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ZPP is hard unless RP is small

Philippe Moser*

Abstract

We use Lutz’s resource bounded measure theory to prove that either RP is small or ZPP
is hard. More precisely we prove that if RP has not p-measure zero, then EXP equals ZPP
on infinitely many input lengths, i.e. there are infinitely many input lengths on which ZPP
is hard. Second we prove that if NP has not p-measure zero, then derandomization of AM
is possible on infinitely many input length, i.e. there are infinitely many input lengths such
that NP = AM. Finally we prove easiness versus randomness tradeoffs for classes in the
polynomial time hierarchy. We show that it appears to every strong adversary that either,
every X algorithm can be simulated infinitely often by a subexponential co-nondeterministic
time algorithm having oracle access to X} ,, or BPX? = X,

1 Introduction

Not much is known about the relationship between ZPP, RP and BPP, except the trivial
inclusions ZPP C RP C BPP. For instance it is not known whether RP being easy implies
the easiness of BPP. A similar relation between ZPP and RP is also unknown. In fact there are
relativized worlds in which P = RP, but P # BPP [MV96]. The question whether assuming
P = ZPP yields any non-trivial easiness result for RP also remains open.

In this paper, we use Lutz measure theory [Lut97], to prove a relationship between the
easiness of ZPP and RP, by showing that either RP is small, or ZPP is hard. More precisely
we prove that if RP has not p-measure zero, then EXP is equal to ZPP infinitely often, i.e.
RP being hard implies ZPP being hard.

One ingredient used in our proof is the easy witness technique from [Kab00]. We simulate a
given RP algorithm using truth table of easy functions instead of purely random strings. If the
simulation works, we can construct a martingale that succeeds on RP, which implies that RP
has p-measure zero. On the other hand, if the simulation fails, we get a hardness test, which
can be used to guess a hard function, yielding a pseudorandom generator by using Impagliazzo
and Widgerson’s [IW97] result. This combined with Melkebeek’s zero-one law for BPP [Mel00],
yields that ZPP is hard.

The derandomization of complexity classes beyond BPP, such as AM, has just started to be
studied. Klivans and Melkebeek [KvM99] showed that the Nissan-Widgerson [NW94] approach
relativizes to any oracles, and gave conditional derandomization results for AM. Miltersen and
Vinodchandran [MV99] used hitting sets to derandomize AM, under weaker assumptions than
Klivans and Melkebeek [KvM99].
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In [AK97] V. Arvind and J. Kébler proved that under the assumption that NP has not
p-measure zero, partial derandomization of AM was possible. More precisely they proved that
NP not having p-measure zero implies NP /logn = AM. Using different techniques, we show
that the assumption NP has not p-measure zero implies that NP = AM infinitely often. Thus
we get rid of the nonuniformity in V. Arvind and J. Kébler’s result [AK97], but on the other
hand we only obtain derandomization for infinitely many input lengths.

Finally following Lu [Lu00], we show a similar result for classes in the polynomial time
hierarchy. But instead of using pseudorandom generators as in [Lu00], we use the hitting set
construction of Miltersen and Vinodchandran [MV99]. Thus we gain one level in the polynomial
hierarchy, enabling us to prove that it appears to every nondeterministic adversary, having
oracle access to TP |, that either every P algorithm can be simulated by a co-nondeterministic
subexponential time algorithm, having oracle access to P ,. infinitely often, or BPX = XP.

2 Preliminaries

We use standard notation for traditional complexity classes; see for instance the books of Bal-
cazar, Diaz and Gabarro [BDG95], [BDGY0], or the one from Papadimitriou [Pap94]. The
polynomial hierarchy is the following sequence of classes: First, ¥f = IIf = P, and for all
i >0, P, = NP¥ and II?,; = coNP™. We denote by QSAT; the standard SP-complete
language. For ¢ > 2, the two-sided probabilistic version of ¥ is equal to the one-sided error
version. A proof of this result can be found in [BDGY0].

Proposition 1 ([BDG90]) Let L € BPXP, then there exists a relation M € P, and a
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polynomial m(n) such that for all z € {0,1}",

z €L= Pr [(z,y) eM]|=1, and
ye{o,1}m

L p ,y) € M] <
T ¢ éye{o,g}m[(m y) € M|
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2.1 Refuters and Pseudo Classes

Let A be any language. We say that a multi-valued nondeterministic procedure, with oracle
access to A produces some object, if there is a nondeterministic oracle Turing machine M4 with
oracle access to A such that at the end of its computation, each nondeterministic branches either
produces the desired object, or is marked with reject, and at least one of the branches produces
the desired object.

Kabanets [Kab00] introduced the concept of refuters. A refuter is a length preserving Turing
machine R such that on input 17, R outputs a string of length n. We will consider multi-valued
nondeterministic refuters with oracle access to XP.

Definition 1 A multi-valued nondeterministic refuter with oracle access to ¥ (abbreviated

NPMV}J?) is a nondeterministic polynomial time Turing machine M with oracle access to TP,
that on input 1", nondeterministically produces a string in {0,1}".



Kabanets [Kab00] introduced zero-error probabilistic refuters, i.e. refuters that halt with
great probability, and which whenever they halt, output a string. The class of such refuters will
be denoted by FZPP.

For a complexity class of languages C, we will consider the class of languages indistinguish-
able (for a certain class of refuters) from languages of C. We say that two languages L and M
are indistinguishable for a certain class of refuters R, if, for every refuter R € R, we have that
R(1™) ¢ LAM for almost every n, where LAM denotes the symmetric difference of L and M.

Definition 2 Let C be a complezity class of languages, and let A be any language. We define :
[pseudonprvalC = {L C {0,1}*|3M € C such that any multi-valued nondeterministic refuter
with oracle access to A fails to distinguish Ly, from M, for all but finitely many n}.

Analogously to definition 2, we define the class i.o.[pseudonpygya]C, which is the class
of languages equal to languages of [pseudonppryv4]C on infinitely many words lengths. If
the refuters are zero-error probabilistic Turing machines, we denote by [pseudop,ppa]C and
i.o.[pseudop,ppa]C the corresponding pseudo classes.

2.2 Hitting Sets

We will need the following definitions of nondeterministic and co-nondeterministic circuits.

Definition 3 A nondeterministic Boolean circuits C' contains, in addition to the usual AND,
OR and NOT gates, choice gates of fan-in 0. The circuit evaluates to 1 on input x, and we say
that C(z) = 1, if there is some assignment of truth values to the choice-gates that makes the
circuit evaluate to 1. Otherwise C(z) = 0.

A co-nondeterministic circuit C is defined similarly: The circuit evaluates to 0 on input z,
and we say that C(z) = 0, if there is some assignment of truth values to the choice-gates that
makes the circuit evaluate to 0. Otherwise C(z) = 1.

Similarly, a single-valued (abbreviated SV) nondeterministic circuit C' computing a function
f has, in addition to its usual output, an extra output bit, called the flag. For any input z, and
any setting of the choice-gates, if the flag is on, the circuit should output the correct value of
f(z). Furthermore, for any z, there should be some setting of the choice-gates that turn the
flag on.

Pseudorandom generators are used to derandomize two-sided error algorithms. The tool
used to derandomize one-sided error algorithms is a hitting set. In particular, we will need
hitting sets for co-nondeterministic circuits.

Definition 4 Let A be any language. A subset H C {0,1}" is a % -hitting set for Boolean
co-nondeterministic circuits of size s(n), with oracle gates to A, if for any such circuit C* on
n inputs, the following holds:

If Pryeo,132[CA(x) = 1] > 3, then 3h € H such that C4(h) = 1.

The following hardness-randomness tradeoffs are from [MV99]



Theorem 1 (Miltersen, Vinodchandran) Let A be any language. For any € > 0, there is
a vy > 0 so that the following holds. There is a deterministic polynomial time procedure which,
given as input the truth table of a log m-variables Boolean function f : {0,1}1°6™ — {0, 1} with
circuit complexity greater than m€ for nondeterministic oracle circuits with oracle gates for A,
outputs a hitting set in {0,1}", with threshold %, for co-nondeterministic oracle circuits having
oracle access to A of size n, where n = m”.

Thanks to Proposition 1 producing a hitting set with a multi-valued nondeterministic pro-
cedure is enough to derandomize BPXP, more precisely:

Proposition 2 If there is a multi-valued nondeterministic procedure with oracle access to 25’_1
which on input 1" outputs a hitting set in {0,1}", with threshold %, for co-nondeterministic
oracle circuits with oracle gates for P |, of size n, then BPXP = P,

2.3 p-measure

In this section we describe the fragment of Lutz’s measure theory for the class EXP that we
will need. For a more detailed presentation of this theory we refer the reader to the survey by
Lutz [Lut97].

The measure on EXP is obtained by imposing appropriate resource-bound on a game the-
oretical characterization of the classical Lebesgue measure.

A martingale is a function d : {0,1}* — [0, 0o such that,

d(w) = d(w0) —;—d(wl)

for every w € {0,1}*. d is a p-martingale if d is computable in time polynomial in |w|.

This definition can be motivated by the following betting game in which a gambler puts bets
on the successive membership bits of a hidden language A. Denote by sq, s1, ... the enumeration
of all Boolean strings in lexicographic order. The game proceeds in infinitely many rounds where
at the end of round n, it is revealed to the gambler whether s,, € A or not. The game starts with
capital 1. Then, in round n, depending on the first n—1 outcomes w = x 4[0...n—1], the gambler
bets a certain fraction a,,d(w) of his current capital d(w), that the nth word s,, € A, and bets the
remaining capital (1 — ayy)d(w) on the complementary event s, ¢ A. The game is fair, i.e. the
amount put on the correct event is doubled, the one put on the wrong guess is lost. The value of
d(w), where w = x4[0...n] equals the capital of the gambler after round n on language A. The
player wins on a language A if he manages to make his capital arbitrarily large during the game.
We say that a martingale d succeeds on a language A, if d(A) := limsup,,4 4 d(w) = oo,
where we identify language A with its characteristic sequence x 4.

Definition 5 A class C has p-measure zero if there is a single p-martingale d that succeeds on
every language A of C.

This property is monotone in the following sense: If class D is contained in a class C of
p-measure zero, then D also has p-measure zero.



Definition 6 A class C has p-measure one if the complement of C has p-measure zero.

Lutz showed in [Lut92] that the class E does not have p-measure zero, which he called the
measure conservation property. Since finite unions of null classes is a null class, it’s impossible
for a class to have both measure zero and one.

Lutz also proved in [Lut92] that “easy” infinite union of null classes is null.

Theorem 2 (Lutz) Suppose {d;}i>1 is a set of martingales, each covering class C;; where
d(i,w) := d;(w) is computable in time q¢ = (i, |w|) for a certain polynomial q. Then U;>1C; has
pP-Mmeasure zero.

We will need the following zero-one law for BPP, stating that BPP has either measure zero
or one.

Theorem 3 (Melkebeek [Mel00]) BPP has either p-measure zero or else has p-measure
one.

3 ZPP is hard unless RP is small

The following result shows that no derandomization of ZPP is possible unless RP is small.
More precisely it states that ZPP is as hard as EXP on infinitely many input lengths, unless
RP has p-measure zero.

Theorem 4 EXP = ZPP on infinitely many input lengths, unless RP has p-measure zero.

Proof
It is easy to see that the results in [Kab00] yield the following Theorem.

Theorem 5 At least one of the following statements holds.
1. Ye > 0, RP C [pseudopzpp| DTIME(2™), for a.e. length n or,
2. BPP =;, ZPP.

Now suppose the first statement of Theorem 5 holds. Taking e = 1, we have that for every
language A € RP, there exists a language B € [pseudopzpp| DTIME(2"), such that every
FZPP refuter fails to distinguish A from B; i.e. for every FZPP refuter R and for a.e. length
n, there is a y produced by R(1™), such that A(y) = B(y).

So let A be any language in RP and let B be as above. The refuter R(1") := 1" is a FZPP
refuter, therefore we have,

A(1™) = B(1") for a.e. n. (1)

Consider the following martingale dg, that for each length n, only bets on the membership bit

of the string 1™, and for each of these strings puts % of its capital on the outcome that the
membership is the same as for B. To compute dg(w), where w is the characteristic sequence



of some language for words up to length ¢, one only needs to compute whether 1" € B for
n=12,...,t. Since B € DTIME(2"), dg is computable in time ¢2° < |w|?. Moreover if A
is a language such that 2 holds, then dp doubles its capital on a.e. bets it makes, and loses a
fraction of its capital on finitely many bets. Therefore dg(xa) = 0.

Denote by Lp the class of languages A such that equation 2 holds.

Let My, Ms,... be a standard enumeration of Turing machines running in deterministic
time 2", where M; runs in time polynomial in ¢ + 2", and denote by B; the language decided by
M;. The martingale defined by d(i,w) = dp,(w) is computable in time polynomial in i + |w|.
Therefore the class C = J,»; L; has p-measure zero, by Theorem 2. Since RP C C, RP has
p-measure zero. Now if p,(RP) # 0, we have that BPP =;, ZPP. Moreover, since RP has
not p-measure zero, BPP has not p-measure zero, therefore EXP = BPP, by Theorem 3.
Therefore p,(RP) # 0 implies EXP =; ,, ZPP, which ends the proof.

a

We also obtain a similar result for AM, namely that the assumption NP has not p-measure
zero, implies derandomization of AM.

Theorem 6 NP = AM on infinitely many input lengths, unless NP has p-measure zero.

Proof
It is easy to see that the results in [Lu00] yield the following Theorem.

Theorem 7 At least one of the following statements holds.
1. Ye > 0, NP C [pseudonpyyv ] DTIME(2™), for a.e. length n or,
2. AM =;, NP.

Now suppose the first statement of Theorem 7 holds. Taking e = 1, we have that for every
language A € NP, there exists a language B € [pseudonpyv/DTIME(2"), such that every
NPMYV refuter fails to distinguish A from B; i.e. for every NPMYV refuter R and for a.e.
length n, there is a y produced by R(1"), such that A(y) = B(y).

So let A be any language in NP and let B be as above. The refuter R(1") := 1" is a NPMV
refuter, therefore we have,

A(1™) = B(1") for a.e. n. (2)

Consider the following martingale dp, that for each length n, only bets on the membership bit
of the string 1™, and for each of these strings puts % of its capital on the outcome that the
membership is the same as for B. To compute dp(w), where w is the characteristic sequence
of some language for words up to length ¢, one only needs to compute whether 1" € B for
n=1,2,...,t. Since B € DTIME(2"), dg is computable in time 2 < |w|?. Moreover if A
is a language such that 2 holds, then dp doubles its capital on a.e. bets it makes, and loses a
fraction of its capital on finitely many bets. Therefore dg(xa) = oo.
Denote by Lp the class of languages A such that equation 2 holds.



Let My, Ms,... be a standard enumeration of Turing machines running in deterministic
time 2", where M; runs in time polynomial in ¢ + 2", and denote by B; the language decided by
M;. The martingale defined by d(i,w) = dp,(w) is computable in time polynomial in 7 + |w|.
Therefore the class C = |J;~; L; has p-measure zero, by Theorem 2. Since NP C C, NP has
p-measure zero. Now if NP has not p-measure zero, we have that NP =; , AM, which ends
the proof.

4 Derandomization of PH in a Uniform Setting

The following result is an easiness versus randomness tradeoff for classes in the polynomial
hierarchy.

Theorem 8 For every i € N at least one of the following statements holds.
1. Ve > 0, TP C i.o.[pseudo sp |coNTIME™ 2 (27°), or
NPMV i-1
2. BPEP = %P

Proof.
Suppose inclusion 1 is false, i.e. there exists ¢ > 0 and a language A € P, such that

77
. =P €0
A¢g 1.0.[pseudoNPMVE§71]coNTIME 2(27°).
Since A € EP, there exists a relation M € ITY |, and a polynomial m(n), such that for every
z € {0,1}",
z € A<= Ty € {0,1}™ such that (z,y) € M.

For m € Nand § > 0, let S%, be the set of truth tables of all log m variables Boolean functions
with circuit complexity smaller than m®, for nondeterministic oracle circuits with oracle gates
for QSAT; ;. We have : |S? | < 2m°®.

Consider the following procedure Bfn, which accepts z iff there exists a truth table y € an,
such that (z,y) € M.

Claim The procedure B?, is in coNTIMEZ: -2 (27).

Indeed here is a description of the procedure B?,.

1. Construct all 2m°® single-valued nondeterministic oracle gates circuits with oracle gates
for QSAT,_; of size at most m?.

2. Given one such circuit, compute its truth table.

3. Check for each y € S, whether (z,y) € M.



Since simulating a QSAT, ; gate of fan in at most m® is in DTIME2§—2(20(m5)), and
since there are at most m’ nondeterministic choice gates, the running time of step 2 is in
DTIME>"2(200m"))_ For step 3, since M € II;_1, step 3 can be executed in coNTIMEZ-2 (21,
Thus B, is in coNTIME2?—2(2mC‘S), for some constant ¢ > 0. Choosing § such that m® < nc
proves the claim.

Now since A ¢ i.0.[pseudo PMVEFA]coNTIMEEZP*?(TLEO), there is a multi-valued nonde-
terministic refuter R with oracle access to QSAT,_;, such that for almost every n, a string =
produced by R is in the symmetrical difference AAL(B?)) (where L(B?,) is the language decided
by procedure BY)).

Since L(B?,) C A, we have AAL(BS,) = A\ L(BY,), therefore for each such string = we have:
For every y € S it holds that (z,y) ¢ M, but there exists y € {0,1}™\S? such that (z,y) € M.

Now let € = 4, and let v > 0 be as in Theorem 1, and let £ = m?. The following multi-valued
nondeterministic procedure with oracle access to 21{1 produces the truth table of a Boolean
function with log m variables with circuit complexity greater than m* for nondeterministic oracle
circuits with oracle gate for QSAT,_;.

Procedure PRODUCE-FUNCTION:

1. Use R to nondeterministically produce a string z in A\ L(B2)).

2. Nondeterministically guess a string y of length m and output it if (z,y) € M.

Once we obtain the truth table of a hard function, we use Theorem 1 to produce in time
polynomial in k a hitting set in {0,1}* with threshold %, for co-nondeterministic circuits with
oracle gates for QSAT; ; of size k. Applying Proposition 2, we get BPEP = P,

5 Final Remarks

It would be interesting to see whether Theorem 4 could be improved to prove a zero-one measure
law for RP. Since it is possible that EXP and ZPP are equal on infinitely many input lengths
and still ZPP has not p-measure one, it seems that stronger refuters than FZPP refuters are
needed.
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