
Computational Complexity on Computable Metric

Spaces

Klaus Weihrauch
FernUniversität Hagen

58084 Hagen
Germany

email: klaus.weihrauch@fernuni-hagen.de

http://www.informatik.fernuni-hagen.de/thi1/klaus.weihrauch

Abstract

We introduce a new Turing machine based concept of time complexity for func-
tions on computable metric spaces. It generalizes the ordinary complexity of
word functions and the complexity of real functions studied by Ko [19] et al.
Although this definition of TIME as the maximum of a generally infinite family
of numbers looks straightforward, at first glance, examples for which this max-
imum exists seem to be very rare. It is the main purpose of this paper to prove
that, nevertheless, the definition has a large number of important applications.
Using the framework of TTE [40], we introduce computable metric spaces and
computability on the compact subsets. We prove that every computable metric
space has a c-proper c-admissible representation. We prove that Turing machine
time complexity of a function computable relative to c-admissible c-proper rep-
resentations has a computable bound on every computable compact subset. We
prove that computably compact computable metric spaces have concise c-proper
c-admissible representations and show by examples that many canonical repre-
sentations are of this kind. Finally, we compare our definition with a similar
but not equivalent one by Labhalla et al. [22]. Several examples illustrate the
concepts. By these results natural and realistic definitions of computational
complexity are now available for a variety of numerical problems such as image
processing, integration, continuous Fourier transform or wave propagation.

1

Electronic Colloquium on Computational Complexity, Report No. 14 (2002)

ISSN 1433-8092




1 Introduction

The study of computational complexity of decidable sets and computable functions is
one of the central issues in theoretical computer science. The majority of the numerous
investigations, however, concern countable structures such as natural numbers, finite
words, finite trees or finite graphs.

For the complexity of real number computation various models have been pro-
posed. A popular one is the real-RAM (real Random Access Machine) approach which
is used, e.g., in algebraic complexity [7] and computational geometry [9]. Roughly
speaking, a real-RAM is a flowchart program over the structure (

�
, 0, 1,+,−, ·, /,≤).

The computational complexity is the time (number of steps) of a computation mea-
sured as a function of the dimension (number of real variables) of the input. Com-
putational complexity of real-RAMs is discussed in detail in [3]. Another model
using real-RAM computations is “Information Based Complexity” (IBC) [36]. Here
complexity is the number of function evaluations and possibly arithmetic operations)
measured as a function of precision of the result. Since only in some applications the
real-RAM model of computation is realistic ([40], Chap. 9), we do not believe that it
is suitable as a general model for computability and complexity in analysis.

In a completely different model of computation, Turing machines are used to ap-
proximate real numbers and functions. In this “bit-oriented” model, Turing machine
time complexity is the number of Turing steps to compute an approximate result
of precision 2−k. Complexity bounds of concrete real functions are proved e.g. in
[6, 24, 25, 31, 26, 30, 27, 33, 34].

In his book, Ko [19] studies various aspects of real functions computable on Turing
machines in polynomial time, in particular lower complexity bounds in connection to
the famous P-NP problem. Further papers using this model are e.g. [1, 15, 38, 2,
20, 14, 22], see also Chap.7 in [40].

There are only very few papers studying complexity in the bit-model not only
of real functions but also of other objects. Polynomially time approximable sets
and polynomially time computable sets have been considered in [19, 20], see also
[17, 16, 40]. In [22], Ko’s characterization of polynomial time computable real func-
tions (Cor. 2.21 in [19]) is generalized to C-computable functions between complete
“computable” metric spaces for appropriate discrete complexity classes C (like poly-
nomial time) which, in particular, must be closed under composition. Real functions
and operators can be considered as “higher type objects” in computer science. Com-
putational complexity of higher type functions is defined in [23, 35, 8, 18]. In these
approaches evaluation (f, x) 7→ f(x) is an additional primitive operation counting one
step. Their significance for application in analysis, however, is not obvious.

Seemingly, computational complexity in analysis is so underdeveloped not least,
since no satisfactory definitions have been available so far. Finding natural, realistic
and generally applicable definitions of computational complexity is one of the current
challenges in computable analysis.

In this paper we introduce a new “bit-oriented” kind of computational complexity
of functions on metric spaces. It generalizes Ko’s definition [19] and the definition via

2



the signed digit representation of computational complexity of real functions [40]. In
some examples it is equivalent to the definition by Labhalla et. al. [22].

As a general framework for studying computability and computational complexity
in analysis on the “bit-level” we use Type-2 Theory of Effectivity, TTE for short [40].
TTE is rooted in a definition of computable real functions introduced by A. Grze-
gorczyk [12] and later work on the theory of representations by J. Hauck and others
[13, 42, 21]. In TTE, computable functions on finite and infinite strings of symbols
(Σ∗ and Σω, respectively) are defined explicitly by Type-2 machines (extended Turing
machines), and then finite and infinite strings are used as “names” of other objects
such as real numbers, closed subsets of Euclidean space or continuous real functions.
TTE is consistent with the computability approaches by Pour-El and Richards and
by Ko and with the domain approach [28, 19, 11], but seemingly is more expressive in
analysis ([40], Chap. 9). A surjective partial function δ :⊆ Σω → X assigning infinite
sequences of symbols as “names” to the elements of X is called a representation. A
function g :⊆ Σω → Σω is a (δ1, δ0)-realization of a function f :⊆ X1 → X0, iff
f ◦ δ1(p) = δ0 ◦ g(p) whenever δ1(p) ∈ dom(f).

Let M be a Type-2 machine such that fM is a (δ1, δ0)-realization of a function
f :∈ X1 → X0. We count the number of Turing steps of the machine M as a function
of the input and of the output precision. Suppose, for q ∈ dom(δ0), k ∈ � and a
prefix z ∈ Σ∗ of q ∈ Σω we have defined the meaning of “z approximates δ0(q) with
precision 2−k ” ( (z, 0k) ∈ dom(app) in Def. 5.1 below). Then let

TimeM(p)(k) be the number of steps which M needs on input p ∈ dom(δ1)
to compute some finite prefix z of fM (p) approximating δ0 ◦ fM (p) with
precision 2−k.

Here, complexity is a function TimeM (p) : � → � depending on the δ1-name p of
an element x ∈ X1. In order to get a name-independent concept we consider the

maximum TIME
{x}
M (k) := maxδ1(p)=x TimeM (p)(k) or, more generally,

TIMEK
M (k) := max

δ1(p)∈K
TimeM (p)(k) (1)

for suitable subsets K ⊆ dom(f). Thus, for any δ1-name of a point x ∈ K ⊆ dom(f)
as an input, the machine M computes an approximation of f(x) of precision 2−k in
at most TIMEK

M (k) steps (provided the maximum TIMEK
M (k) exists). This straight-

forward definition has a very concrete meaning for a user who realizes a computable
function on a Type-2 machine, and it is realistic, since Type-2 machines are realistic.

We could now start to study computational complexity of numerous computable
functions and operators in analysis. Unfortunately, examples for which the definition
is meaningful seem to be very rare. Although we know that for the signed digit
representation ρsd and for the “Ko representation” ρKo of the real numbers (see Ex.
4.2 below) the maximum in (1) exists for compact sets ([40], Thm. 7.1.5), for most
representations of most spaces, most computable functions and most sets K (even

3



most singletons), however, the definition is useless, since the maximum in (1) does
not exist.

In this paper we show that, nevertheless, the above definition (1) of computational
complexity has a large number of important quite natural applications. For this pur-
pose we consider computable metric spaces with c-admissible representations. We
show that every c-admissible representation δ0 has a computable concept of “approx-
imation”. We show that every computable metric space has c-proper c-admissible
representations δ1. As a main theorem we prove that TIMEK

M has a computable
upper bound, if δ1 is c-proper and c-admissible and K is a computable compact set.
Finally, we construct natural “concise” c-proper c-admissible representations for com-
putable compact spaces and add some useful examples. Although we consider only
time complexity, the results hold for space complexity accordingly.

We will use the framework of TTE as presented, e.g., in the textbook [40]. In
particular, let Σ be a (sufficiently large) finite alphabet. For a word w ∈ Σ∗ let |w|
be its length. Let νΣ : � → Σ∗ be some standard bijection. Let ν � :⊆ Σ∗ →
� and ν � :⊆ Σ∗ → � be standard notations of the natural and rational num-
bers, respectively, and let ρC :⊆ Σω →

�
be the standard Cauchy representa-

tion of the real numbers (see [40]). On Cantor space Σω define the metric dΣω by
dΣω (p, q) := 2−min{n|p(n)6=q(n)} (for p 6= q). Occasionally we use the wrapping func-
tion ι(a1 . . . am) := 110a10 . . .0am011 (ai ∈ Σ). Standard tupling functions on � , Σ∗

and Σω are denoted by 〈 〉. On the product of metric spaces, in particular on
� n,

we will consider the maximum metric. As a realistic model of computation on finite
and infinite sequences we consider Type-2 machines, i.e., Turing machines with typed
one-way input and output tapes where the type of a tape is either Σ∗ or Σω (see
Sec. 2.1 in [40]).

2 Computable Metric Spaces

In this section we recall the definition of computable metric spaces and Cauchy repre-
sentations (which are admissible [39, 40]) and illustrate them by a number of examples.

Definition 2.1 (computable metric space) 1. A computable metric space is a
quadruple X = (X, d, A, α) such that (X, d) is a metric space, A is a dense
subset of X and α :⊆ Σ∗ → A is a notation of A such that dom(α) is recursive
and

{(t, u, v, w) ∈ (Σ∗)4 | ν � (t) < d(α(u), α(v)) < ν � (w)} is r.e. . (2)

2. The Cauchy representation δC :⊆ Σω → X is defined by

δC(p) = x : ⇐⇒







there are words w0, w1, . . . ∈ dom(α)
such that p = w0#w1# . . . and
d(x, α(wi)) ≤ 2−i for all i .

(3)

4



3. Call a representation δ of X admissible (w.r.t. X), iff δ ≡t δC , and c-admissible
(w.r.t. X), iff δ ≡ δC .

We tacitly assume dom(α) ∈ (Σ \ {#})∗. In [40] Def. 8.1.2, dom(α) needs not to be
recursive. However, it can be shown easily that for every notation α in a computable
metric space there is an equivalent notation α′ with recursive domain such that the
induced Cauchy representations are equivalent. So Def. 2.1 is no proper restriction.

Property (2) means that the distance on A is (α, α, ρC)-computable. In [39] in-
stead of (2) the weaker condition “{(u, v, w) ∈ (Σ∗)3 | d(α(u), α(v)) < ν � (w)} is r.e.”
is used. We suggest to call such effective metric spaces semi-computable. The defi-
nition of “admissible” in 3. is in accordance with the more general concept in [40],
Definition 3.2.7. Many well-known metric spaces become computable metric spaces
by considering canonical notations of dense subsets.

Example 2.2 (some computable metric spaces)

1. Countable discrete spaces: (X, d, X, α) where d(x, x′) = 1 for x 6= x′ and α is a
notation of X with recursive equivalence problem (this follows from (2) for the
discrete metric). Then α ≡ δC . Examples: (X, α) = (� , ν � ), (Σ∗, idΣ∗ ).

2. Rational numbers: ( � , d, � , ν � ), where d(x, y) = |x − y|. Then ν � ≤ δC but
δC 6≤t ν � .

3. Euclidean space: (
� n, d, � n, νn� ), where d is the the Euclidean distance, δC ≡

ρn
C .

4. Real line with binary notation: (
�

, | |, D, νD), where

νD(sak . . .a0•a−1 . . .a−l) := (−1)s
∑−l

i=k ai2
i (s, ai ∈ {0, 1}, ak 6= 0). Then

δC = ρC .

5. Cantor space: (Γω , dΓ, A, α), where Γ is a finite alphabet and α(u) := uaaa . . .
(a ∈ Γ) for all u ∈ Γ∗, δC ≡ idΓω .

6. Baire space: ( � , d, A, α), where � = � ω, d(p, q) := 2−min{n|p(n) 6=q(n)} (for p 6= q)
and α(0i010i11 . . .10ik) := (i0i1 . . . ik000 . . .). The Cauchy representation is
equivalent to δ � defined by δ � (0i010i11 . . . ) = (i0i1 . . . ).

7. Real L2(
�

): (L2(
�

), dL2, A, α) where d(f, g) =
(∫

(f(x) − g(x))2 dx
)1/2

and α
is some standard notation of the set A of all finite step functions with rational
break points.

8. Continuous functions: (C[0; 1], d,A, α), where C[0; 1] is the set of all continu-
ous functions f : [0; 1] →

�
, d(f, g) := maxx |f(x) − g(x)| and α is a standard

notation of all finite polygon functions with rational break points or of all poly-
nomials with rational coefficients.

9. Compact subsets of
� n: (K(

� n), dH, A, α), where K(
� n) is the set of all non-

empty compact subsets of
� n, dH is the Hausdorff distance and α is a canonical

notation of all non-empty finite subsets of � n.

�

5



3 Compact Sets

As a technical preparation, in this section we prove a theorem not yet available in
computable analysis: the function (f, K) 7→ f [K] is computable w.r.t. canonical
representations for continuous functions f and compact sets K. Computability on
the set of compact subsets of Euclidean space is studied in [5, 40]. For computable
metric spaces, various representations of the compact subsets are compared in [4].
In this section we give some examples and generalize Theorem 6.2.4.4 from [40] to
computable metric spaces.

Let X = (X, d, A, α) be a computable metric space. Define a notation I :⊆ Σ∗ → B
of the set of all open balls with center in A and rational radius (the “open rational
balls”) by I〈u, v〉 := B(α(u), ν � (v)) (abbreviation Iw := I(w)). Furthermore, let fs
be some standard notation of the set of finite subsets of Σ∗. We assume tacitly
dom(I), dom(fs) ⊆ (Σ \ {#})∗. The notations I and fs have recursive domains. Let
FS be the (recursive) set of all w ∈ dom(fs) such that fs(w) ⊆ dom(I). In contrast
to Euclidean space, in general neither Iw ⊆ Iw′ nor Iw ∩ Iw′ = ∅ is r.e. . As an
alternative we call dom(I) the set of formal balls. We define the center and the radius
of a formal ball 〈u, v〉 by ct〈u, v〉 := α(u) and rad〈u, v〉 := ν � (v) and use in particular
the syntactic relations ≺ (“formal inclusion”) and ./ (“formal disjointness”) defined
by

≺ := {(u, u′) | u, u′ ∈ dom(I), d(ct(u), ct(u′)) + rad(u) < rad(u′)}, (4)

./ := {(u, u′) | u, u′ ∈ dom(I), d(ct(u), ct(u′)) > rad(u) + rad(u′)}. (5)

Both relations are r.e. by (2). The relation ≺ is transitive and the closed ball
B(ct(u), rad(u)) is a subset of the open ball B(ct(u′), rad(u′)), if u ≺ u′, and
B(ct(u), rad(u)) ∩B(ct(u′), rad(u′)) = ∅, if u ./ u′.

Let K be the set of compact subsets of X. We generalize Def. 5.2.4 in [40] by
introducing two representations of K (denoted by δcover and δmin−cover, respectively,
in [4]):

Definition 3.1 (representations of compact sets) Define the covering represen-
tation κc and the minimal covering representation κmc of K(X) by:

K = κc(p), iff p = #v0#v1# . . . and {v0, v1 . . .} = {v ∈ FS | K ⊆
⋃

I[fs(v)]} ,
K = κmc(p), iff p = #v0#v1# . . . and

{v0, v1 . . .} = {v ∈ FS | K ⊆
⋃

I[fs(v)], ∀w ∈ fs(v).K ∩ Iw 6= ∅} .

Notice that κc and κmc are admissible standard representations of effective topo-
logical spaces according to Defs. 3.2.1/2 in [40]. Obviously, κmc ≤ κc, but κc 6≤t κmc

for non-trivial spaces.

Example 3.2 In the following let κX
c and κX

mc be the representations according to
Def. 3.1 of the set K(X) of compact subsets of the computable metric space X under
consideration.

1. Consider the computable metric space ( � , d, � , ν � ) of natural numbers from Ex.
2.2.1. A set K ⊆ � is compact, iff it is finite. Define νf � :⊆ Σ∗ → K(� ) by
νf � (a0 . . .am) := {i | ai = 1} (ai ∈ {0, 1}). Define a representation κ

�
> of K(� )

6



by κ
�
>(p) = K, iff p = #w0#w1 . . . and {νf � (w0), νf � (w1) . . .} = {B ⊆ � |

B finite and K ⊆ B}. Then κ
�
> ≡ κ

�
c and νf � ≡ κ

�
mc.

2. Consider the computable metric space (Σ∗, d, Σ∗, idΣ∗) from Ex. 2.2.1. A set
K ⊆ Σ∗ is compact, iff it is finite. Define a representation κΣ∗

> of K(Σ∗)
by κΣ∗

> (p) = K, iff p = #w0#w1 . . . and {fs(w0), fs(w1) . . .} = {B ⊆ Σ∗ |
B finite and K ⊆ B}. Then κΣ∗

> ≡ κΣ∗

c and fs ≡ κΣ∗

mc.

3. Consider Cantor space from Ex. 2.2.5. A subset K ⊆ Σω is compact, iff it
is closed. Define a representation κΣω

> of the set K(Σω) of compact subsets of
Σω by κΣω

> (p) = K, iff Σω \ K =
⋃

{wΣω | ι(w) is a subword of p} (where
ι(a1 . . . am) := 110a10 . . .0am011). Then κΣω

> ≡ κΣω

c [4].
�

For further examples see [40, 4]. Classically, continuous functions map compact sets to
compact sets. The following computable version of this fact generalizes Thm. 6.2.4.4
in [40].

Theorem 3.3 Let Xi (i = 1, 2) be computable metric spaces with Cauchy repre-
sentations δi

C of their points and representations κi
c and κi

mc of their compact sub-
sets (Def. 3.1), respectively. Let δ be a representation of partial continuous functions
f :⊆ X1 → X2 such that apply : (f, x) 7→ f(x) is (δ, δ1

C , δ2
C)-computable. Then the

function

(f, K) 7→ f [K] for compact K ⊆ dom(f)

is (δ, κ1
c , κ

2
c)-computable and (δ, κ1

mc, κ
2
mc)-computable.

Proof: 1. (f, K) 7→ f [K] is (δ, κ1
c , κ

2
c)-computable:

It suffices to show that there is an r.e. set Y ⊆ Σω × Σω × Σ∗ (Sec. 2.4 in [40]) such
that for all q ∈ dom(δ) and p ∈ dom(κ1

c) with κ1
c(p) ∈ dom(δ(q)) and all w ∈ Σ∗,

(q, p, w) ∈ Y ⇐⇒ δ(q)[κ1
c(p)] ⊆

⋃

I2[fs(w)] . (6)

There is a Type-2 machine N such that fN :⊆ Σω × Σω → Σω is a (δ, δ1
C , δ2

C)-
realization of the apply-function. Let FN be the set of all (p, u, v) ∈ Σω × Σ∗ × Σ∗

such that on input (p, u0ω) in some number of steps, the machine N writes v on its
output tape reading at most u from the second input tape. The set FN is r.e. (see
Sec. 2.4 in [40]).

Let di be a computable sequence of words such that ν � (di) = 2−i. Define a
computable function h :⊆ Σ∗ → Σ∗ by h(u) = 〈uk, dk〉, if u = u0#u1# . . .#uk#
(ui ∈ (Σ \ {#})∗), h(u) is undefined otherwise. Call a sequence u0#u1# . . . strict,
iff ui ∈ dom(α1) and d1(α1(ui), α1(uj)) < 2−i−1 for all i < j. Obviously, x ∈
I1h(u0# . . .#uk#) for all k and any strict δ1

C-name u0#u1# . . . of x. If v0#v1# . . .
is a δ1

C-name of x, then v2#v3# . . . is a strict δ1
C -name of x, thus every (computable)

point has a strict (computable) δ1
C-name. Call a word u ∈ Σ∗ strict, iff u ∈ dom(h)

and u is a prefix of some strict sequence. The set of strict words is r.e. by (2).

Assume δ(q) = f , κ1
c(p) = K ⊆ dom(f) and I2[fs(w)] = L ⊆ B2. Then

δ(q)[κ1
c(p)] ⊆

⋃

I2[fs(w)],

iff f [K] ⊆
⋃

L,

7



iff ∀x ∈ K.∃B ∈ L.f(x) ∈ B,

iff ∀x ∈ K.∃u, v ∈ dom(h).
(

u is strict, x ∈ I1h(u), (q, u, v) ∈ FN, ∃w′ ∈ fs(w).h(v) ≺2 w′
)

iff ∃u1, v1, . . . , um, vm ∈ dom(h).K ⊆
⋃m

i=1 I1h(ui) and for all i
(

ui is strict, (q, ui, vi) ∈ FN, ∃w′ ∈ fs(w).h(vi) ≺2 w′
)

iff ∃u1, v1, . . . , um, vm ∈ dom(h).
∃w1.{h(u1), . . . , h(um)} = fs(w1), K ⊆

⋃

I1[fs(w1)] and for all i
(

ui is strict, (q, ui, vi) ∈ FN, ∃w′ ∈ fs(w).h(vi) ≺2 w′
)

iff ∃u1, v1, . . . , um, vm ∈ dom(h).
∃w1.{h(u1), . . . , h(um)} = fs(w1), #w1# is a subword of p and
for all i,

(

ui is strict, (q, ui, vi) ∈ FN, ∃w′ ∈ fs(w).h(vi) ≺2 w′
)

=def Q.

The 3rd “only if” holds, since every x ∈ dom(f) has a strict name and a finite
computation of N guarantees x ∈ I2(w′) ∈ L. Notice that f [I1h(u)] ⊆ I2(w′). The
4th “iff” follows from compactness of K: already finitely many open balls I1h(u) cover
K.

Now define Y by (q, p, w) ∈ Y , iff Q. Since dom(h) is recursive and the subword
relation, strictness, FN and ≺2 are r.e., Y is r.e. . The above equivalences show that
Y satisfies (6).

2. (f, K) 7→ f [K] is (δ, κ1
mc, κ

2
mc)-computable:

It suffices to show that there is an r.e. set Y ′ ⊆ Σω × Σω × Σ∗ [40] such that for all
q ∈ dom(δ), p ∈ dom(κ1

mc) with κ1
mc(p) ∈ dom(δ(q)) and w ∈ Σ∗, (q, p, w) ∈ Y ′, iff

δ(q)[κ1
mc(p)] ⊆

⋃

I2[fs(w)] and ∀w′ ∈ fs(w).δ(q)[κ1
mc(p)] ∩ I2(w′) 6= ∅ (7)

(cf. (6)). If p lists all minimal covers of K, we have

f [K] ∩ I2(w′) 6= ∅
iff ∃x ∈ K.f(x) ∈ I2(w′)
iff ∃w1, w2, u, v.

(

#w1# is a subword of p, w2 ∈ fs(w1), (q, u, v) ∈ FN,
w2 ≺1 h(u), h(v) ≺2 w′

)

=def P.

Define Y ′ by (q, p, w) ∈ Y ′ ⇐⇒ (Q and ∀w′ ∈ fs(w).P ). Then Y ′ is r.e. and satisfies
(7)

�

Sometimes it is convenient to restrict a computable metric space to a subspace,
e.g.,

� 2 to [0; 1]2. If the subspace is sufficiently simple, the representations of points
and compact sets of the subspace are equivalent to the restrictions of the original
representations. The following can be proved straightforwardly.

Lemma 3.4 (representation of a subspace) Consider computable metric spaces
X = (X, d, A, α) and X′ = (X ′, d′, A′, α′) such that X ′ ⊆ X and α′ and d′ are
restrictions of α and d, respectively, with representations δC , δ′C , κc and κ′

c of the

points and the compact subsets, respectively. Then δC |X
′

≡ δ′C and κc|K(X′) ≡ κ′
c.

8



4 Proper Admissible Representations

In Section 1 we have defined TIMEK
M (k) := maxδ1(p)∈K TM (p)(k), where TM (p)(k) is

the time which a machine M needs on input p to determine the result with precision
2−k. Since p 7→ TM (p)(n) is continuous, maxp∈A TM (p)(n) exists, if A ⊆ Σω is
compact and TM (p)(n) exists for all p ∈ A. Schröder [32] calls a representation δ of
a metric space proper, iff δ−1[K] is compact for every compact subset K. If dom(δ)
is closed, then δ−1[K] is a closed, i.e., compact subset of Σω for compact K. But
in general dom(δ) is not closed. Schröder shows that every separable metric space
has a proper admissible representation δp. In the following we introduce c-proper
representations. In particular, we prove that c-proper c-admissible representations
exist and that they are closed under Cartesian product. We still assume that X =
(X, d, A, α) is a computable metric space such that dom(α) is recursive. Let κΣω

> be
the representation of the set of compact subsets of Cantor space from Ex. 3.2.3.

Definition 4.1 (c-proper representation) Call a representation δ of X c-proper,
iff the function K 7→ δ−1[K] for compact K ⊆ X is (κc, κ

Σω

> )-computable.

Example 4.2 1. Consider the discrete computable metric space from Ex. 2.2.1.
Define a representation δα of X by δα(ι(w)00 . . . ) := α(w) (where ι is the
wrapping function, ι(a1 . . .am) := 110a10 . . .0am011). Then α ≡ δα ≡ δC . If
for some computable function h :⊆ Σ∗ → Σ∗,

α−1[{α(w)}] = fs ◦ h(w) (w ∈ dom(α)), (8)

then δα is c-proper (h computes the finite set of all names of α(w)).

2. The signed digit representation ρsd :⊆ Σω →
�

is defined by
ρsd(ak . . . a0•a−1a−2 . . . ) :=

∑−∞
i=k ai2

i , ai ∈ {1, 0,−1} (abbreviate −1 by 1),
ak 6= 0 for k ≥ 0 and akak−1 6= 11, 11 for k ≥ 1 [42, 40]. The signed digit
representation is equivalent to ρC and c-proper (Thm. 7.2.5 and Ex. 7.2.9 in
[40]). In [40] it is used to define the complexity of real functions.

3. Consider Ex. 2.2.4. Let δKo be the restriction of the Cauchy representation
to names w0#w1# . . . such that wi ∈ Σ∗

•Σi. Then δKo is c-admissible and
c-proper. Ko’s complexity of real functions [19] is (essentially) based on this
representation, which is very similar to the signed digit representation.

�

In Sec. 6 we will construct c-proper representations with compact domains.

Lemma 4.3 Let δ be a c-admissible representation of a computable metric space X
with κΣω

> -computable compact domain. Then δ is c-proper.

Proof: Consider K = κc(q). Then

p 6∈ δ−1[K] ⇐⇒ p ∈ Σω \ dom(δ) or (p ∈ dom(δ) and δ(p) 6∈ K).

Let h :⊆ Σω → Σω be a computable translation from δ to δC . Then for any p ∈
dom(δ), δ(p) 6∈ K (= κc(q)), iff there are words u, w, w0, . . . , wm such that #u# is a
subword of q, w is a prefix of p, h(w . . . ) = (w0# . . .#wm# . . . ) and v ./ 〈wm, w′〉 for

9



all v ∈ fs(u) where ν � (w′) = 2−m+1. Let Z ⊆ Σω × Σω be the set of all pairs (p, q)
such that: there are words u, w, w0, . . . , wm such that #u# is a subword of q, w is a
prefix of p, h(w . . . ) = (w0# . . .#wm# . . . ) and v ./ 〈wm, w′〉 for all v ∈ fs(u). Then
Z is r.e. open and

p ∈ Σω \ δ−1[κc(q)] ⇐⇒ p ∈ Σω \ dom(δ) or (p, q) ∈ Z.

Since Σω \ dom(δ) is r.e. open, p ∈ Σω \ δ−1[κc(q)] is r.e. open and so there is some
r.e. set B ⊆ Σ∗ × Σ∗ such that

{(p, q) | p ∈ Σω \ δ−1[κc(q)]} =
⋃

(u,v)∈B

Iu × Iv.

There is a computable function g :⊆ Σω → Σω such that g(q) is a list of all words ι(u)
such that for some prefix v of q, (u, v) ∈ B. Then κΣω

> ◦ g(q) = δ−1[κc(q)]. Therefore,
δ is c-proper.

�

For a computable metric space, Schröder’s proper representation δp is even c-
proper and c-admissible. In the following let να : � → A be a (total) numbering
defined by να(i) := α ◦ νΣ(i), if νΣ(i) ∈ dom(α) and να(i) := a otherwise (for some
fixed a ∈ A). Then α ≡ να ◦ ν−1

Σ and (2) in Def. 2.1 holds for να accordingly.

Theorem 4.4 (existence of c-proper c-admissible representations) Define a
representation δp :⊆ Σω → X as follows: dom(δp) ⊆ {0, 1}ω and for all x ∈ X
and all p ∈ {0, 1}ω:

δp(p) = x ⇐⇒ (∀m, n)

{

p〈m, n〉 = 1 =⇒ d(x, να(m)) ≤ 2−n

p〈m, n〉 = 0 =⇒ d(x, να(m)) ≥ 2−n−1 .

Then δp is c-proper and c-admissible.

Since d(x, να(m)) ≤ 2−n or d(x, να(m)) ≥ 2−n−1 for all m, n ∈ � , the represen-
tation δp is well-defined. However, the domain of δp is not closed in general. As an
example, consider the computable metric space of natural numbers from Ex. 2.2.1.
Suppose that Σω \ dom(δp) is open. If δp(0ω) = x, then d(x, a) ≥ 1/2 for all a ∈ �
which is impossible, therefore, 0ω ∈ Σω \ dom(δp). Then 0kΣω ∩ dom(δp) = ∅ for
some number k. Let j ∈ � be the smallest number not in να[{m0, . . . , mk}] (where
i = 〈mi, ni〉). Then q ∈ 0kΣω for some δp-name q of j, hence q ∈ 0kΣω ∩ dom(δp)
(contradiction).

Proof of Theorem 4.4: First, we show that there is some r.e. set Y ⊆ Σω × Σ∗

such that

∀q ∈ dom(κc). ∀ z ∈ Σ∗. (q, z) ∈ Y ⇐⇒ zΣω ∩ δ−1
p [κc(q)] = ∅. (9)

Notice that zΣω ∩ δ−1
p [K] = ∅ ⇐⇒ δp[zΣω] ∩ K = ∅. Let K = κc(q) and z =

z0z1 . . . zk−1 ∈ {0, 1}k. We have

δp[zΣω] ∩ K = ∅ ⇐⇒ ∀x ∈ X.
(

x 6∈ δp[zΣω] or x 6∈ K
)

. (10)

10



Since

x 6∈ δp[zΣω] ⇐⇒ ∃〈m, n〉 < |z|.







z〈m,n〉 = 1 and d(x, να(m) > 2−n

or
z〈m,n〉 = 0 and d(x, να(m)) < 2−n−1 ,

we have x 6∈ δp[zΣω], iff for some t ∈ dom(I), x ∈ I(t) and

Q1 : ∃〈m, n〉 < |z|.







z〈m,n〉 = 1 and d(ct(t), να(m) > 2−n + rad(t)
or

z〈m,n〉 = 0 and d(ct(t), να(m)) + rad(t) < 2−n−1 .

Furthermore, x 6∈ K, iff for some t ∈ dom(I), x ∈ I(t) and

Q2 : ∃w ∈ FS.
(

#w# is a subword of q and ∀t′ ∈ fs(w). t′ ./ t
)

(see(5)), since q lists arbitrarily narrow finite coverings of K. Therefore,
δp[zΣω] ∩ K = ∅, iff for every x ∈ X there is some open neighborhood I(t) of x
such that (Q1 or Q2). Notice that I(t) ∩ δp[zΣω]∩ K = ∅, if t satisfies (Q1 or Q2).

Since K is compact, already finitely many balls I(t) with (Q1 or Q2) cover K, iff
δp[zΣω]∩K = ∅. Since q lists all finite collections of open basic balls covering K, we
obtain δp[zΣω]∩ K = ∅, iff

Q3 : ∃w ∈ FS.
(

#w# is a subword of q and ∀t ∈ fs(w). (Q1 or Q2)
)

.

Define (q, z) ∈ Y : ⇐⇒ (z 6∈ {0, 1}∗ or Q3). Then Y is r.e. and satisfies (9).

There is a computable function g : Σω → Σω such that ι(z) is a subword of
g(q), iff (q, z) ∈ Y (ι(a1 . . . am) := 110a10 . . .0am011 is the standard wrapping).
Then for q ∈ dom(κc), g(q) lists all z such that zΣω ∩ Z = ∅, Z := δ−1

p [κc(q)], i.e.

δ−1
p [κc(q)] = κΣω

> ◦ g(p). Therefore, δp is c-proper.

It remains to show δC ≡ δp.
Suppose x = δC (w0#w1#w2 . . . ). Then for all n ∈ � , d(x, α(wn+3)) ≤ 2−n−3. For
all m, n ∈ � determine p〈m, n〉 as follows. Using (2) find rational numbers r, s such
that r < d(α(wn+3, να(m)) < s and s − r < 2−n−3. Then r− 2−n−3 < d(x, να(m)) <
s + 2−n−3. Choose p〈m, n〉 := 1, iff s + 2−n−3 ≤ 2−n. Then p〈m, n〉 := 1 =⇒
d(x, να(m)) < s + 2−n−3 ≤ 2−n and p〈m, n〉 := 0 =⇒ d(x, να(m)) > r − 2−n−3 >
s − 2−n−2 > 2−n−1. Therefore, δp(p) = x. There is some Type-2 machine computing
p from w0#w1#w2 . . . ∈ dom(δC), hence δC ≤ δp.

On the other hand, let M be a Type-2 machine which on input p ∈ dom(δp) de-
termines a sequence w0#w1#w2 . . . as follows. For n ∈ � the machine searches
for some m ∈ � such that p〈m, n〉 = 1. (Since A is dense, there is some m
such that d(x, να(m)) < 2−n−1. Then p〈m, n〉 = 0 is false, hence p〈m, n〉 = 1
and so d(x, να(m)) ≤ 2−n.) Choose wn such that α(wn) = να(m). We obtain
δp(p) = δC (w0#w1#w2 . . . ). Therefore, δp ≤ δC .

�

In the following example, K 7→ δ−1
p [K] is not (κmc, κ

Σω

mc)-computable, i.e. com-
putable w.r.t. the minimal-cover representations of compact sets.

11



Example 4.5 Consider the real line
�

(Ex. 2.2.3). If the function K 7→ δ−1
p [K]

for compact K ⊆
�

is (κmc, κ
Σω

mc)-continuous, then there is a continuous function
h :⊆ Σω → Σω such that for every q ∈ dom(κmc), h(p) is a list of all z ∈ Σ∗

such that δp[zΣω] ∩ κmc(q) 6= ∅ (see [4]). Consider numbers m1, m2 ∈ � such that
να(m1) = 0 ∈ � and να(m2) = 1/4 ∈ � . There is some p ∈ dom(δp) such that
δp(p) = 1/2 and p〈m1, 0〉 = 0 and p〈m2, 2〉 = 1. For k = max(〈m1, 0〉, 〈m2, 2〉),
δ[p≤kΣω] = {1/2}. Let q be a κmc-name of {1/2}. Then h cannot be continuous in
q.

�

The representation δp from Thm. 4.4 is constructed artificially. By the following
corollary, c-proper c-admissible representations can be obtained from c-admissible
representations by restriction.

Corollary 4.6 Every c-admissible representation has a c-proper c-admissible restric-
tion.

Proof: Since δp ≡ δC by Thm. 4.4, δp ≡ δ. Let h :⊆ Σω → Σω be computable
translations from δp to δ. Let γ be the restriction of δ to the subset h[dom(δp)]
of dom(δ). Then γ ≡ δp. Notice that h translates δp to γ. For any K ⊆ X,
γ−1[K] = h ◦ δ−1

p [K]. By Thm. 3.3, the function L 7→ h[L] for compact L ⊆ dom(h)

is (κΣω

> , κΣω

> )-computable (let δ(p) := h for all p ∈ Σω in Thm. 3.3). Therefore, by
Thm. 4.4, K 7→ γ−1[K] for compact K ⊆ X is (κc, κ

Σω

> )-computable.
�

If a representation δ is c-proper, then it is proper (i.e., for every compact set
K ⊆ X, δ−1[K] is compact) and δ−1[K] is κΣω

> -computable, if K is κc-computable.
For i = 1, 2, let Xi = (Xi, di, Ai, αi) be a computable metric space. Define the product
X = (X, d, A, α) of X1 and X2 by d((x1, x2), (y1, y2)) := max(d1(x1, y1), d2(x2, y2)),
A := A1 × A2 and α〈u1, u2〉 := (α1(u1), α2(u2)). X is a computable metric space.
Let δ1

C , δ2
C and δC be the Cauchy representations, let I1, I2 and I be the notations

of the open rational balls, and let κ1
c , κ2

c and κc be the covering representations of
the compact subsets of X1, X2 and X, respectively. Then I〈〈u1, u2〉, v〉 = I1〈u1, v〉 ×
I2〈u2, v〉 and [δ1

C , δ2
C ] ≡ δC . For representations δ1 and δ2 of X1 and X2, respectively,

the representation [δ1, δ2] : Σω → X1 × X2 of the Cartesian product is defined by
[δ1, δ2]〈p1, p2〉 := (δ1(p1), δ2(p2)), see Sec. 3.3 in [40]. If δ1 and δ2 are admissible, then
[δ1, δ2] is admissible. We conclude this section with a very useful theorem.

Theorem 4.7 (c-proper product) If δi :⊆ Σω → Xi (i = 1, 2) are c-proper c-
admissible representations, then the product [δ1, δ2] :⊆ Σω → X1 × X2 is c-proper
c-admissible. This holds accordingly for n > 2 factors.

Proof: Since δC ≡ [δ1
C , δ2

C ] ≡ [δ1, δ2], the product [δ1, δ2] is c-admissible.
Proposition 1: pr1 : K 7→ {x1 | ∃x2. (x1, x2) ∈ K} is (κc, κ

1
c)-computable.

Proof 1: If 〈〈u1, u2〉, v〉 is a formal ball in a finite covering of K, then 〈u1, v〉 is a
formal ball in a finite covering of pr1(K). A κ1

c-name of pr1(K) can be computed
from a κc-name of K by substituting everywhere 〈u1, v〉 for 〈〈u1, u2〉, v〉.
Proposition 2: sec : (x1, K) 7→ {x2 | (x1, x2) ∈ K} is (δ1, κc, κ

2
c)-computable.

Proof 2: Since δ1 ≡ δ1
C , there is a computable function h :⊆ Σω ×Σ∗ → Σ∗ such that

δ1(p) ∈ I1 ◦ h(p, 0n) and rad(h(p, 0n)) ≤ 2−n for all p ∈ dom(δ1) and n ∈ � . There is

12



a Type-2 machine M which on input and p ∈ dom(δ1
C) and #w0#w1# . . . ∈ dom(κc)

produces a sequence of all words w such that there exist k, m, n ∈ � and words
u11, u21, v1, . . . , u1m, u2m, vm such that

fs(wk) = {〈〈u11, u21〉, v1〉, . . . , 〈〈u1m, u2m〉, vm〉}
fs(w) = {〈u21, v1〉, . . . , 〈u2m, vm〉}

h(p, 0n) ≺1 〈u1i, vi〉 for i = 1, . . . , m.

Then fM is a (δ1, κc, κ
2
c)-realization of sec. This proves Prop. 2.

Let K = κc(q). Then for all x1 ∈ X1 and x2 ∈ X2,

(x1, x2) 6∈ K ⇐⇒ x1 6∈ pr1(K) or x2 6∈ sec(x1, K),

hence for all p1, p2 ∈ Σω,

〈p1, p2〉 6∈ [δ1, δ2]
−1[K] ⇐⇒

{

p1 6∈ δ−1
1 [pr1(K)] or

p1 ∈ dom(δ1) and p2 6∈ δ−1
2 [sec(δ1(p1), K)].

Since δ1 is c-proper, by Prop. 1 there is a computable (κc, κ
Σω

> )-realization f1 of
K 7→ δ−1

1 [pr1(K)]. Since δ2 is c-proper, by Prop. 2 there is a computable (δ1
C , κc, κ

Σω

> )-
realization f2 of (x1, K) 7→ δ−1

2 [sec(x1, K)]. Therefore, for all p1, p2 ∈ Σω and q ∈
dom(κc),

〈p1, p2〉 6∈ [δ1, δ2]
−1[K] ⇐⇒

{

p1 6∈ κΣω

> ◦ f1(q) or

p1 ∈ dom(δ1) and p2 6∈ κΣω

> ◦ f2(p1, q).

Proposition 3: For every computable function f :⊆ Y1×. . .×Yk → Σω (Yi ∈ {Σ∗, Σω})
there is a total computable function g : Y1 × . . . × Yk → Σω, such that κ> ◦ f(x) =
κΣω

> ◦ g(x), if f(x) exists.
Proof 3: Let M be a Type-2 machine computing f . There is a Type-2 machine
N , which on input x writes every ι(w) which M writes on input x and additionally
writes infinitely often the word 11 (in order to produce a result in Σω). Remember
that κΣω

> (p) exists for all p ∈ Σω.

By Prop. 3 we may assume that f1 and f2 are total functions. Define Y ⊆ Σω×Σω

by

(q, 〈p1, p2〉) ∈ Y ⇐⇒ p1 6∈ κΣω

> ◦ f1(q) or p2 6∈ κΣω

> ◦ f2(p1, q).

Since p 6∈ κΣω

> (p′) is r.e. and f1 and f2 are total computable functions, Y is r.e.. The
property

(q, 〈p1, p2〉) ∈ Y ⇐⇒ 〈p1, p2〉 6∈ [δ1, δ2]
−1[κc(q)] (p1, p2 ∈ Σω, q ∈ dom(κc)) (11)

can be proved straightforwardly. Since Y is r.e., there is a computable function
g :⊆ Σω × Σω → Σ∗ such that Y = dom(g). By the smn-theorem, there is a com-
putable function r : Σω → Σω such that g(q, p) = ηω∗

r(q)(p) (where = ηω∗ is the

standard representation of F ω∗, see Sec. 2.3 in [40]). Therefore, 〈p1, p2〉 ∈ dom(ηω∗
r(q)),

iff 〈p1, p2〉 6∈ [δ1, δ2]
−1[κc(q)], hence

Σω \ dom(ηω∗
r(q)) = [δ1, δ2]

−1[κc(q)].

13



Define a representation κdom of the compact subsets of Σω by κdom(p) := Σω \
dom(ηω∗

p ). Then [δ1, δ2]
−1[κc(q)] = κdom◦r(q), hence K 7→ [δ1, δ2]

−1[K] is (κc, κdom)-

computable. Since κdom(p) ≡ κΣω

> (this is δdom ≡ δunion for Cantor space in [4]), the
function K 7→ [δ1, δ2]

−1[K] is (κc, κ
Σω

> )-computable. Therefore [δ1, δ2] is c-proper.

The proof for n > 2 can be reduced to the case n = 2 by induction.
�

5 Complexity and Lookahead of Computations

In [41] and [40] (Def. 7.1.1) time complexity is introduced for functions on Cantor
space. Simultaneously as another useful concept, lookahead, counting the number
of input symbols, is introduced and studied. For Type-2 machines computing real
functions w.r.t. the signed digit representation ρsd, time complexity and lookahead
are defined in [39] and [40] (Def. 7.2.6). In both cases complexity and lookahead
are considered as functions of the number of output digits. On Cantor space, the
first n digits determine the result with precision 2−n, and for machines realizing real
functions, the first n digits after the dot of a ρsd-name determine the result with
precision 2−n. Therefore, in both cases complexity and lookahead are considered as
functions of precision. In the following we generalize these definitions to computations
of machines realizing functions f :⊆ X1 → X2 on computable metric spaces. First,
we introduce approximation functions for the codomain X0. Then we define the
computational complexity and the lookahead of a realizing machine. As our main
theorem we prove that for c-proper c-admissible representations of the input set, from
every compact set K ∈ dom(f) of the realized function, upper bounds of complexity
and lookahead can be computed. In particular, for computable compact sets, time
and lookahead have computable upper bounds.

Definition 5.1 (approximation function) An approximation function for a rep-
resentation δ of a computable metric space X = (X, d, A, α) is a function app :⊆
Σ∗ ×Σ∗ → Σ∗ such that for all p ∈ dom(δ) and all k ∈ � there is a prefix z of p such
that

d(δ(p), α ◦ app(z, 0k)) ≤ 2−k (12)

and w = ε, if (z, 0k) ∈ dom(app) and (zw, 0k) ∈ dom(app).

Therefore, the prefix z of p is sufficient to determine some point a ∈ A such that
d(δ(p), a) ≤ 2−k. For a Cauchy representation we can choose app(w0#w1# . . .wk#, 0k)
:= wk. For the signed digit representation ρsd (Ex. 4.2.2) of the computable metric
space for the real line from Ex. 2.2.4, we can choose app(bl . . . b0•b−1 . . . b−k, 0k) := w,

such that νD(w) =
∑−k

j=l bj · 2j.

As usual, we call a function md : � → � a modulus of continuity of δ at p ∈
dom(δ), iff

d(δ(p), δ(q)) ≤ 2−k whenever dΣω (p, q) ≤ 2−md(k) (13)

for all k ∈ � and q ∈ dom(f). And we call md a modulus of uniform continuity of δ
on Y ⊆ dom(δ), iff (13) for all p, q ∈ Y . On Cantor space, dΣω (p, q) ≤ j, iff the first
j symbols of p and q coincide. Therefore, if md(k) is the length of the unique prefix

14



z of p such that (z, 0k) ∈ dom(app), then md is a modulus of continuity of δ at p.
Notice that in general such a modulus function md is not minimal (e.g. for a Cauchy
representation of a discrete space).

Lemma 5.2 Every c-admissible representation δ of a computable metric space
X = (X, d, A, α) has a computable approximation function.

Proof: Since δ is c-admissible, there is some Type-2 machine M translating δ to δC .
There is a Type-2 machine N , which on input (z, 0k) simulates M on input z0ω until a
result of the form w0#w1# . . .wk# has been produced and then writes wk, if exactly
the word z has been read by M during this simulation, (and diverges otherwise).

�

In the following we define the time and the lookahead of a machine to compute
the result with “precision k” relative to a given approximation function app.

Definition 5.3 (time, lookahead of a machine) For a Type-2 machine M of type
(Σω)m → Σω define time and lookahead w.r.t. an approximation function app by

TimeM (y)(k) :=

{

the number of steps which M on input y needs to
compute some z ∈ Σ∗ such that (z, 0k) ∈ dom(app) ,

LaM (y)(k) :=







the maximal number of input symbols which M
reads from some input tape until it has printed
some z ∈ Σ∗ such that (z, 0k) ∈ dom(app) .

for all y ∈ (Σω)m and all k ∈ � .

In applications, the approximation function app should be easily computable and
the “precision test” dom(app) should be decidable very easily. Def. 7.1.1 in [40]
corresponds to the special case dom(app) = {(z, 0k) | k = |z|}. The functions
(y, k) 7→ TimeM (y)(k) and (y, k) 7→ LaM (y)(k) are computable, if the precision test
dom(app) is recursive. Since reading a symbol requires at least one step of com-
putation, LaM (y)(k) ≤ TimeM (y)(k). Next, we define the complexity of a realized
function on a set K.

Definition 5.4 (complexity of a realized function) Let δ0 be a representation
of X0 with approximation function app ⊆ Σ∗×Σ∗ → Σ∗. Let M be a Type-2 machine
such that fM is a (δ1, . . . , δm, δ0)-realization of a function f :⊆ X1 × . . .×Xm → X0.
Then M computes f on K ⊆ dom(f) in time t : � → � with lookahead s : � → � , iff

TIMEK
M ∈ O(t), (14)

LAK
M (k) ≤ s(k) (∀k ∈ � )) (15)

whereTIMEK
M (k) := max(δ1,... ,δm)(y)∈K TimeM (y)(k),

LAK
M (k) := max(δ1,... ,δm)(y)∈K LaM (y)(k).

Remember that for a function t : Z → � , f ∈ O(t) ⇐⇒ ∃c.∀z.f(z) ≤ c · t(z)+ c. For
time we consider membership in O(t) in order to obtain a definition robust under the
usual modifications of the Turing machine model. Notice that (14) is stronger than
“Timey

M ∈ O(t) for all y ∈ (δ1, . . . , δm)−1[K]” (in (14), the constant c must be the

15



same for all y ∈ K). Definition 7.2.6 (via Def. 7.1.1) in [40] is the special case of Def.
5.4 for the signed digit representation.

The above definition looks very natural. Unfortunately, it is meaningless in almost
all situations, since for most spaces, for most representations and for most subsets K,
the maxima in the definitions of TIMEK

M and LAK
M do not exist. As the central result

of this paper we show that the definition is meaningful for c-proper c-admissible
representations of metric spaces and compact subsets K. Applying Thm. 3.3, we
prove that under appropriate assumptions upper bounds of TIMEK

M and LAK
M can be

computed from the compact set K. Let δ � be the standard representation of Baire
space (see Ex. 2.2.6).

Theorem 5.5 For i = 1, . . . , m let δi be a c-proper c-admissible representation of
the computable metric space Xi, and let δ0 be a c-admissible representation of the
computable metric space X0 with approximation function app such that dom(app) is
recursive. Let κc be the covering representation of the set of compact subsets K(X) of
X := X1 × . . .×Xm. Let M be a Type-2 machine such that fM is a (δ1, . . . , δm, δ0)-
realization of a function f :⊆ X1 × . . .× Xm → X0. Then the multi-valued functions
HT :⊆ K(X) � � and HL :⊆ K(X) � � ,

graph(HT ) = {(K, t) | K ⊆ dom(f), ∀k ∈ � . TIMEK
M (k) ≤ t(k)},

graph(HL) = {(K, s) | K ⊆ dom(f), ∀k ∈ � . LAK
M (k) ≤ s(k)}

are (κc, δ� )-computable.

Proof: By Thm. 4.7, [δ1, . . . , δm] is a c-proper c-admissible representation of the the
product space X1 × . . .× Xm. Therefore, the function H1 : K 7→ [δ1, . . . , δm]−1[K]
for compact K ⊆ X is (κc, κ

Σω

c )-computable.

The function G : (k, y) 7→ TimeM (y)(k), k ∈ � , y ∈ X, is (ν � , [idΣω ]m, ν � )-
computable, therefore, (δ �

C , [idΣω ]m, δ �
C)-computable, since ν � ≡ δ �

C by Ex. 2.2.1.
Define a representation δ→ of partial functions h :⊆ Σω → � by

δ→(p)〈y〉 := TimeM (y)(δ
�
C (p)), y = (y1, . . . , ym), yi ∈ Σω. (16)

Then for some computable (δ
�
C , [idΣω ]m, δ

�
C)-realization r of G,

apply(δ→(p), idΣω 〈y〉) = δ→(p)〈y〉 = TimeM (y)(δ
�
C (p))

= G(δ
�
C(p), [idΣω ]m〈y〉) = δ

�
C ◦ r(p, 〈y〉).

Therefore, the apply function of δ→ is (δ→, idΣω , δ �
C)-computable and so

(δ→, δΣω

C , δ �
C)-computable, since idΣω ≡ δΣω

C by Ex. 2.2.5. By Thm. 3.3, H2 :
(h, K) 7→ h[K] for compact K ⊆ dom(h) is (δ→, κΣω

c , κ �
c )-computable.

There is a computable function s such that ν � (w) = δ �
C ◦ s(w). Define a function

H3 : k 7→ h by H3 ◦ ν � (w) := δ→ ◦ s(w). By (16), H3 is well-defined. H3 is (ν � , δ→)-
computable. Therefore, the function

H : (K, k) 7→ H2(H3(k), H1(K))

is (κc, ν � , κ �
c )-computable.

Let k ∈ � and y ∈ (Σω)m. There is some w such that ν � (w) = k. Then

H3(k)〈y〉 = H3(ν � (w))〈y〉 = δ→(s(w))〈y〉 = TimeM (y)(k).

16



Therefore, for compact K ⊆ dom(f),

H(K, k) = {TimeM (y)(k) | y ∈ (δ1, . . . , δm)−1[K]}.

Finally, it suffices to find an upper bound of the finite set H(K, k). Since κ
�
c ≡ κ

�
>

by Ex. 3.2.1, the function H is (κc, ν � , κ
�
>)-computable. If q0 = #w0#w1# . . . is a

κ
�
>-name of H(K, k), then H(K, k) ⊆ νf � (w0), and so l := max(νf � (w0)) is an upper

bound of H(K, k).

Let h :⊆ Σω × Σ∗ → Σ∗ be a computable (κc, ν � , κ �
>)-realization of H. There is

a Type-2 machine N which on input p ∈ dom(κc) such that K := κc(p) ⊆ dom(f)
computes a sequence 0i010i11 . . . such that ik = max(νf � (w0)) where for some w
with ν � (w) = k, h(p, w) = #w0#w1# . . . . If t = δ � (0i010i11 . . . ), then for all k,
TIMEK

M (k) ≤ t(k). Therefore, fN is a (κc, δ � )-realization of the multi-valued func-
tion HT . The proof for FL is almost the same.

�

Since LaM (y)(k) ≤ TimeM (y)(k), every upper time bound is an upper lookahead
bound. The direct proof, however, might give much smaller lookahead bounds.

Corollary 5.6 Under the assumptions of Thm. 5.5, on every κc-computable compact
set K ⊆ dom(f), time and lookahead have computable bounds.

Since points x ∈ X0 can be identified with the functions f : {()} → X0 (where ()
is the the tuple with 0 components), we obtain as a special case:

Definition 5.7 (complexity of a point) Let M be a Type-2 machine computing a
δ0-name p = fM () of a point x ∈ X0. Then M computes x in time t : � → � , iff
TimeM () ∈ O(t).

In TimeM ()(k) the machine M can determine x with precision 2−k.

Example 5.8 Consider the signed digit representation ρsd (Ex. 4.2.2) of the real line
for input and output, and choose {(u•v, 0|v|) | u, v ∈ {0, 1,−1}∗} as the precision test
dom(app) for measuring the output precision. Then

1. addition is computable in time k with lookahead k + c for some c,

2. multiplication and division are computable in time k · logk · log log k with looka-
head 2k + c for some c,

3. sin and exp are computable in time k · log2 k · log log k

on every compact subset of its domain [6, 40].
�

Occasionally, time and lookahead may have computable bounds also for non-
compact sets K (not contained in a compact set). As an example, let M compute a
constant computable value x0 ∈ X0 without reading the input.

If a set K ∈ dom(f) is not compact but a Kσ-set, i.e., a countable union of
compact sets, K =

⋃

n∈ � Kn, then the complexity of a machine can be determined
by a function of the index n and the output precision k; replace (14) by

∃c.∀k, n. TIMEKn

M (k) ≤ c · t(n, k) + c

17



and so the bound is a function t(n, k). Notice that every open subset of the real
line is a Kσ-set (examples:

�
=

⋃

n∈ � [−n; n],
�

+ =
⋃

n∈ � [1/n; n]). By the following
example, ordinary Type-1 complexity can be considered as a special case of the new
concepts introduced here.

Example 5.9 (word functions) Consider the computable discrete metric space
(Σ∗, d, Σ∗, idΣ∗). Then idΣ∗ is equivalent to the Cauchy representation (see Ex.
2.2.1). Define a representation δ of Σ∗ by δ(p) = w ⇐⇒ p = ι(w)0ω (where
ι(a1 . . .am) := 110a10 . . .0am011). Then δ ≡ idΣ∗ and δ is c-proper (see Ex. 4.2.1).
For measuring output precision define the approximation function app such that
dom(app) := {(ε, ε)} ∪ {(ι(w), 0k) | w ∈ Σ∗, k ≥ 1}. Let f :⊆ Σ∗ → Σ∗ be a
computable function. From a Turing machine M computing f one can construct eas-
ily a Type-2 machine N such that fN is a (δ, δ)-realization of f and vice versa such

that O(TM (w)) = O(TIME
{w}
N (1)).

In Type-1 theory, the complexity of a computable function f : Σ∗ → Σ∗ is usually
measured as a function of the length of the input: T ′

M (n) := max{TM (w) | w ∈ Σn}.

The corresponding Type-2 concept is TIMEΣn

N (1), where N is a Type-2 machine
realizing f w.r.t. δ. Notice that Σn is a compact subset of Σ∗.

�

6 Concise Representations

Reading and writing symbols contributes to the time complexity of a computation.
Since complexity is measured as a function of precision, and since for a modulus
of uniform continuity md : � → � of a representation δ, md(k) is the length of a
prefix of p which determines δ(p) with precision 2−k, the modulus of continuity of the
representations contributes to the computational complexity.

In this section we consider compact metric spaces (X, d). We call a representation
of X informally concise, iff it has a small modulus of uniform continuity. In general,
an admissible representation of a compact space may have no uniform modulus of
continuity. If it is proper, it has a uniform modulus of continuity (but it may not be
concise). The following lemma is a computational version of this observation.

Lemma 6.1 Let δ :⊆ Σω → X be a c-admissible c-proper representation of a com-
putable metric space. Then the multi-valued function UMC : K(X) � � , defined
by

md ∈ UMC(K) ⇐⇒

{

∀k ∈ � .∀p, q ∈ δ−1[K].
(

dΣω (p, q) ≤ 2−md(k) =⇒ d(δ(p), δ(q)) ≤ 2−k
)

for all compact K ⊆ X and md : � → � , is (κc, δ � )-computable.

The proof is similar to that of Thm. 5.5 (use Lemma 5.2). In particular, the restric-
tion of δ to any κc-computable compact set has a computable modulus of uniform
continuity.

The example of δp (Thm. 4.4) shows that even names of c-admissible c-proper
representations may be extremely redundant. The signed digit representation ρsd (Ex.

18



4.2.2), however, is concise. But in special applications, also ρsd-names may contain
unnecessary information.

As an example consider a real function with domain K := [2100 − 1; 2100 + 1] ⊆
�

to be computed w.r.t. the signed digit representation. Then for every ρsd-name of
some x ∈ K, the 100 digits before the “•” identify x as a member of K and the
following digits after the “•” localize x within the interval K. In this case it is more
convenient to use a new “local” more concise representation δl, δl(p) := 2100 + ρsd(p)
where dom(δl) := 0•{1, 0, 1}ω in order to avoid reading unnecessary digits.

For our purpose, the crucial property of a compact set is its width. Remember that
a metric space X is totally bounded (or precompact [10]), iff for every ε > 0, X can be
covered by finitely many open balls of radius ε and that the space X is compact, iff
it is totally bounded and complete.

Definition 6.2 (width of a totally bounded set) Let (X, d) be a totally bounded
metric space .

1. A set E ⊆ X is called k-separated, iff d(x, y) ≥ 2−k for x, y ∈ E, x 6= y.

2. A set F ⊆ X is called k-spanning, iff ∀x ∈ X. ∃y ∈ F. d(x, y) ≤ 2−k.

3. A sequence sep : � → � is a (lower) separation bound, iff for all k, X has a
k-separated set of sep(k) elements.

4. A sequence span : � → � is a (an upper) spanning bound, iff for all k, X has a
k-spanning set of span(k) elements.

The minimal spanning bound wid : � → � is called width.

Sometimes the logarithm of the width is called metric entropy (cf. [37] and [29], p.
60). From the definitions we obtain immediately

sep(k − 2) ≤ wid(k) ≤ span(k) (17)

for every separation bound sep and spanning bound span of a totally bounded space.

Example 6.3 1. Cantor space X = {0, 1}ω: The set {0, 1}k0ω is k-separated and
k-spanning, wid(k) = 2k.

2. Unit interval X = [0; 1] ⊆
�

: Ek := {i · 2−k | 0 ≤ i ≤ 2k} is a k-separated
set, and for k ≥ 1, Fk := {(2i + 1)2−k | 0 ≤ i < 2k−1} is a k-spanning set,
wid(k) = 2k−1.

3. Bounded subset of Baire space: A subset L ⊆ � is totally bounded, iff ∀k ∈
� . f(k) ≤ r(k) for some r ∈ � . For r ∈ � , the subspace Lr := {f ∈ � |

∀k. f(k) ≤ r(k)} has
∏k

i=1(r(i) + 1) as a separation bound and a spanning
bound.

�

Every compact subset K of a metric space has a width which, however, may
be non-computable even if the set K is κc-computable. But spanning bounds can
be computed from κc-names. In particular, every κc-computable compact set has a
computable spanning bound.

19



Lemma 6.4 For every computable metric space X, the multi-valued function S :
K |� s such that s : � → � is a spanning bound of the compact set K ⊆ X, is
(κc, δ � )-computable.

Proof : If κc(p) = K, then p is a list of all finite coverings of K with balls from B
(see Sec. 3). For determining some m ∈ s(k) from p and k find some covering of K
with balls of radius 2−k. Let m be its cardinality.

�
.

The width supplies a lower bound for the modulus of uniform continuity of a con-
tinuous representation.

Theorem 6.5 (information theoretic bound) Let (X, d) be a metric space with
width wid, let δ :⊆ Γω → X be a representation of X with modulus mdδ of uniform
continuity. Then

log2 wid(k)

log2 |Γ|
≤ mdδ(k) (for all k). (18)

Proof : Notice that mdδ is a modulus of uniform continuity of δ, iff

δ[Bc(p, 2−mdδ(k))] ⊆ Bc(δ(p), 2−k) (p ∈ dom(δ), k ∈ � ) (19)

(where Bc denotes closed balls). The set of all δ[Bc(p, 2−mdδ(k))] (p ∈ dom(δ)), covers
X. At least wid(k) of these sets are necessary for covering X. Since Bc(p, 2−mdδ(k)) =
Bc(p′, 2−mdδ(k)), if the first mdδ(k) symbols of p and p′ coincide, there must be at
least wid(k) words of length mdδ(k), i.e., |Γ|mdδ(k) ≥ wid(k).

�

Let (X, d) be a compact metric space with spanning bound span. Then there is
a sequence i 7→ Fi of subsets such that Fi is an i-spanning set of span(i) elements.
Therefore, for every x ∈ X there is a sequence i 7→ xi such that xi ∈ Fi and d(x, xi) ≤
2−i for all i. After appropriate encoding, such sequences can be used as “names” of
x of a representation of X. By the next theorem, under sufficient computability
assumptions, such a representation δ can be chosen to be c-admissible and c-proper
with a modulus of continuity roughly bounded by log2 ◦ span. Remember that by
Lemma 6.4, every κc-computable set K has a computable spanning bound.

Theorem 6.6 (existence of concise representations) Let (X, d, A, α) be a com-
pact computable metric space with computable spanning bound span such that X is
κc-computable. Then X has a c-proper c-admissible representation δ with computable
modulus mdδ of uniform continuity such that

mdδ(k) ≤
k

∑

i=0

dlog2(span(i + 1) + 1)e. (20)

Proof : For each i there is a set of at most span(i + 1) closed balls of radius 2−i−1

covering X, hence there is a set of at most span(i + 1) open balls from B of radius
2−i which cover X. Using a computable κc-name p = #v0#v1# . . . of X we can find
a computable function h : � → Σ∗, such that Bi := fs ◦ h(i) has at most span(i + 1)
elements and the set Fi := α[fs ◦ h(i)] is an i-spanning set for X (from p select an
appropriate set of balls covering X and choose the centers).

20



For every i there is a bijective “coding” function ci : Ci → Bi such that Ci ⊆
{0, 1}∗ and |w| < dlog2(span(i + 1) + 1)e for w ∈ Ci. Choose the functions c0, c1, . . .
such that the coding function c :⊆ � × Σ∗ → Σ∗, c(i, w) = ci(w), if w ∈ Ci, c(i, w) =
div otherwise, is computable and dom(c) is recursive. Define δ :⊆ Σω → K by

δ(p) = x : ⇐⇒















there are words w0 ∈ C0, w1 ∈ C1, . . .
such that p = w0#w1# . . . ,
d(α ◦ c(i, wi), α ◦ c(j, wj) ≤ 2−i for j > i
and x = lim i→∞ α ◦ c(i, wi)

(21)

(remember that α ◦ c(i, wi) ∈ Fi and Fi is i-spanning).
Prop.1: δ ≡ δC .
The computable function

w0#w1# . . . 7→ c(0, w0)#c(1, w1)# . . .

translates δ to δC . Therefore, δ ≤ δC .
On the other hand, suppose δC(w0#w1# . . . ) = x ∈ X and let m ∈ � . Since
Fm is m-spanning, there is some u ∈ Cm such that d(x, α ◦ c(m, u)) ≤ 2−m, hence
d(α(wm), α ◦ c(m, u)) ≤ 2 · 2−m. By (2) from w0#w1# . . . and m some um ∈ Cm can
be computed such that d(α(wm), α ◦ c(m, um)) < 3 · 2−m. For j > m we obtain

d(α ◦ c(m, um), α ◦ c(m, uj))
≤ d(α ◦ c(m, um), α(wm)) + d(α(wm), x) + d(x, α(wj)) + d(α(wj), α ◦ c(m, uj))
≤ 3 · 2−m + 2−m + 2−j + 3 · 2−j

< 2−m+3

Therefore, the computable function w0#w1# . . . 7→ um+3#um+4# . . . translates δC

to δ and so δC ≤ δ.
Prop.2: δ is c-proper
By Lemma 4.3 it suffices to show that dom(δ) is κΣω

> -computable. For any p ∈ Σω,
p 6∈ dom(δ), iff at least one of the following conditions holds (where Γ := Σ \ {#}):
(1) p ∈ (Γ∗#)kΓmΣω for some m, k such that m ≥ dlog2(span(k + 1) + 1)e.
(2) p ∈ (Γ∗#)kw#Σω for some k and w ∈ Γ∗ such that (k, w) 6∈ dom(c).
(3) p ∈ (Γ∗#)iwi#(Γ∗#)j−i−1wj#Σω for some i < j and wi, wj ∈ Γ∗

such that d(α ◦ c(i, wi), α ◦ c(j, wj)) > 2−i.
Each of the three subsets of Σω is r.e., therfore, dom(δ) is κΣω

> -computable.

It remains to show (20). For determining δ(w0#w1# . . . with precision 2−k, the
prefix w0#w1# . . .wk# is sufficient.
Its length is bounded by

∑k
i=0dlog2(span(i + 1) + 1)e.

�
.

In the following theorem we estimate the width of the Cartesian product, of the
set of compact subsets and of the set of continuous functions with bounded modulus
of continuity.

Theorem 6.7 For i = 1, 2 let (Xi, di) be compact metric spaces with k-separated set
Ei, k-spanning set Fi, separation bound sepi and spanning bound spani.

1. E1×E2 is a k-separated set and F1×F2 is a k-spanning set of the product space
X1 × X2.

21



2. Let K∗(X1) be the space of non-empty compact subsets of X1 with Hausdorff
metric dH . Then NS(E1) := {A ⊆ E1 | A 6= ∅} is a k-separated set and
NS(F1) := {A ⊆ F1 | A 6= ∅} is a k-spanning set of this space.

3. Let C(X1, X2, m) be the set of all continuous functions f : X1 → X2 supplied
with the sup metric d(f, g) = supx∈X1

d(f(x), g(x)) with modulus of uniform

continuity m : � → � . Then span(k) := span2(k + 2)span
1
◦ m(k+2) is a spanning

bound of C(X1, X2, m).

Proof: 1. If (x1, x2), (y1, y2) ∈ E1 × E2 are different, then x1 6= x2 or y1 6= y2,
hence d((x1, x2), (y1, y2)) ≥ 2−k. For (x1, x2) ∈ X1 × X2 there are yi ∈ Fi such that
di(xi, yi) ≤ 2−k (i = 1, 2) hence d((x1, x2), (y1, y2)) ≤ 2−k.

2. Let A, B ∈ NS(E1), A 6= B. There is, w.l.g., some a ∈ A \ B. We obtain
d1(a, b) ≥ 2−k for all b ∈ B, hence dH(A, B) ≥ 2−k. Therefore, NS(E1) := {A ⊆ Ek |
A 6= ∅} is a k-separated set. Let A ∈ K∗(X1). For all a ∈ A there is some ba ∈ F1

such that d1(a, ba) ≤ 2−k. Let B ⊆ F1 be the set of all these ba (a ∈ A). Then
dH(A, B) ≤ 2−k, therefore, NS(F1) := {B ⊆ Fk | B 6= ∅} is a k-spanning set.

3. Let F be a m(k + 2)-spanning subset of X1 and let G be a (k + 2)-spanning set
of X2. for every h : F → G define

H(h) := {f ∈ C(X1, X2, m) | ∀a ∈ F. f [Bc(a, 2−m(k+2))] ⊆ Bc(h(a), 2−k−1)}.

Consider f ∈ C(X1, X2, m) and a ∈ F . Then there is some b ∈ G such that
d2(f(a), b) ≤ 2−k−2. If d1(a, x) ≤ 2−m(k+2) then d2(f(x), b) ≤ d2(f(x), f(a)) +
d2(f(a), b) ≤ 2−k−1. Therefore, f ∈ H(h) for some function h : F → G. For
f, f ′ ∈ H(h) and x ∈ X1 there is some a ∈ F such that d1(x, a) ≤ 2−m(k+2) and so
d2(f(x), f ′(x)) ≤ d2(f(x), f(a))+d2(f(a), f ′(x)) ≤ 2−k. Therefore, H(h) is contained
in a closed ball of radius 2−k. This shows that C(X1, X2, m) can be covered by at
most |G||F | balls of radius 2−k.

�

If X1 is connected (like the unit cube in
� n) and X2 is totally disconnected (like the

Cantor space Σω), then every continuous function is constant, and so C(X1, X2, m)
(see Thm. 6.7.3) and X2 are isometric and have the same spanning bounds and
separation bounds. For finding non-trivial separation bounds for C(X1, X2, m) further
assumptions are needed.

The restrictions to [0; 1] of the signed digit representation ρsd (Ex. 4.2.2) and of
Ko’s representation δKo (Ex. 4.2.3) are examples of c-admissible c-proper represen-
tations with small modulus of continuity.

Example 6.8 Let δ :⊆ Σω → [0; 1] be the restriction of the signed digit representa-
tion ρsd (Ex. 4.2.2) to 0•1Σω. Then md(k) = k + 2 and wid(k) = 2k−1 (Ex. 6.3.2),
i.e., the modulus is approximately log2 ◦ wid.

Let δ :⊆ Σω → [0; 1] be the restriction of the Cauchy representation from Ex. 2.2.4
to names w0#w1# . . . such that wi ∈ 0•{0, 1}i (cf. Ex. 4.2.3). Then the modulus of

δ is approximately
∑k

i=0dlog2(wid(i)+1)e. If δ(w0#w1# . . . ) = x, then the sequence
i 7→ wi is an oracle of x according to Ko’s definition [19].

22



We conclude with two further examples of concise c-proper c-admissible representa-
tions satisfying (20), a representation of the closed subsets of [0; 1]2 (black and white
images) and a representation of the Lipschitz bounded functions from C[0; 1]. They
are defined according to the idea from the proof of Thm. 6.6 and induce very natural
concepts of computability and computational complexity.

Example 6.9 (compact subsets of [0; 1]2) Let K∗ be the set of all non-empty
compact subsets of the unit square [0; 1]2 with Hausdorff metric dH . On the interval
[0; 1] the set Lk := {i · 2−k | 0 ≤ i ≤ 2k} is k-spanning (cf. Ex. 6.3.2). By Theorem
6.7.1, Lk×Lk is k-spanning in [0; 1]2 and by Theorem 6.7.2, the set Fk := NS(Lk×Lk)

of its non-empty subsets is k-spanning in K∗, hence span(k) = 2(2k+1)2 is a spanning
bound of K∗. Fig.1 shows a compact K set and an element B ∈ F5 such that
dH(K, B) ≤ 2−5. Every B ∈ Fk corresponds to a (2k +1)×(2k+1) matrix over {0, 1}.

�

(0, 0)

(1, 1)

���������������������

�������������������������������

���������������������������������������

�����������������������������������������

���������������������������������������

���������������������������������������

�������������������������������������

�������������������������������������

�����������������������������������

�����������������������������������

���������������������������������

�����������������������������

�������������������������

�����������������������

���������������������

�������������������

�������������

���������

Figure 1: A compact set K ⊆ [0; 1]2 approximated by a subset of the 33 × 33 grid
of points (k = 5).

For w ∈ Ck := {0, 1}(2k+1)2 \ {0}∗ let βk(w) = B, iff w is the “line by line” notation
of this matrix. Extend the metric space to a computable metric space (K∗, dH, F, α)
by F :=

⋃

k Fk and α(0k1w) := βk(w). Define δ(p) = K, iff p = w0#w1# . . . such
that wk ∈ Ck, dH (βi(wi), βj(wj)) ≤ 2−i for i < j and K = limi→∞ βi(wi).

The representation δ is c-admissible (it is equivalent to a restriction of the Cauchy
representation κmc of the compact subsets of

� 2 (see Ex. 2.2.9). It is c-proper by
Lemma 4.3, since dom(δ) is κΣω

> -computable compact. By Ex. 6.3.2 and Thm. 6.7,

222k−2

− 1 is a spanning bound of the space (K∗, dH). It is even minimal, and so

22k−2 ≤ mdγ(k) (22)

(for k ≥ 2) for every representation γ of K∗ by Thm. 6.5.

23



Since the prefix w0#w1# . . .wk# of p suffices to determine δ(p) with precision 2−k,

mdδ(k) ≤
k

∑

i=0

(2i + 1)2. (23)

Since for sufficiently large k,
∑k

i=0(2
i + 1)2 ≤ 22k+1, mdδ(k) ≤ 22k+1. By (22), the

upper bound 22k+1 is tight. Therefore, δ is concise.

Computational complexity of points (i.e. closed subsets of [−; 1]2) and functions
induced by the representation δ is realistic. Notice, that no injective representation
is equivalent to δ.

�

Example 6.10 (Lipschitz bounded functions from C[0; 1]) Let X be the set
of continuous functions f : [0; 1] →

�
such that f(0) = 0 and |f(x) − f(y)| ≤ |x− y|

(Lipschitz bounded) supplied with the sup-metric. Consider k ∈ � . For every element

a = a1a2 . . . a2k ∈ {0, 1,−1}2k

let fa : [0; 1] →
�

be the polygon function with the
vertices (xi, yi), (i = 0, 1, . . .2k) such that (x0, y0) = (0, 0), xi = xi−1 + 2−k and

yi = yi−1 + ai · 2−k (therefore, f(xi) =
∑i

j=1 aj · 2−k). Then fa ∈ X for all a,

d(fa, fb) ≥ 2−k for a 6= b, and for every f ∈ X there is some a such that d(f, fa) ≤ 2−k

(for i = 1, . . . , 2k choose ai such that
∣

∣

∑i
j=1 ai · 2−k − f(xi)

∣

∣ ≤ 2−k, see Fig. 2).

Therefore, the set Fk := {fa | a ∈ {1, 0,−1}2k

} is k-separated and k-spanning, hence

k 7→ 32k

is a separation bound as well as a spanning bound.

�

�

�
�
� �

�
�

�
�
� �

�
���

�
�

�

x

y

ga

ha

−1

1

a

1/3 2/3 1

Figure 2: The polygon fa, a = (1, 0,−1, 0,−1, 0,1,−1), and a function f ∈ X such
that d(fa, f) ≤ 2−3

According to the construction in the proof of Thm. 6.6, define functions βk :

{1, 0,−1}2k

→ X by βk(a) := fa and a representation δ of X by δ(p) = f , iff

p = w0#w1# . . . such that wi ∈ {1, 0,−1}2i

and d(βi(wi), βj(wk)) ≤ 2−i for i < j
and f = limi→∞ βi(wi). Then δ is equivalent to the standard representation δ→ (see
[40], Sec. 6.1), c-proper and concise.

Computational complexity of the representation δ of the set X of functions is
realistic. For example, evaluation (f, x) 7→ f(x) and integration (f, x) 7→

∫ x

0
f(ξ) dξ

are easily computable.
�

24



7 Comparison with the LLM-Definition

In [22] Labhalla et al. define the computational complexity of functions on com-
putable metric spaces. We reformulate their definition in our framework. Let Xi =
(Xi, di, Ai, αi) be computable metric spaces. Let C be an “interesting” complexity
class of word functions such as PTIME, the bounds of which in particular should be
closed under composition. Then

(L) “f : X1 → X0 is uniformly in C”, iff f has a modulus of uniform continuity in
C (w.r.t. the unary notation ν1 : 0j 7→ j) and there is Turing machine M time
bounded in C such that

d0(f ◦ α1(v), α0 ◦ fM (v, 0k)) ≤ 2−k for all v ∈ dom(α1) and k ∈ � . (24)

Definition (L) generalizes Ko’s characterization of the real functions f : [a; b] →
�

computable in polynomial time (Cor. 2.21 in [19]). According to Defs. 5.3 and 5.4,
for representations δi of Xi,

(T) “f : X1 → X0 is computable on K ⊆ dom(f) in time t : � → � ”, iff for some
Type-2 machine M , fM realizes f w.r.t. (δ1, δ0) such that

TIMEK
M (k) := max

δ1(p)∈K
TimeM (p)(k) ≤ t(k), (25)

where TimeM (p)(k) is the time which the machine M on input p needs to
compute a partial result z of precision 2−k w.r.t. the given representation δ0 of
the codomain.

For easier comparison we consider X1 = K and the Cauchy representation for X0

with the standard approximation app(w0#w1# . . .wk#, 0k) := wk and modify (T) as
follows:

(T’) “f : X1 → X0 is computable in time t : � → � ”, iff there is a Type-2 machine
M which on all inputs (p, 0k) (p ∈ dom(δ1)) halts in at most t(k) steps such
that

d0(f ◦ δ1(p), α0 ◦ fM (p, 0k)) ≤ 2−k. (26)

In Def. (L), (v, 0k) 7→ w (v ∈ Σ∗) such that d0(f ◦ α1(v), α0(w)) ≤ 2−k must
be in the complexity class C. The realizing machine M operates (only on names of)
the dense subset A1 and on 0k. The other points of X1 are captured by uniform
continuity the modulus of which must also be in the complexity class C. If e.g.
C = PTIME, longer α1-names v ∈ Σ∗ allow more computation time, e.g., replacing
α by α′, α′(w#2|w|) := α(w), is rewarded considerably.

In Def. (T’) a function (p, 0k) 7→ w (p ∈ Σω) such that d0(f ◦ δ1(p), α0(w)) ≤ 2−k

must be computed in time t(k). A realizing machine works in time t(k) uniformly on
all δ1-names (uniform continuity follows automatically, the modulus, however might

25



not be bounded by t). Since the time is considered only as a function of precision,
increasing the redundancy of δ1-names artificially cannot reduce the complexity.

While Definition (L) is meaningful only (mainly ?) for complexity classes the
bounds of which are closed under composition, Definition (T) is meaningful also for
bounds t like k3 or k logk.

So far we can say that (L) and (T) are two non-equivalent definitions of computa-
tional complexity of computable functions on metric spaces which in some applications
define the same complexity classes. For a more detailed comparison more concrete
examples should be available.

References

[1] Helmut Alt. Multiplication is the easiest nontrivial arithmetic function. Theo-
retical Computer Science, 36:333–339, 1985.

[2] Markus Bläser. Uniform computational complexity of the derivatives of C∞-
functions. In Ker-I Ko and Klaus Weihrauch, editors, Computability and Com-
plexity in Analysis, volume 190 of Informatik Berichte, pages 99–104. FernUni-
versität Hagen, September 1995. CCA Workshop, Hagen, August 19–20, 1995.

[3] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and
Real Computation. Springer, New York, 1998.

[4] Vasco Brattka and Gero Presser. Computability on subsets of metric spaces.
Theoretical Computer Science, accepted for publication.

[5] Vasco Brattka and Klaus Weihrauch. Computability on subsets of Euclidean
space I: Closed and compact subsets. Theoretical Computer Science, 219:65–93,
1999.

[6] R.P. Brent. Fast multiple-precision evaluation of elementary functions. Journal
of the Association for Computing Machinery, 23(2):242–251, 1976.

[7] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic com-
plexity theory, volume 315 of Grundlehren der mathematischen Wissenschaften.
Springer, Berlin, 1997.

[8] Stephen A. Cook. Computability and complexity of higher type functions. In
Y.N. Moschovakis, editor, Logic from computer science, volume 21 of Mathe-
matical Sciences Research Institute Publications, pages 51–72, New York, 1992.
Springer. Proceedings of the workshop held in Berkeley, California, November
13–17, 1989.

[9] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf.
Computational geometry. Algorithms and applications. Springer, Berlin, 2nd edi-
tion, 2000.

26



[10] J. Dieudonné. Foundations of Modern Analysis. Academic Press, New York,
1960.

[11] Abbas Edalat. Domains for computation in mathematics, physics and exact real
arithmetic. Bulletin of Symbolic Logic, 3(4):401–452, 1997.

[12] Andrzej Grzegorczyk. Computable functionals. Fundamenta Mathematicae,
42:168–202, 1955.

[13] Jürgen Hauck. Konstruktive Darstellungen reeller Zahlen und Folgen. Zeitschrift
für Mathematische Logik und Grundlagen der Mathematik, 24:365–374, 1978.

[14] Armin Hemmerling. On the time complexity of partial real functions. Journal
of Complexity, 16:363–376, 2000.

[15] H. James Hoover. Feasible real functions and arithmetic circuits. SIAM Journal
on Computing, 19(1):182–204, 1990.

[16] Hiroyasu Kamo and Kiko Kawamura. Computability of self-similar sets. Math-
ematical Logic Quarterly, 45:23–30, 1999.

[17] Hiroyasu Kamo, Kiko Kawamura, and Izumi Takeuti. Hausdorff dimension
and computational complexity. In Ker-I Ko, Anil Nerode, Marian B. Pour-El,
Klaus Weihrauch, and Jǐŕı Wiedermann, editors, Computability and Complexity
in Analysis, volume 235 of Informatik Berichte, pages 41–50. FernUniversität
Hagen, August 1998. CCA Workshop, Brno, Czech Republic, August, 1998.

[18] Bruce M. Kapron. Feasibly continuous type-two functionals. Computational
Complexity, 8(2):188–201, 1999.

[19] Ker-I Ko. Complexity Theory of Real Functions. Progress in Theoretical Com-
puter Science. Birkhäuser, Boston, 1991.

[20] Ker-I Ko and Klaus Weihrauch. On the measure of two-dimensional regions
with polynomial-time computable boundaries. In Steve Homer and Jin-Yi Cai,
editors, Eleventh Annual IEEE Conference on Computational Complexity, pages
150–159, Los Alamitos, 1996. IEEE Computer Society Press.

[21] Christoph Kreitz and Klaus Weihrauch. Theory of representations. Theoretical
Computer Science, 38:35–53, 1985.

[22] S. Labhalla, H. Lombardi, and E. Moutai. Espaces métriques rationnellement
présentés et complexité, le cas de l’espace des fonctions réelles uniformément
continues sur un intervalle compact. Theoretical Computer Science, 250:265–
332, 2001.

[23] Kurt Mehlhorn. Polynomial and abstract subrecursive classes. Journal of Com-
puter and Systems Sciences, 12:147–178, 1976.

27



[24] Norbert Th. Müller. Subpolynomial complexity classes of real functions and
real numbers. In Laurent Kott, editor, Proceedings of the 13th International
Colloquium on Automata, Languages, and Programming, volume 226 of Lecture
Notes in Computer Science, pages 284–293, Berlin, 1986. Springer.

[25] Norbert Th. Müller. Uniform computational complexity of Taylor series. In
Thomas Ottmann, editor, Proceedings of the 14th International Colloquium on
Automata, Languages, and Programming, volume 267 of Lecture Notes in Com-
puter Science, pages 435–444, Berlin, 1987. Springer.

[26] Norbert Th. Müller and B. Moiske. Solving initial value problems in polynomial
time. In Proceedings of the 22th JAIIO - Panel’93, Part 2, pages 283–293, 1993.
Buenos Aires, 1993.

[27] C. Andrew Neff and John H. Reif. An efficient algorithm for the complex roots
problem. Journal of Complexity, 12:81–115, 1996.

[28] Marian B. Pour-El and J. Ian Richards. Computability in Analysis and Physics.
Perspectives in Mathematical Logic. Springer, Berlin, 1989.

[29] Rolf Schneider. Convex bodies: the Brunn-Minkowski theory, volume 44 of Ency-
clopedia of Mathematics and its Applications. Cambridge University, Cambridge,
1993.

[30] A. Schönhage, A.F.W. Grotefeld, and E. Vetter. Fast Algorithms. B.I. Wis-
senschaftsverlag, Mannheim, 1994.

[31] Arnold Schönhage. Numerik analytischer Funktionen und Komplexität. Jahres-
bericht der Deutschen Mathematiker-Vereinigung, 92:1–20, 1990.

[32] Matthias Schröder. Welche topologischen Räume erlauben Typ2-Komplexitäts-
theorie? Informatik Berichte 178, FernUniversität Hagen, Hagen, May 1995.

[33] Matthias Schröder. Fast online multiplication of real numbers. In Rüdiger Reis-
chuk and Michel Morvan, editors, STACS 97, volume 1200 of Lecture Notes in
Computer Science, pages 81–92, Berlin, 1997. Springer. 14th Annual Sympo-
sium on Theoretical Aspects of Computer Science, Lübeck, Germany, February
27–March 1, 1997.

[34] Matthias Schröder. Online computations of differentiable functions. Theoretical
Computer Science, 219:331–345, 1999.

[35] Mike Townsend. Complexity for type-2 relations. Notre Dame Journal of Formal
Logic, 31(2):241–262, 1990.

[36] Joseph F. Traub, G.W. Wasilkowski, and H. Woźniakowski. Information-Based
Complexity. Computer Science and Scientific Computing. Academic Press, New
York, 1988.

[37] Peter Walters. An introduction to ergodic theory, volume 79 of Graduate Texts
in Mathematics. Springer, New York, 1982.

28



[38] Klaus Weihrauch. On the complexity of online computations of real functions.
Journal of Complexity, 7:380–394, 1991.

[39] Klaus Weihrauch. Computability on computable metric spaces. Theoretical Com-
puter Science, 113:191–210, 1993. Fundamental Study.

[40] Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.

[41] Klaus Weihrauch and Christoph Kreitz. Type 2 computational complexity of
functions on Cantor’s space. Theoretical Computer Science, 82:1–18, 1991. Fun-
damental Study.

[42] E. Wiedmer. Computing with infinite objects. Theoretical Computer Science,
10:133–155, 1980.

29

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092



