Electronic Colloquium on Computational Complexity, Report No. 16 (2002)

On the Enumerability of the Determinant and the Rank

Alina Beygelzimer * Mitsunori Ogiharaf

January 29, 2002

Abstract

We investigate the complexity of enumerative approximation of two elementary problems in
linear algebra, computing the rank and the determinant of a matrix. In particular, we show that
if there exists an enumerator that, given a matrix, outputs a list of constantly many numbers,
one of which is guaranteed to be the rank of the matrix, then it can be determined in AC® (with
oracle access to the enumerator) which of these numbers is the rank. Thus, for example, if the
enumerator is an FL function, then the problem of computing the rank is in FL. The result holds
for matrices over any commutative ring whose size grows at most polynomially with the size of
the matrix. The existence of such an enumerator also implies a slightly stronger collapse of the
exact counting logspace hierarchy.

For the determinant function DET we establish the following two results:

1. If DET is poly-enumerable in logspace, then DET € FL.
2. For any prime p, if DET-mod-p is (p — 1)-enumerable in Mod,L, then DET-mod-p € FL.

These results give a perspective on the approximability of many elementary linear algebra
problems equivalent to computing the rank or the determinant. Due to the close connection
between the determinant function and #L, as well as between the rank function and AC°(C_L),
our results might yield a better understanding of the exact power of counting in logspace and the
relationships among the complexity classes sandwiched between NL and uniform TC®.

*Department of Computer Science, University of Rochester, Rochester, NY 14627. Email: beygel@cs.rochester.edu

tDepartment of Computer Science, University of Rochester, Rochester, NY 14627. Email: ogihara@cs.rochester.edu.
Supported in part by grants NSF-DUE-9980943, NTH-RO1-AG18231, NIH-P30-AG18254, and an Alzheimer’s Associ-
ation Grant PI0O-1999-1519.

ISSN 1433-8092

1 Introduction

Valiant [Val79b] proved that the permanent of integer matrices characterizes #P, the class of func-
tions definable as the number of accepting computations of a nondeterministic polynomial-time
Turing machine. A similar connection has been shown between the complexity of computing the de-
terminant and #L, the logspace analog of #P [Tod91, Val92, Vin91, Dam91]. (Since the determinant
of integer matrices can take on negative values, the determinant is in fact complete for GapL, the
class of functions that can be expressed as the difference of two #L functions.) Toda’s result [Tod89]
showing the surprising power of counting in the context of nondeterministic polynomial-time, namely
that the polynomial hierarchy is contained in P#F | naturally raises the question of whether #P func-
tions are at least easy to approximate. In the standard sense of coming close to the correct value
(i.e., within a multiplicative factor), approximating #P functions is in Af. Moreover, any technique
for showing that it has complexity lower than Ab, would have to be non-relativizable. (See [Sto85].)
In search of a better answer, Cai and Hemachandra [CH89] proposed an alternative notion of ap-
proximation, called enumerative counting. Instead of restricting the range of a function value to an
interval, they consider enumerating a short list of (not necessarily consecutive) values, guaranteed to
contain the correct one. Which of these approximation tasks is more natural depends on the function
one is trying to approximate: enumerative counting is more suitable in cases when there is no natural
total ordering on the range of the function; or when the range is either exponentially large (as in the
case of the determinant), or some intervals of the range are substantially denser than others, and
it is preferred to obtain a fixed number of candidates for every input of the same length, instead
of dealing with an interval that, though bounded, may contain vastly different numbers of possible
values for different inputs (depending not on the input itself, but on the value of the function on this
input).

More formally, a function f is said to be g(n)-enumerable if there exists a function that, on input
x, outputs a list of at most g(|z|) values that is guaranteed to contain f(z). Cai and Hemachan-
dra [CH91], and also Amir, Beigel, and Gasarch [ABG90], showed that if the permanent function
is poly-enumerable in polynomial time, then P = P#P, (Their result is actually stated for #SAT,
another classical #P-complete function.) Thus if we are given an n X n integer matrix A, and instead
of n!(2"™)" values that perm(A) can possibly take, we get a restricted list of polynomially-many val-
ues, guaranteed to contain perm(A), then we can easily (in polynomial time) determine which one is
the correct one. This is certainly a nmon-enumerability result, as it says that a very hard to compute
function (hard for the whole polynomial hierarchy) can easily bootstrap its exact value if it is left
with polynomially many candidates.

The present paper investigates the enumerability of functions complete for logspace counting
classes. In particular, it is interesting whether enumerability implies a similar decrease in the com-
plexity of the determinant; and if so, to what extent? Since #L functions have significantly less
computational power (they are contained in the NC?, or even TC!), the enumerability properties of
logspace counting analogs can be very different from those of #P-complete functions. This is even
more interesting, because, as far as we know, there are no results on approximating the determinant
(or the rank) in the standard sense. Another purpose of such an investigation is to get a better un-
derstanding of the relationships among the complexity classes sandwiched between NL and uniform
TCL.

We show that if there exists an enumerator that, given a matrix, outputs a list of constantly
many numbers, one of which is guaranteed to be the rank of the matrix, then it can be determined in
ACP (with oracle access to the enumerator) which of these numbers is the rank. Thus, for example,

if the enumerator runs in logspace, then the problem of computing the rank is in logspace. The
result holds for any commutative ring with identity whose size grows polynomially with the size of
the matrix. The existence of such an enumerator implies a slightly stronger collapse of the exact
counting logspace hierarchy; namely, it shows that the the hierarchy collapses to the closure of its
base class C_L under Sgco reductions. We also consider a related problem of computing the

(1)-tt
number of dependent vectors in a given set, and prove it to be Sé(clo)_tt-equivalent to computing the

rank. For the determinant function we show that if the determinant is poly-enumerable in logspace,
then it can be computed exactly in logspace. We also establish a similar result for computing the
determinant modulo any prime.

2 Preliminaries

We will be concerned with the complexity of computing the following functions (with input and
output in {0,1}*):

e DETp: Given A € F™*™ compute the determinant of A.
e RANKp: Given A € F™*™ compute the rank of A.
e SINGULARITYp: Given A € F™*" determine whether A is singular.

e INDEPENDENCEr: Given a set of vectors in F'™, determine whether they are linearly indepen-
dent.

Here F' is any commutative ring with unity. When F = Z, the ring of integers, F' is dropped.
With some abuse of notation, we will consider these functions as sets by associating the function
f: {0,1}* — {0,1}* with the set {(z,7) | the i-th bit of f(z) is 1}. Notice that a function is
in NC* if and only if its associated set (its characteristic function) is in NC* and is polynomially
bounded; hence there will be no confusion in viewing circuit classes as functional, sets being identified
with their characteristic functions. For a function f, we will also consider its verification version

VER.f = {(z,y) | f(z) =y}.

Uniformity In order to make circuit classes comparable to traditional classes defined by time
and space, we need to place uniformity restrictions on circuit families. For our purposes it will be
sufficient to use logspace uniformity, meaning that there exists a logspace machine that, on input
1", generates a description of the circuit for n inputs. For a detailed treatment of uniformity and a
discussion of other uniformity conditions, see [Ruz81, BI97].

Reductions We use Wilson’s model [Wil85] of oracle circuits to define the reductions. A function
f is AC’-reducible to function g, if there is a logspace uniform AC® family of circuits that computes
f, where in addition to the usual gates, oracle gates for g are allowed. Similarly we define NC!-
reducibility except that now the circuits have a bounded fan-in, and thus an oracle gate with fan-in
m has to count as depth logm. For a circuit class C, we write C(f) to denote the class of functions
C-reducible to f. For a function class F, C(F) denotes the class of functions C-reducible to some
function in F. A function f is AC® many-one reducible to a function g (written as f S;}lcog) is there
exists an AC? family of circuits (C,,) such that for every z of length n, we have f(z) = g(Cp(z)).

Logspace counting classes and the complexity of problems in linear algebra

Many basic linear algebra problems are known to be in NC2. In order to classify and capture the
exact complexity of these problems, Cook [Coo85] defined the class of problems NC!-reducible to
the determinant of integer matrices, and showed that most linear algebra problems with fast parallel
algorithms are in this class. Many are in fact complete for this class; others were shown to be complete
for the (potentially smaller) class of problems reducible to computing the rank [vzG93, ST98]. Santha
and Tan [ST98] defined a more refined hierarchy of problems that reflects the computational difference
between the functional and the verification versions of the problems under AC®-Turing and ACP-
many-one reductions. Toda [Tod91] gave many examples of graph-theoretic problems that are (under
appropriate reductions) equivalent to computing the determinant. (Although some of these problems
still have natural matrix interpretations when graphs are identified with their adjacency matrices.)

Allender and Ogihara [AO96] observed that, even though for most natural problems the closures
under AC® and NC!'-reductions coincide, this does not seem to be apparent for the determinant.
This motivated the definition of the following hierarchies (defined using the ”Ruzzo-Simon-Tompa”
oracle access model [RST84], which is standard for defining Turing reductions for space-bounded
nondeterministic machines, see [AO96]):

C_L
e The exact counting logspace hierarchy C_L U C_LC=L' U C_LC=L"""... = AC%(C_L)

The class C_L is defined as the class of languages, for which there exists a GapL
function f such that for every z, z is in the language if and only if f(z) = 0. If
follows immediately that the set of singular matrices is complete for C_L. Allender,
Beals, and Ogihara [ABO99] showed that AC® and NC! reducibilities coincide on
C_L; furthermore, the hierarchy collapses to LC=L. We show that, if RANK is O(1)-

enumerable in logspace, then it collapses to the ggg’)_tt—closure of C_L.

PL
e The PL hierarchy PL UPLPY UPLPY " U... = ACO(PL)

Ogihara [Ogi98] showed that the PL hierarchy collapses to PL under ACP (in fact
TCP) reductions, which was improved to NC! reducibility by Beigel and Fu [BF97].
A problem, easily seen to be complete for PL, is checking whether the determinant
of integer matrices is positive.

o The #L hierarchy LUL#L U L#L*" ... = ACO(#L) = AC*(DET)

It is not known whether the #L hierarchy collapses, or whether AC?(#L) = NC! (#L).
The latter would imply the collapse [A1197].

Allender et al. [ABO99] showed that the problems of computing the rank of integer matrices,
determining whether the rank is odd, and determining the solvability of a system of linear equations,
are all complete for AC°(C_L). Clearly, the problems of computing and verifying the rank of a
matrix are AC%-equivalent (since there are just n+ 1 possibilities for the rank). However, Allender et
al. classified the complexity of verifying the rank exactly, showing that it is complete for the second
level of the Boolean Hierarchy above C_L (i.e. the class of sets expressible as an intersection of a
C_L and a co-C_L set).

Our results We show that if there exists a logspace computable O(1)-enumerator for RANK, then
RANK is Sg(clo)_tt—reducible to INDEPENDENCE, and thus to SINGULARITY. (The reduction holds for
arbitrary rings.) SINGULARITY is complete for C=L, and thus the existence of the enumerator implies
that AC°(C_L) coincides with the closure of C_L under O(1)-tt-reductions, a slight improvement
over O(poly(n))-tt that follows from [ABO99] (unconditionally). We also show that if RANKp is
O(1)-enumerable in logspace, then RANKyr € FL, where F' is any commutative ring with identity
whose size grows at most polynomially with the size of the input matrix. Finally, we consider a related
problem of computing the number of dependent vectors in a given set (i.e., vectors involved in some
non-trivial linear dependencies with other vectors in the set), and show it to be gg(clo)_tt—equivalent
to computing the rank.

For the determinant function, we establish the following two results:

1. If DET is poly-enumerable in logspace, then DET € FL.
2. For any integer p, if DET-mod-p is (p — 1)-enumerable in Mod,L, then DET-mod-p € FL.

Organization of the paper All the results pertaining to the rank and the determinant are col-
lected in Sections 3 and 4, respectively. Section 5 concludes with a discussion.

3 Enumerability of the Rank

Recall that a function f is logspace g(n)-enumerable if there exists a logspace computable function
that, on input z, outputs a list of at most g(|z|) values, one of which is f(z). The following lemma
shows how to combine several matrices into a single matrix such that the ranks of the original
matrices can be read off the rank of the combined matrix.

Lemma 3.1 [Block diagonal construction| There exists a logspace computable function S that given
an ordered list @ = (A41,... ,A4) of n X n matrices, outputs a single matrix S(Q) of dimension O(n?)
such that a logspace procedure can uniquely decode the sequence of ranks (rank(A;),... ,rank(A4,))
from the value of rank(S(Q)). Moreover, both procedures can be implemented by uniform AC®
circuit families.

Proof: Consider the following combining construction. On input Q@ = (A4,,... ,4,), S outputs a
block diagonal matrix (i.e. a matrix of n X n blocks sitting on the main diagonal) with the following
block structure. The first block of S(Q) corresponds to A;, the next (n + 1) blocks correspond to
Ag, and so on, until we get to n? + nd~1 + ... +1 blocks of A,. The multiplicity of 4; as a block is
Y41 /7", thereby the dimension of S(Q) is Y3!_; n**'(¢ —i+1) = O(n9). The rank of S(Q) is the
sum of all block ranks, and since the rank of each block is at most n, the original sequence of ranks
(rank(A1),... ,rank(A,)) can be read off from the value of rank(S(Q)). It is easy to see that both
the construction and the decoding can be done in uniform AC?. 1

The combining construction above allows one to eliminate many candidate rank sequences. For
example, if we were to feed each of ¢ matrices to an r-enumerator separately, we would get r?
purported rank sequences, whereas combining the matrices into a single query reduces the number of
candidates to r. In order for the dimension of S(Q) to be polynomial in n, the number of matrices,
g, has to be constant. A simple information-theoretic argument shows that this is the best possible.
Indeed, the dimension of a matrix whose rank can encode (n + 1)? possible rank sequences must be

at least (n 4+ 1)79. Notice that combining matrices into a single query to an r-enumerator allows one
to link matrices in the following sense.

Definition 1 Two r-element sequences {p1,... ,p,} and {qi,... ,q,} are said to be linked if p; = p;
ifand only if g; = ¢, forall 1 <i < j <.

In other words, two matrices are linked — relative to an enumerator — if there is a direct correspondence
between the values on their claimed lists of ranks; hence knowing the rank of one immediately gives
the rank of the other.

Claim 3.1 There exists ro such that for any r > rq, any set of (;1)" r-element sequences, contains
at least one linked pair.

Proof: The number of r-element sequences sufficient to guarantee the existence of a linked pair is
precisely one more than the number of partitions of an r-element set into non-empty subsets. The
latter is known as the rth Bell number, B,. De Bruijn [dB70] gave the asymptotic formula

InB Inl 1 1 /lnlnr\? Inl
nrrzlnr—lnlnr—1+ nnr+_+_(m) +O(ﬂ)’

Inr Inr 2\ Inr (Inr)?

immediately yielding the claim. Other (less explicit) asymptotic approximations for B, are known
(see, for example, [Lov93, Od195]). N

Let k(r) be the minimum number of matrices that are guaranteed to contain a linked pair. By

Claim 3.1, & def k(r) < (;7)"- Given an n x n matrix A, let 4; (for 1 <4 < n) denote the n x n

matrix with the first ¢ rows of A and 0s elsewhere, so that A, = A. An r-enumerator for the rank

function defines the equivalence graph of A, a labeled graph on [n] def {1,... ,n} with the set of nodes
corresponding to A = {41,--- , A, }, and an edge between nodes 7 and j if and only if there is a set of
k — 2 matrices in A — {A;, A;} certifying the equivalence between A; and A; (i.e. witnessing that A;
and A; are linked). (We can assume without loss of generality that the enumerator is deterministic
and the combining encoding of queries in Lemma 3.1 is symmetric.) The label of an edge is defined
by the equivalence (i.e. direct correspondence between the 7 claimed values for rank(A4;) and the r
claimed values for rank(A;)) given by the lexicographically smallest s-tuple linking A; and A;.

Notice that by definition every subset of k nodes in the equivalence graph induces at least one
edge. Hence the number of connected components in the equivalence graph is at most k — 1. The
following proposition shows that in this case every pair of nodes is connected by a short path (where
the length of a path is the number of edges it contains).

Proposition 3.1 Any pair of nodes in the equivalence graph is connected by a path of length at most
2k — 3.

Proof: Suppose there exist nodes ¢ and j such that the shortest path between ¢ and j is of
length at least 2k — 2. Let vy, vo, ... ,vo, be the first 2k nodes on this path. Then either the nodes
{v2i+1 | 0 < i < k} form an independent set of size x contradicting the fact that every x-tuple of
nodes induces at least one edge, or there is an edge connecting a pair of nodes in this set, in which
case the path from ¢ to j can always be shortened, contradicting the assumption that it is the shortest
path. 1

We will use equivalence graphs in the proof of the theorem below.

Theorem 1 If, for some integer r, there exists an r-enumerator for RANKg, then RANKp is com-
putable in AC® with oracle calls to the enumerator. Here F is any commutative ring with identity
whose size grows polynomially with the size of the input matrix.

Proof: Given an enumerator and a set of matrices, the equivalence graph is uniquely defined.
Recall that the number of equivalence classes (i.e. the number of connected components in the
graph) is at most k — 1. Consider guessing the number of equivalence classes, a representative matrix
from each equivalence class, and, finally, the ranks of the representatives chosen. Since there are at
most (k — 1) (’le) r®~1 possibilities total', which is polynomial in n when r is constant, we have no
problem checking them all in parallel; thus we will concentrate on a single guess.

Once we have guessed the number of equivalence classes and their representatives, we can check
whether every node is reachable from at least one representative, and whether the representatives
are not reachable from each other. Recall that we only need to check all paths of length at most
2k — 3 from every representative node. If at least one of these conditions is not satisfied, we reject;
otherwise we proceed to checking the consistency of ranks, as we do next.

Let Ry,...,R; € A be the representative matrices, and 71,...,7; be the corresponding ranks,
where 1 < k < k is the number of equivalence classes. Note that 71,...,7, uniquely define the
ranks of all matrices in A. Of course, we do not know 71,...,7;. Instead, we will use the block
diagonal construction in Lemma 3.1 to pack Ri,..., Ry into a single matrix, which we can then
feed to the enumerator to get a list of r sequences of ranks, one of which is (71,... , 7). Denote the
sequences by (r],...,70), ..., (r,...,7F). Each (r},...,7}) uniquely defines the rank sequence
(vt,...,v%) claimed to be (rank(A4;),... ,rank(A4,)). Let U; = {1 < j < n | ’U;- = ;-_1 + 1}, where
we define vé =0 for all 1 < ¢ < r; thus each of the Uy, --- ,U, claims to be a maximal set of linearly
independent rows of A. Our goal is to test whether each U; is indeed maximal, i.e. whether every
remaining row of A is a linear combination of the rows in U;. As there are only constantly many
U;’s, testing them in parallel causes no problem. The rank of A is given by the size of the smallest
U; that passes the maximality test. (This number can be found as the corresponding v?.)

Remark 1 Alternatively, we could have obtained the (alleged) maximally independent sets of
columns Vi,...,V, (using the same procedure as for the rows). The square submatrices indexed
by Uy x V4, ---, Up x V, all claim to be non-singular. (We can obviously discard all candidate se-
quences with |U;| # |V;|.) Now instead of verifying the maximality claim, we can test, in parallel,
which submatrices are indeed non-singular, and then take the maximum over all that pass the test.

Notice that the discussion above is valid for arbitrary matrices. Now we show how to test the
maximality of U;’s for matrices with entries from any commutative ring whose size does not grow
more than polynomially with the size of the input matrix.

Testing maximality: Given row vectors vy, ... ,v4, w € F", verify that w is in subspace generated
by v1,... ,vq.

Let F = {a1,--- ,an,} be the ground field. If vy, ... ,v, are linearly independent, w is dependent on
V1,...,0q, and w # 0" (where 0 is the null element of F'), then there must exist unique coefficients

!Whenever necessary, we assume that n is sufficiently large.

Cl,... ,¢q € F such that civy + -+ 4+ cqvg +w = 0. For each 7 and j, 1 <i <m, 1 < j < g, define

the matrix
U1

If the above conditions hold, then for each j, there is a unique 7 such that rank(Mij) = ¢ — 1; namely,
rank(Mij) = g — 1 iff a; = ¢;; otherwise rank(MZ-j) = g. We have ¢gm < nm matrices?, which is
polynomial in n, provided that m grows at most polynomially in n. We want to reduce the number
of possibilities for the ranks of these matrices to a constant, and we already know how to force the
enumerator to do this for us: Recall that there is a constant x = k(r) such that combining any s
matrices into a single query witnesses at least one equivalence relation between a pair of claimed lists
of ranks. Furthermore, there are at most £ — 1 equivalence classes, and thus only polynomially (in
nm) many choices of how to partition M;s into the equivalence classes. All choices can be verified
in parallel, each one gives only a constant number of possible values for the ranks of MZ s. For each
candidate sequence of ranks we collect the coefficients c;s, assuming that this sequence is correct (i.e.
for each j there is a unique 7 such that rank(M;) = ¢ — 1, and rank(M;) = ¢ for all I # 7); then we
verify (column-wise in parallel) that the equality civ; + --- + ¢qug + w = 0 holds. Notice that the
maximality test can be run in parallel not only for all of Uy, -- ,U,, but also for all rows w claimed
to be linear combinations of the rows in U} (for each h, 1 < h < 7). The number of matrices that
we are dealing with for each h is less than n?m, so if m is polynomial in n, testing them in parallel
causes no problem. It is easy to see that the entire computation can be done in AC? with oracle
gates for the enumerator, since we are dealing with fields of polynomial size (and thus elements of
logarithmic length).

Now, to extend this method to commutative rings of polynomial size, we just have to test whether,
for each d € F, there exist coefficients ci,... ,cq € F satisfying civy + -+ +¢4vg + dw = 0, which can
be done in parallel for each possible d. For some 7 there can be more than one value of j for which
rank(MiJ) = ¢ — 1, but since the underlying computation is AC® we have only to select the smallest
such 5. |

Corollary 3.1 Let F' be any commutative ring with identity whose size grows polynomially with
the size of the input matrix. If there exists a O(1)-enumerable for RANKp that runs in logspace,
then RANKp is computable in logspace.

Computing the number of dependent rows

Consider the following related problem: Given a set of row vectors v1, ... ,v, € F", determine how
many of them are dependent, i.e., are involved in some non-trivial linear dependency with other
vectors in the set. Define the problem DEPgr: Given a matrix A € F™*", compute the number of
dependent rows of A, written as dep(A).

’If ¢ = n (i.e. if the enumerator has claimed that A has full rank), we can verify whether each row is a linear
combination of the remaining rows. Since there are just n rows, the verification can be done in parallel. The sequence
passes the test if and only if it passes all of the n tests. Thus we may assume that g < n.

Proposition 3.2 If, for some integer r, there exists an r-enumerator for DEPg, then DEPp is
computable in TC? with oracle calls to the enumerator. Here F is any commutative ring of polynomial
size.

Proof: The argument is very similar to the one used in the proof of Theorem 1. Namely, given
a matrix A € F™*" we construct its prefix forms Ay, ... , A, and obtain a list of r candidates for
the sequence (dep(A1),...,dep(A4y)), using an r-enumerator for DEPy the same way we used the
enumerator for the rank. Denote the candidate sequences by (vi,... ,vl), ..., (v],... ,u"). For each
J, 1 < j <n, we have dep(A4;) = dep(A4,_1) if and only if row j is independent of rows 1,...,j — 1.
Let R = {1 <j <n| fu;- = ;_1}, where we define vé = 0 for all 1 < 4 < r; hence R; is the
lexicographically smallest basis of the row space of A, claimed by the ith sequence. Our task is
to determine which v’ is correct. We test, as in the proof of Theorem 1, the maximality of all R;
in parallel, keeping, for each 4, a boolean vector u; = (u;;) of length |R;| with 1s corresponding to
the basis vectors whose dependency has been revealed by the test, i.e., for each ¢, u; marks those
vectors in R; that were shown to have non-zero coefficients in linear decompositions of the remaining
rows of A. We can ignore the bases that do not pass the maximality test. To simplify the notation,
suppose that all of them do. Now we just need to test the consistency of each claimed v’ with the
corresponding calculated dependency vector u;. For each 1 <1 < r, let ¢; = ’U% — (n — |R;]); that
is, ¢; is the number of dependent vectors in R; claimed by the ith candidate sequence (v, ... ,v%).
We check the consistency by verifying, for all 4 in parallel, whether ¢; = Z'fiﬁ‘ u;; holds. The value
of dep(A) is given by the v}, corresponding to the smallest R; that passes the consistency test. (If
such R; is not unique, each one forms a valid basis of the row space of A; furthermore, since given
a basis, every other row of A is uniquely represented as linear combination of the basis vectors, all
bases that pass the consistency test must agree on their corresponding claimed value for dep(A).)
To verify the consistency, we simply need to be able to subtract two n-bit strings and to count the
number of 1s in an n-bit string; both can be done in TC?. 1

CO

(n)_tt-equivalent to RANKp.

Proposition 3.3 For an arbitrary ring F', DEPp is Sg
Proof: RANKp is clearly n-tt-reducible to DEPz in TCY. Given a matrix A € F™*", we ask
the DEPf oracle for dep(Ayp),... ,dep(A,) and simply count the number of 7, 1 < ¢ < n, such that
dep(A4;) = dep(A4;_1), which immediately gives the rank of A. To show that DEPp is reducible to
RANKp, we essentially use the reduction in Proposition 3.2. Namely, we query the RANKp oracle on
Aq,..., A, to obtain a valid basis of 4, and then find the coefficients in the linear decompositions
of the remaining rows in terms of the basis vectors. We need only count the number of the basis
vectors that have a non-zero coefficient in some decomposition, which can be done in TC?. Denote
this number by s. Then the value of dep(A) is given by n —rank(A) +s. |1

4 Enumerability of the Determinant

k

Theorem 2 If, for some k, DET is n"-enumerable in logspace, then DET € FL.

Proof: Let G be the configuration graph of a nondeterministic logspace machine on some input z.
Let #path(s, t) denote the number of directed paths from node s to node ¢ in G. Define f(G) as the

function, whose value (written in binary) consists of a sequence of n? blocks of length s = 2n[logn],
the (n(¢ — 1) + j)th segment corresponding to #pathg;(7,), where 1 < 4,5 < n ; thus

n

£(G) = 2D hpath i, 5).

ij=1

It is easy to see that f is a #L function; this can be done by exhibiting an NL machine N whose
number of accepting computation paths on G is f(G). The machine N, on input G, nondetermin-
istically guesses a number p = n(i — 1) + j, 1 < p < n?, after which it guesses ¢, 1 < ¢ < 2P,
followed by a guess of path from node 7 to node j in G. If the guess is correct, N accepts; otherwise,
it rejects. It is easy to see that N is a nondeterministic logspace machine that has the required
number of accepting paths. Hence f € GapL, and a function is in GapL if and only if it is logspace
many-one reducible to the determinant. Thus there must exist a logspace function g such that for
all G, f(G) = DET(g(G)). We shall use g to transform G into a matrix M = ¢g(G), and then run
the n*-enumerator on M to obtain a list of n* values, one of which is the determinant of M. Using
the equality in the above reduction, we convert this list to a list of n* candidates for f(G) (each
of which, if correct, certifies that the corresponding claimed value for det(M) is correct). Since we
have only n* candidates for f(G), they can be checked in parallel. Given a purported f(G), we can
uniquely read off #pathg(i,7) for each pair (4,7), 1 < 4,7 < n. These values can then be locally
checked using the self-reducibility of #paths;. 1

A natural question is whether the same theorem holds for finite fields. We can only show a similar
result for the determinant of integer matrices modulo some integer p. The problem of computing the
determinant mod p is Slf,)bg—complete for Mod, L, defined in [BDHM92]. Mod,L is the class of sets A
for which there exists f € #L such that for all z, x € A iff f(z) # 0 mod p. We will also use the
notion of membership comparability, due to Ogihara [Ogi95].

Definition 2 A set S is g(n)-membership comparable, written as S € L-mc(g(n)), if there exists
a function f € FL such that for any set of g(n) inputs z1,... ,Tyx), each of length at most n, f

excludes one of 29(") candidates for the characteristic sequence xs(zi,... ,wg(n)).

We will also use the predicate version of the problem, namely DET-mod-p = {(4,1) | det(4) =
i (modulo p)}.

Theorem 3 Let p be any prime. If there exists a logspace computable (p — 1)-enumerator for
DET-mod-p, then DET-mod-p € FL.

Proof: We will show that the existence of the enumerator above implies that DET-mod-p is in
L-mc(p — 1). The theorem will then follow from a recent result of Ogihara and Tantau [OT01].
Since DET-mod-p € Mod, L, there must exist a #L-function f certifying its membership. Requir-
ing that p is a prime is just a matter of convenience, since in this case, according to Fermat’s Theorem,
we may assume that f is such that z € DET-mod-p iff f(z) = 1(modulo p), and z ¢ DET-mod-p iff
f(z) = 0(modulo p). Let My be a nondeterministic logspace machine certifying that f is in #L.
Let k = p— 1. Consider a k-tuple of inputs (z1,... ,zx), each of length at most n. For 1 <i <k,
denote the configuration graph of My on input z; by G;; then f(z;) counts the number of paths in
M, from the initial configuration to the accepting configuration. (We may assume that there is a
single accepting configuration.) Given a directed graph G, let #pathg;(s,t) denote the number of

directed paths from node s to node ¢ in G; then f(x;) = #pathg,(s;,;), where s; and t; are the
initial and the accepting configurations of G;, respectively. Consider a graph G consisting of all G;s
plus two additional nodes s and t. Besides the edges internal to G;s, add, for each ¢, a new edge
from s to s;, and from t¢; to t. We have #pathg(s,t) = Zle f(si,ti).

For any integer p, given a topologically sorted directed graph G, nodes s and ¢, the problem of
counting the number of paths from s to ¢ in G modulo p, is in Mod,L (in fact, it is Sl%g-complete
for Mod,L). Thus there must exist a logspace computable function that takes (G, s,t) as input and
produces a matrix M such that det(M) = #pathg(s,t)(modulo p). We shall use this reduction to
transform our G into such matrix M, and then run the enumerator on M. The enumerator gives
p — 1 candidates for DET-mod-p, thereby excluding one.

Thus we have a list of p — 1 candidates for #pathg(s,t) mod p. We will show that no subset of
p — 1 candidates can cover all 2P~1 possibilities for the characteristic function x(z1,...,7,—1) (in
DET-mod-p), implying that DET-mod-p € L-mc(p — 1). Indeed, suppose that the enumeration list
contains q. We have (f:_ll f(x;)) mod p = (Zf;ll (x;) mod p) mod p, and thus #pathg;(s,t) =
g(modulo p) iff exactly g out of z1,... ,zp_1 are in the set. (Recall that for any z, f(z) is congruent
to either 0 or 1 modulo p), we have Zf:_ll f(z;)= g(modulo p).) Therefore, each candidate g covers
(i.e. is consistent with) at most (p 51) characteristic sequences; hence any p—1 candidates can clearly

cover at most 2P — 1 sequences, putting DET-mod-p € L-mc(p —1). 1

5 Concluding Remarks

A natural question is whether the rank being, say, O(logn)-enumerable would imply that the rank
is in logspace. As we mentioned, it does not seem possible to combine more than a constant number
of queries into a single query to the enumerator. Another improvement would be to show that
Proposition 3.2 holds for AC? in place of TC?, the question being whether counting the number of
dependent basis vectors can be avoided in this context.

A Discussion on Theorem 1: Tt is interesting to know whether the theorem can be generalized
to arbitrary rings; in particular, to the ring of integers. It follows from Remark 1, that the problem
reduces to finding the largest non-singular matrix among r matrices of dimension at most n. Let

the matrices be Dq,...,D, with the corresponding purported ranks 71,...,7.. We can run the
enumerator on Di,..., D, (packed using the block diagonal construction) to generate r candidate
sequences for (rank(D;),...,rank(D,)). View the output of the enumerator as an r x r Boolean

matrix D = (d;;) with d;; = 1 iff rank(D;) claimed by the ith sequence is 7;. We can safely remove all
columns that do not contain ones; for notational simplicity assume that all do. Extend the remaining
matrices to dimension n, without changing the singularity. Using a lemma from [ABO99], we can,
in logspace, transform every matrix so that if it was non-singular, it remains so; otherwise its rank
becomes one less than full. It is easy to see that an r-enumerator is of no further use: queried on any
set of matrices constructed from D1, ..., D,, the enumerator can make each one of its r purported
rank sequences consistent with a different choice of a non-singular matrix among D;,..., D, (i.e.
each sequence can consistently claim the non-singularity of a particular D;). Since the number of
matrices is at most the number of candidate sequences that the enumerator has to commit itself to,
the enumerator cannot be forced to reveal the singularity of any single D;. Can we find the largest
non-singular D; without the use of the enumerator?

If the rows of D form a Sperner system (i.e. the rows are incomparable elements of the boolean

10

r-dimentional cube), then Dq,... , D, can be transformed into a set of r matrices such that exactly
one matrix is non-singular; moreover, the non-singular one has the same index as the correct row
of D. To construct the jth matrix in the set, we simply take the product of all matrices that have
ones in row j. The rank of the product is at most the minimum of the individual ranks; hence the
product is not full-rank iff at least one matrix in the set is singular. The (only) non-singular product
corresponds to the correct row of D.

In the case when the row set of D contains a chain, we have a problem, since the non-singular
row product may not be unique. In this case we can perform the above process iteratively for all
levels of the boolean r-dimensional lattice, starting from level . That is, for every level 7 from r to
1, we take a subset of rows of D with exactly ¢ ones, and get a set of less than r matrices with the
property that at most one matrix in the subset is non-singular. The correct row of D corresponds
to the first non-singular product.

Suppose we are given a set of matrices guaranteed to contain at most one non-singular matrix;
and let C be a functional complexity class. If we were able to single out the only non-singular matrix
(or to establish that none is full rank) in C, then the problem of determining the singularity of a
matrix (over the same domain) would trivially be in C. Indeed, to determine whether a matrix A is
singular, we would just run the above C procedure on A combined with some singular matrices. If A
is non-singular, the procedure will find it; otherwise it will establish the singularity of all, certifying
that A is singular. Thus it is unlikely that the scenario outlined in Remark 1 works for arbitrary

rings.
Since the interesting case is when the enumerator is bounded to run logspace, one could use
randomness in constructing parallel queries from D;,... , D, (forcing the enumerator to reveal the

singularity of some candidates due to its limited computational ability in guessing the random bits
used in constructing the queries). However, approximate rank computations over arbitrary rings
are complicated by the fact that the rank is not known to be random self-reducible, and the fact
that infinite rings lack nice finite filed properties simplifying the analysis (such as the existence of
samplable distributions invariant under addition or multiplication by a fixed element of the ring).

More on Rank versus Independence The proof of Theorem 1 shows that we can use an r-
enumerator to reduce the number of candidate rank sequences for Aq,...,A, to r. Given a list
of r purported sequences, consider the r x n Boolean matrix H = (h;;) with h;; = rank;(4;) —
rank;(A;_1), where rank;(-) denotes the rank of - claimed by the i-th candidate sequence, and
rank;(4g) = 0 for all i, 1 < i < r. (We can immediately reject all candidate rank sequences
whose correponding rows in H contain elements other than 0 or 1.) Suppose you are given a black
box for INDEPENDENCE; that is, you can ask whether any h;; is indeed 1, which essentially reveals
the correct value for rank(A;) —rank(A;_;). Consider the following question: how many (adaptive)
oracle calls to INDEPENDENCE one needs to determine which purported sequence of ranks is correct?
The number of queries clearly does not have to be more than r, since you can always eleminate at
least one sequence with a single query. The question is whether it can it be much smaller.

This problem, viewed in a more general setting, seems to be fundamental. Namely, the rows of
H can be treated as truth tables of r-variate boolean functions over GF(2). (With no loss we can
keep only unique columns of H; there are at most 2" of them; we can include some duplicate columns
if necessary, to make the number of columns precisely 2".) Given oracle access to some unknown
function f : GF(2)" — GF(2), we are asked to recognize it among the functions explicitely specified
by H, using as few oracle calls to f as possible. In other words, the question is how many points one
needs to (adaptively) examine in order to reconstruct an unknown function f, given a restricted list

11

of candidates containing f. For example, imagine a situation when you pocess some cryptic program
Py, and you are told that it computes one of your favorite functions. On how many different inputs
do you have to run P; to determine which one of your favorite functions it computes?

The problem also has a natural interpretation in the context of distributed computing. Suppose
that you are given a network with r nodes and you are told that exactly one node is faulty. The
matrix H encodes all allowed routes: each route corresponds to a column of H, i.e. it goes through
the nodes that have value 1 in the column; the ordering of nodes on the path can be arbitrary. You
are allowed to send a probe along any routing path to determine whether the faulty node is on this
path. The problem is then to choose (adaptively vs. nonadaptively) the smallest subset of tests
sufficient to distinguish among all r nodes, thereby singling out the faulty one.

The lower bound on the number of queries for any deterministic procedure is Q(logr), given
by a simple information-theoretic argument. Notice that if the number of unique columns of H is
at least 2>, . (’;) for some constant «, % < a < 1, then a single query reduces the number of
candidate sequences (i.e. rows of H) by at least (1 — a)r. Indeed, we just have to ask any h;j,
where j is the index of a column containing at least (1 — «)r ones and at least (1 — «)r zeros. We
have Y. . (:) < 7‘(#2:1)-2', using standard approximation arguments. Denote the matrix resulting
after query ¢ by H; (H; contains the rows of H that agree with the first i queries), so Hy = H.
Let r; denote the number of rows in H;. The bound above shows that if the number of unique
columns of Hj is at least (27 /rg), then a single query leaves us with at most arg candidate rows.
In this case, the number of unique columns in H; is at least T(Qa_af)% = Q(2" /r1); hence the
same argument inductively applies: a single query can eliminate at least (1 — a)r; rows, and so on.
Therefore, if the condition on the number of unique columns of H is satisfied, log; ., 7 = O(logr)

calls to INDEPENDENCE suffice to solve RANK.

References

[ABG90] A. Amir, R. Beigel, and W. Gasarch. Some connections between bounded query classes
and nonuniform complexity. In 5th Structure in Complexity Theory Conference, pages
232-243, 1990.

[ABO99] E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and feasible
systems of linear equations. Computational Complezity, 8:99-126, 1999.

[A1197] E. Allender. A clarification concerning the #L hierarchy, October 1997. Available at
http://www.cs.rutgers.edu/~allender/.

[AO96] E. Allender and M. Ogihara. Relationships among PL, #L, and the determinant. The-
oretical Informatics and Applications, 30(1):1-21, 1996.

[BDHM92] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and importance of
Logspace-MOD class. Mathematical Systems Theory, 25(3):223-237, 1992.

[BF97] R. Beigel and B. Fu. Circuits over PP and PL. In 12st IEEE Conference on Computa-
tional Complexity, pages 24-35, 1997.

[BI9T7] D. Barrington and N. Immerman. Time, hardware, and uniformity. In L. Hemaspaan-
dra and A. Selman, editors, Complezity Theory Restrospective II, pages 1-22. Springer-
Verlag, 1997.

12

[CHS9)

[CHY1]

[Co085]

[Dam91]

[dB70]

[Lov93]

[0d195]

[Ogi95]

[0gi98]

[OTO1]

[RST84]

[Ruz81]

[ST98]

[Sto85]

[Tod89]

[Tod91]

[Val79a]

J. Cai and L. Hemachandra. Enumerative counting is hard. Information and Computa-
tion, 82(1):34-44, 1989.

J. Cai and L. Hemachandra. A note on enumerative counting. Information Processing
Letters, 38:215-219, 1991.

S. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control,
64:2-22, 1985.

C. Damm. DET = L#L? Informatik-Preprint 8, Fachbereich Informatik der Humboldt-
Universitat zu Berlin, 1991.

N. G. de Bruijn. Asymptotic methods in analysis. North-Holland, Amsterdam, 1970.
L. Lovasz. Combinatorial problems and ezercises. North-Holland, 2nd edition, 1993.

A. M. Odlyzko. Asymptotic enumeration methods. In R. Graham, M. Grotschel, and
L. Lovasz, editors, Handbook of Combinatorics, volume I, pages 1063-1229. MIT Press,
1995.

M. Ogihara. Polynomial-time membership comparable sets. SIAM Journal on Comput-
ing, 24(5):1168-1181, 1995.

M. Ogihara. The PL hierarchy collapses. SIAM Journal on Computing, 27:1430-1437,
1998.

M. Ogihara and T. Tantau. On the reducibility of sets inside NP to sets with low
information content. Preprint, November 2001.

W. Ruzzo, J. Simon, and M. Tompa. Space-bounded hierarchies and probabilistic com-
putations. Journal of Computer and System Sciences, 28:216-230, 1984.

W. Ruzzo. On uniform circuit complexity. Journal of Computer and System Sciences,
22(3):365-383, 1981.

M. Santha and S. Tan. Verifying the determinant in parallel. Computational Complezity,
7:128-151, 1998.

L. Stockmeyer. On approximation algorithms for #P. SIAM Journal on Computing,
14(4):849-861, 1985.

S. Toda. On the computational power of PP and ®&P. In $0th IEEE Symposium on
Foundations of Computer Science, pages 514-519, 1989.

S. Toda. Counting problems computationally equivalent to computing the determinant.
Technical Report CSIM 91-07, Department of Computer Science, University of Electro-
Communications, Tokyo, Japan, 1991.

L. Valiant. Completeness classes in algebra. In 11th ACM Symposium on Theory of
Computing, pages 249-261, 1979.

13

[Val79b] L. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189-201, 1979.

[Val92] L. Valiant. Why is boolean complexity theory difficult. In M. Paterson, editor, Boolean
Function Complexity, London Mathematical Society Lecture Notes Series 169, pages 84—
94. Cambridge University Press, 1992.

[Vin91] V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic cir-
cuits. In 6th IEEE Structure in Complexity Theory Conference, pages 270-284, 1991.

[v2G93] J. von zur Gathen. Parallel linear algebra. In J. Reif, editor, Synthesis of Parallel
Algorithms, pages 574-615. Morgan Kaufmann, 1993.

[Wil85] C. Wilson. Relatizived circuit complexity. Journal of Computer and System Sciences,
31:169-181, 1985.

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc

14 ftp://ftp.eccc.uni-trier.de/pub/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

