac-
tic property provides partition the final states y € V! | into accepting and
rejecting subsets A and R according to equations (1) and (2).

In the stochastic case, p € A (resp. p € R) if [|Tlacceptptl|1 > 1/2 + €
(resp. |[[TLacceptpt]lt < 1/2 —€), and similarly in the quantum case except
that || -||1 is replaced with || - ||3. Clearly if A is the accepting subset of V),
then P" recognizes L deterministically.

Now we inductively define an equivalence relation =; on V' for each
level j. First, we let A and R be the equivalence classes of =41 (note that

71 = A U R since P recognizes L with bounded error). Then, for each

1 < j < ¥, define
p=ipu e Mj0)p=41 M;O0)y' and M;(1)p =11 M;(1)u" .

We now define P’ as the branching program whose states V;-’ for each level j
are the equivalence classes of =; and whose accepting subset is the singleton
{A}. Clearly P’ is well-defined and recognizes L deterministically; it just
remains to show that the number of equivalence classes for each j is bounded.

First we show that two inequivalent state vectors in Vj” must be far
apart, using the following standard argument [15, 9].

Lemma 2 Suppose p,p' € V' and p #;j pi'. Then

| — w1 > 4e

if P is stochastic, and

s — w'll2 > 2e
if P is quantum.

Proof. Since stochastic and unitary matrices both preserve or decrease the
appropriate norm, it suffices to show this for the last step. Therefore, sup-
pose that j = £+1, u € A and p’ € R. We can decompose both vectors into
their components inside the accepting subspace and transverse to it, writing
B = pa+ pr where gy = HAcceptN and pp = (1 - HAccept)N and similarly
for /. In the stochastic case, ||pall1 > 1/2+ € and ||p/4][1 < 1/2 — ¢, and so

lwa = pall + llr — pglh
2[(1/2+¢€) — (1/2 —¢)]
4de .

e — w1

v

11

In the quantum case, ||pall2 > 1/1/2 + € and ||p/4]l2 < 1/1/2 — €, so

o — w12 = llwa — pwall? + lur — w2

2
> 2[\/1/2+e—\/1/2—e]
- 2(1—\/1—462)
> 4¢?
80 [l — p'll2 > 2e. m

It follows that the width &’ of P’ is at most the largest number of balls
of radius 2¢ or € (in the stochastic and quantum case respectively) one can
fit inside the state space. In the stochastic case, the state space is a (k —1)-
dimensional simplex. Its Li-diameter is 2, so each ball of radius 2¢ covers
a fraction at least (1/€)¥~! of its volume, yielding (3). This bound is crude
in that it assumes that the center of each ball is at a corner of the simplex;
balls whose center are in the interior of the simplex cover up to 2¥~! times
as much volume. In particular, if ¥ = 2 then k' <1+ 1/(2¢).

In the quantum case, the state space is isomorphic to the surface of
the 2k-dimensional sphere of radius 1. The crude bound of (4) comes from
noticing that this sphere, and the balls of radius ¢ whose centers lie on its
surface, are all contained in a 2k-dimensional ball of radius 2. O

Theorem 4 shows that bounded-error syntactic stochastic and quantum
programs of constant width can be simulated by deterministic programs of
constant (albeit exponentially larger) width, and are therefore contained in
NC!. Conversely, we showed in Theorem 3 that NC! is contained in width-2
syntactic quantum programs. Therefore, the following classes all coincide
with NC!:

Corollary 2 For syntactic programs,
2-EQBP = 2-BQBP = EQBP = BQBP = BSBP = BWBP = NC' .

Of all the program classes discussed in this paper, the only ones not included
in this collapse are stochastic programs of width less than 5. Theorem 4
allows us to place upper bounds on their computational abilities if their
error margins are sufficiently large. For instance, since Yao [21] showed that
width-2 deterministic programs require superpolynomial length to compute
the majority function, we have

Corollary 3 For the syntactic case, width-2 stochastic branching programs
of polynomial length cannot recognize the majority function with probability
1/24¢€ife>1/4.

12

Similarly, recall that ACC = U,ACCJ[p] where ACC[p] is the class of lan-
guages recognizable by constant-depth circuits with AND, OR, and mod-p
counting gates of arbitrary fan-in. It is known that ACC[p] C NC' for prime
p [16, 18], and strongly believed, but not known, that ACC C NC!. Since
its is known [6] that deterministic programs of width less than 5 recognize
languages in ACCI6], we have

Corollary 4 Suppose L is recognized with probability 1/2 + € by a width-k
stochastic syntactic branching program of polynomial length. If kK = 2 and
e>1/8, ork=3 and e >1/3, or k=4 and ¢ > 3/8, then L € ACC.

Proof. For each k we consider the problem of how small € has to be to fit 5
points into the (k — 1)-dimensional simplex with an L; distance 4e between
them. While these values of € are smaller that those given by (3), they follow
easily from assuming without loss of generality that k of the points lie on
the simplex’s corners. O

However, we conjecture that stochasticity doesn’t greatly increase the
power of bounded-width branching programs, in the following sense:

Conjecture 1 If L is recognized with bounded error by a stochastic branch-
ing program of width less than 5, then L € ACC.

Acknowledgments. We grateful to Sasha Razborov for numeric sug-
gestions on the results presentations. We thank Denis Thérien for helpful
discussions on ACC and Sasha Shen for productive discussions on syntactic
model.

References

[1] F. Ablayev, C. Moore, and C. Pollett, Quantum and stochastic branching
programs of bounded width. Proc. 29th Intl. Colloquium on Automata,
Languages and Programming 343-354, 2002.

[2] F. Ablayev, A. Gainutdinova, and M. Karpinski, On the computational
power of quantum branching programs. Proc. FCT 2001, Lecture Notes
in Computer Science 2138: 59-70, 2001.

[3] F. Ablayev and M. Karpinski, A lower bound for integer mul-
tiplication on randomized read-once branching programs. FElec-
tronic Colloquium on Computational Complezity TR 98-011, 1998.
http://www.eccc.uni-trier.de/eccc

[4] A. Ambainis, L. Schulman, and U. Vazirani, Computing with highly
mixed states. Proc. 32nd ACM Symp. on Theory of Computing 697-704,
2000.

13

[5] D.A. Barrington, Bounded-width polynomial branching programs recog-
nize exactly those languages in NC!. Journal of Computer and System
Sciences 38(1): 150-164, 1989.

[6] D.A. Barrington and D. Therien, Finite Monoids and the Fine Structure
of NC'. Journal of the ACM 35(4): 941-952, 1988.

[7] A. Borodin, A. Razborov, and R. Smolensky, On lower bounds for read-
k-times branching programs, Computational Complexity, 3, (1993), 1-18.

[8] J.G. Kemeny and J.L. Snell, Finite Markov Chains. Van Nostrand, 1960.

[9] A. Kondacs and J. Watrous, On the power of quantum finite automata.
Proc. 38th IEEE Conf. on Foundations of Computer Science 66—75, 1997.

[10] C.Moore and J.P. Crutchfield, Quantum automata and quantum gram-
mars. Theoretical Computer Science 237: 275-306, 2000.

[11] C. Moore, D. Thérien, F. Lemieux, J. Berman, and A. Drisko. Circuits
and Expressions with Non-Associative Gates. Journal of Computer and
System Sciences 60: 368-394, 2000.

[12] M. Nakanishi, K. Hamaguchi, and T. Kashiwabara, Ordered quan-
tum branching programs are more powerful than ordered probabilistic
branching programs under a bounded-width restriction. Proc. 6th Intl.
Conf. on Computing and Combinatorics (COCOON) Lecture Notes in
Computer Science 1858: 467-476, 2000.

[13] M.A. Nielson and L.L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[14] C. Papadimitriou, Computational Complexity. Addison-Wesley, 1994.

[15] M. Rabin, Probabilistic automata. Information and Control 6: 230-245,
1963.

[16] A.A. Razborov, Lower bounds for the size of circuits of bounded depth
with basis {&,®}. Math. Notes Acad. Sci. USSR 41(4) 333-338, 1987.

[17] P. Shor, Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Journal on Computing
26(5): 1484-1509, 1997.

[18] R. Smolensky, Algebraic methods in the theory of lower bounds for
Boolean circuit complexity. Proc. 19th ACM Symposium on the Theory
of Computing 77-82, 1987.

[19] J. H. van Lint and R. M. Wilson. A Course in Combinatorics, 2nd ed.
Cambridge. 2001.

14

[20] Ingo Wegener, Branching Programs and Binary Decision Diagrams.
SIAM Monographs on Discrete Mathematics and Applications, 2000.

[21] A.C. Yao, Lower Bounds by Probabilistic Arguments. Proc. 24th IEEE
Conf. on Foundations of Computer Science 420428, 1983.

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc

15 ftp://ftp.eccc.uni-trier.de/publecce
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

