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Cryptographic Hardness based on the Decoding of
Reed-Solomon Codes with Applications
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Abstract

We investigate the decoding problem of Reed-Solomon Codes (aka: the Polynomial Re-
construction Problem — PR) from a cryptographic hardness perspective. First, following
the standard methodology for constructing cryptographically strong primitives, we formu-
late a decisional intractability assumption related to the PR problem. Then, based on
this assumption we show: (i) hardness of partial information extraction: an adversary who
wishes to predict the value of some computable function on a new point of the solution of a
given PR-instance, has no more than a negligible advantage over an adversary who wishes
to do the same without seeing the PR-instance (for any probability distribution of the new
point), and ii) pseudorandomness: PR-instances are pseudorandom in the sense that they
are indistinguishable from totally random sets of points over the finite field.

The above results lay the theoretical framework for the exploitation of PR as a basic
cryptographic tool. In fact, there are several advantages of cryptographic primitives built
over this tool. For example, in PR, the size of the corrupted codeword (which corresponds to
the size of a ciphertext and the plaintext) and the size of the index of error locations (which
corresponds to the size of the key) are independent and can even be super-polynomially
related. We know of no other problem that allows such a property. Subsequently, we
present concrete constructions of primitives: First, we construct a direct one-way func-
tion that behaves as a “large secure envelope.” Then, we use the one-way function as a
building block in a non-interactive commitment scheme for large values which 1s the first
scheme with sublinear decommitment witness size. Further, we construct a semantically
secure stateful-cipher that possesses unique properties: it allows keys to be inverse super-
polynomially shorter than the encrypted messages and it satisfies “computational perfect
secrecy”, “forward secrecy” and “key-equivalence.”

1 Introduction

Finding new problems based on which we can design cryptographic primitives is an important
research area. Given a presumably hard problem it is usually non-trivial to exploit it directly in
cryptography. Many times, in order to serve as the base for secure cryptographic primitives, we
need to find related hard decision problems (predicates). This is the fundamental methodology
initiated by Goldwasser and Micali in [GM84] where they started the quest for formal notions
and proofs of security in cryptography. The decision problem’s hardness, typically seems
related to (or at times proved in some sense related or, even better, reducible from) the
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hardness of the original problem. Hard predicate assumptions allow formal security proofs (in
the form of reductions) for advanced cryptographic primitives such as pseudorandomness and
semantically secure encryption. The first example of a decisional assumption is the Quadratic-
Residuosity, which is related to (but not known to be reducible from) Factoring and was
employed in designing the first semantically secure encryption scheme [GM84]. Another such
assumption is the Decisional Diffie-Hellman which implies the security of ElGamal encryption
and other advanced cryptographic primitives (e.g., [NR97]), and is related to (but not known
to be reducible from) the Diffie-Hellman problem.

In this work, our goal is to investigate the possibility of cryptographic primitives whose
security is based on the problem of Polynomial Reconstruction (PR). Recall that the problem
of Polynomial Reconstruction is defined as follows: Given n points over a (large) finite field
F, such that at least ¢ of them belong to the graph of a polynomial p of degree less than k,
recover such a polynomial (where n >t > k).

We note that Polynomial Reconstruction is essentially equivalent to the decoding problem
of Reed-Solomon codes and naturally has received much attention from a “positive” (coding
theoretic) perspective: Starting from the classical algorithm of Berlekamp and Welch([BW86])
which solves Polynomial Reconstruction provided that ¢ > ”Qﬂ (error correcting bound for
Reed-Solomon Codes), to the recent work of Guruswami and Sudan [GS98] which solves it
when t > Vkn (many solutions are possible in the worst case). The current state of knowledge
suggests that for values of ¢ below vkn the problem is hard.

Regarding our goal, Polynomial Reconstruction as is, does not seem to be ready for direct
cryptographic exploitation: even if presumed hard, it is not at all clear how to build advanced
cryptographic primitives whose security can be reduced to it. Indeed, when Naor and Pinkas
[NP99] first employed the problem cryptographically in a context of protocol design, they
actually introduced a related pseudorandomness assumption. The relation of this assumption
to PR also motivates further investigation.

In this work, we first identify a decisional problem naturally related to PR. This problem
is based on the following basic question: given a PR-instance that contains n points and an
index ¢ € {1,...,n}, does the i-th point of the instance belong in the graph of the polynomial
solution or not? (note that in the range of our parameters, a PR-instance has a unique solution
with very high probability). We formalize the hardness of this predicate for all indices i as the
“Decisional-PR-Assumption” (DPR).

Based on the DPR-Assumption we show: (i) hardness of partial information extraction: an
adversary with access to a PR-instance who wishes to predict the value of some computable
function on a new point of the polynomial-solution, gains only negligible advantage compared
to an adversary who wishes to predict the same value without seeing the instance — this holds
true even if the point follows an adversarially chosen probability distribution; also: (ii) pseudo-
randomness: PR-instances are pseudorandom in the sense that they are indistinguishable from
random sets of points, for any poly-time observer. These results suggest that PR is quite robust
in the cryptographic sense and is suitable for employment in cryptographic constructions.

There are several possible advantages of the PR problem which can be exploited by cryp-
tographic primitives built on it, for example: (i) The natural dichotomy and independence
exhibited between the key-size (index of error locations) and the size of Reed-Solomon en-
coded message (or concealed information in PR-based systems) allows key-sizes to be selected
independently of (and possibly super-polynomially smaller than) the message size; we know



of no other problem that allows such a property in the cryptographic literature. (ii) The PR
problem enjoys a unique algebraic structure. (iii) The operation of polynomial interpolation
which is basic in PR cryptographic primitives can be implemented quite efficiently (especially
in special purpose hardware).

With the above advantages in mind, we apply our results to the design of PR-based cryp-
tographic primitives. First we define a one-way function based on Polynomial Reconstruction.
Under DPR, our one-way function has strong partial-information concealment properties that
make it suitable as a building block in designing large-value commitment schemes. In partic-
ular, our commitment scheme yields a non-interactive scheme with sublinear decommitment
witness size, i.e. it allows the decommitment information to be substantially shorter than
the committed values and the commitment information. This property allows substantial re-
duction of the private storage space required for decommitment. Then, we introduce a new
semantically-secure stateful cipher based on Polynomial Reconstruction. Qur cipher demon-
strates the exploitation of structural properties possessed by the PR problem and exhibits
unique properties, which are:

o (i) Forward Secrecy: this property suggests that if a total security breach occurs at a
certain time (e.g. the key is revealed), this affects the security only of future messages
while the previously sent messages are semantically secure in the view of the perpetrator.

o (ii) Computational perfect secrecy. Consider the following two attacks against a cryp-
tosystem: an existential attack is a chosen-plaintext attack that reveals an encrypted
message whereas a universal attack is a chosen-plaintext attack that reveals the key, and
thus all messages (from some point on in a forward-secure cipher). A cipher for which the
two attacks are inter-reducible is said to satisfy “computational perfect secrecy.” This
property is motivated by Shannon’s early information-theoretic work and by the work
of Goldwasser and Blum [BG84] who introduced a variant of it in the computational
sense by exhibiting a remarkable cryptosystem where violating semantic security implies
factoring of the composite key.

e (iii) Short key-size: this property suggests that the plaintext can be superpolynomial in
the key-size (the security parameter).

e (iv) Built-in error correction. The decryption operation incorporates error-correction
capabilities in a direct manner.

o (v) Key-equivalence. There are no “weak” (prone to specialized attacks) families of keys.

Notation. All computations are performed in a (large) finite field F. Tuples in F" are denoted
by x and (x); denotes the i-th coordinate of x. Denote by (n); :=n(n—1)...(n — k + 1),
and if A is a set denote by (A)j the set of all k-tuples over A without repetitions. PPT stands
for “probabilistic polynomial-time.” All algorithms mentioned in the paper are PPI' Turing
Machines, and denoted by A, B etc. For any PPT A that uses randomness r € R and input
x € D, if y is in the range of A we will denote by Prob,c,r.zc,p[A(r, 2) = y] the probability
that A returns y when r and z are uniformly distributed over their respective ranges (note
that y may be a function of z). A function a(n) : IN — R is negligible if for all ¢ it holds that
a(n) < n~° for sufficiently large n. A function §(n) : N — R is called non-negligible if it is not
negligible for all large enough inputs, namely there is a ¢ s.t. f(n) > n=° for all n sufficiently



large. When the probability of an event is greater equal to 1 — ¢(n) where ¢(n) is negligible,
then we write that the event happens “with overwhelming probability.”

2 The Problem

Definition 2.1 Polynomial Reconstruction (PR). Given n, k, t and {(z;,y;)}"_, with
z; # zj for i # j, output all (p(x), I) such that p € Fz], degree(p) <k, I C{1,...,n}, [I| >t
and Vi € I(p(z;) = ;).

PR as a coding theoretic problem asks for all messages that agree with at least ¢ positions
of the received Reed-Solomon codeword. For a general treatment on the subject the interested
reader is referred to [Ber68] or [MS77]. Note that k£ < n since k/n is the message rate of the
code, and that we further require that at least one solution (p(z), I) exists.

When t > ”Qﬂ then PR[n, k, ] has only one solution and it can be found with the algorithm
of Berlekamp and Welch [BW86] (# is the error-correction bound of the Reed-Solomon
codes). When t is beyond the error-correction bound then having more than one solution is
possible. Sudan proposed an algorithm that solves the PR beyond the error-correction bound
when t > v/2kn in [Sud97] and later in [GS98], Guruswami and Sudan presented an algorithm
that solves the PR for ¢t > vkn. In [GSRY5] it was proven that when ¢ > Vkn the number
of solutions is bounded by a polynomial. In [GS98] it is pointed out that the possibility of an
algorithm that solves instances for smaller values of ¢ might be limited. We note here that the
solvability of PR (and related problems) was also studied in the context of lattices, see [BN0O].
Consequently the current state of knowledge implies that PR[n, k, f] is hard for the choice of
parameters ¢ < \/R

2.1 Structure of the Instance Space

An instance of PR will be denoted by X := {(z;, ;) }"_,; the set of all instances with parameters
n, k,t will be denoted by S, 1+ In order to refer to PR with parameters n, k,t we will write
PR[n, k,t]. Note that unless stated otherwise we assume that n is polynomially related to
log | F.

Let I C {1,...,n} with |I| = t. We denote by S, %:(/) the subset of S, 1+ so that
for any X € S,r(f) it holds that X has a solution of the form (p,I). It is clear that
Spkp = U|I|=t8n,k,t(l)7 but {Sn,k,t(])}|1|=t does not constitute a partition of S, . ¢. Nevertheless
concentrating on instance sets of the form S, 4 +(/) is helpful in understanding the structure

Of Sn,k,t-

Lemma 2.2 For any I C {1,...,n} with |I| =t it holds that #S, (1) = (|F|)|F|"~1*5.
Proof. Straightforward since n — ¢t 4+ k are exactly the degrees of freedom that each element of
Sn k(1) has. [ |

Clearly if a PR-instance X € S, x+ has two distinct solutions (p1, [1) and (ps, I2), it holds
that X € Sy k¢(f1) N Snkt(l2). To determine the likelihood that a given PR-instance has a
single solution or more, the following lemma is helpful:



Lemma 2.3 (i) For all Iy,1; C {1,...,n}, with |I1| = |I] = t, Iy # I, it holds that
#(Sn ke (11) N Snpe(12)) < (|F]) 5 [F]" AT

(ii) The total number of PR-instances of Sy i that have more than one solution is less than
(7)° (1)) [ F=rth=t,

Proof. (i) Let |I; N I3] = m; note that m € {0,...,£— 1}. The (z,...,z,) values contribute
(F),, choices. The “free” (noise) points contribute |F|"~2'*™ choices. It remains to find the
number of choices due to the y-elements that correspond to the positions Iy U I5. There
first solution contributes |F|* choices, whereas the second solution, if m < k, it contributes
|F|*=™. If m > k no second solution is feasible. So we have two cases: m < k, where
#(Sn (1) N Spri(12)) = (|F)n|F"~2425and m > k, where #(Sup¢(I1) N Sppi(l)) =
(|F)), |F|?=2t+m+k with m € {k,...,t — 1}. As a result, independently of the choice of I, I,
#(Sn k(1) NS pi(l2)) < (|F))n|F|?~ 51 (recall that t > k).

(ii) it follows easily from the fact that the set of all instances of S, 1+ that have more than one
solution is a subset of Ur, 27, Snk:(11) N Sn ke (12)- [ |

The following lemma compares the number of elements of S, .+ and S, % +(I) and in com-

bination with the previous lemma it provides an estimate to the number of elements of S, 1 ;.

Lemma 2.4 Suppose log |F| > 3n. For any I C {1,...,n}, |I| =t, it holds that (}) — 27" <

#Sn k.t < (n)
#S, 10 (I) = \t/°
Proof. By definition it holds that Snr: = Ujrj=¢Snk:(I). It follows from lemma 2.2 that
#Sn k() = #Sn k(") for all 1, I'. Now fix some I C {1,...,n}, |I| =t. It follows that,

n
(?) #Sn (1 Z #H(Snpt(I) N Snpi(l2)) < #Snpys < (t>#5n,k,t(1)
h#l

Next using the upper bound on 211#-2 #(Sp k(1) NSy k¢(12)) that follows from lemma 2.3,
it follows that (using the facts log |F| > 3n, () < 27)

() #SnpalD) _ #Snp(l)
¥ 2z

D #(SnpalI) N Snpa(l)) <

L#DL

It follows that

t

((n) - %)#Sn,k,t([) < #Sn it < (7;) #Sn k(1)

which completes the proof. |

As a result we can draw the following corollary:

Corollary 2.5 The number of elements of S, .+ can be approzimated (within negligible error)
y (7) (IF))n [ B4

Clearly sampling the uniform distribution over S, 1 +(I) is straightforward (based on the
fact that the uniform distribution over the finite field F can be sampled — something that can
be shown easily). Next we proceed to show that the uniform distribution of PR instances is
actually samplable (with negligible statistical error). We start with a standard definition:



Definition 2.6 A probability distribution D over some space R of objects of size polynomial in
n is called (polynomial time) samplable if there is a PPT Sp : Rp — R so that the probability
assigned to any y € R by D is Probp[y] = Prob,¢c, =, [Sp(z) = y].

Consider the following procedure S that samples S, ;: first select n random distinct
elements of F, zy,...,2,. Then, select a random [ such that |/| =t and then select a random
polynomial p of degree less than & (e.g. by selecting k& random elements of F as its coefficients).
Set y; := p(z;) for i € I and select the remaining y; for ¢ ¢ I at random. The output of S is
{(zi, ) }7_,. The following lemma suggests that the described procedure S essentially samples
the uniform distribution over S, j, ;.

Lemma 2.7 Let log |F| > 3n. The probability distribution defined by S is statistically indis-

tinguishable from the uniform over Sy .. More specifically, A =} xcs | Prob[S(1") =

X] - #5 |< 2n2~"

Proof. Fix some X € S, 1. If only a single solution (p, I) with |I| = ¢ exists in X then it

follows easily that there is a unique assignment of the random choices of S that yields X. Asa

result in this case it holds that Prob[S(1") = X] = W. Let us partition Sy, z+ to
t n

the set §; that contains instances X with a single solution as above and let §; := 8, 1+ — Si.
If %A is the statistical distance between the two distributions then it follows that:

1 1
A=A+ A=) | — - |+ > | Prob[S(1") = X] - |
Xes |F| |]F| i+ #Snvkvt XeS, #Snvkvt

From lemma 2.4 it holds that

| 1 _ 1 |_ 1 | #Sn,k,t _ (ﬂ) |< 1
(3 (FD)n [F=tE #Snpe () #Snpe (FDa[F=+E A1 27 (3)#Sn k.t

It follows that:

-Yis e
T(F) |F|n T ESure ()

Xes
and as a result A; is negligible. Next we proceed to show that A, is also negligible. Note that
this will follow immediately by the following two facts:
(i) Xxes, Prob[S( ") = X] < (n—1t)27". To see this, let nx be such that Prob[S(1") =
X] = g 1t follows that Yyeg, nx = (M)« ([F))|F|"~1+F — #8,. Since S,
contains all those PR instances that contain exactly one solution it follows easily that #S8; >

(D) (IF)) | FI*(JF] = (7))™~". As a result (using the facts log [F| > 3n, (}) < 27)

> < () et (- (P )™

XESQ

— ) Prob[S(1") = X] < 1 - ( - %)"'t <1- (1 - QLH)”‘* _ S (n - t> (—212;“

XeS,

the sum on the right hand side is easily shown to be less than (n —)27".



(i) X xes, ﬁ < 27", Indeed the sum equals to #ﬁii,t and the stated result follows from

lemma 2.3(ii).
Finally we conclude that A < L_ 4 ”Q—Zf + 2% < 2n27". [ |

2(3)

Lemma 2.8 Suppose that log |F| > 2n. The ratio of the number of PR-instances of S, .+ with
more than one solution, over #S, 1 ; is less than 27".

Proof. Because of lemma 2.4 it holds that ((7}) —27") (|F|)n|F|" 7% < #8154 < (7) (|F|) | F| 5.
The number of PR-instances of Sy, 1. ; with more than one solution is less than (?)2(|F|)H|F|”_t+k_1

(from lemma 2.3ii). It follows that the ratio is less than (?)2((?) —27")7HF|T < 27, [ ]

It is an immediate corollary from the above lemma that any PPT which samples the uniform
distribution over S, 1. ; will select an instance X that has a unique solution with overwhelming
probability 1 — 27", Consequently any instance X € S, ;; uniquely defines a polynomial p
(with overwhelming probability) such that degree(p) < k. We denote this polynomial by sx
(for solution of X). The set of indices that corresponds to the graph of p which we call “the
index-solution set” is denoted by I(X). Obviously, the recovery of sx implies the recovery of
I(X) and vice-versa.

2.2 Security Parameters

In our exposition we will use n as be the security parameter. The parameters &, ¢ are functions
in n, so that k < t < n and t < v/nk. The straightforward brute-force algorithm for solving
PR[n, k,t] requires checking all possibilities and as a result has complexity proportional to
min((}), (7)). The parameters [n, k(n),t(n)] are called sound for PR[n, k,t] if k(n) and t(n)
are chosen so that t < v/kn and min((Z), (T;)) is exponential in n. Note that we will suppress
(n) in k(n),t(n). Observe that if [n, k, t] are sound parameters then it also holds that [n, k+1,]
are sound parameters (provided that k41 < ¢). Intuitively this means that allowing the degree
of the solution-polynomial to be greater without changing the other parameters it cannot make
the problem easier. We will assume sound parameters throughout.

2.3 Partial Random Self-Reducibility

As it is noted in [NP99], Polynomial Reconstruction enjoys a partial self-reducibility property,
namely that given an X = {(z,y;)}"_, € Sp ¢ it is possible to randomize the polynomial
solution of X: choose a random polynomial p’ of degree less than k& and compute the instance
Y = {(zi,y: + p(2i)) }"_,. Nevertheless this is not at all sufficient to show that the problem is
randomly self-reducible. This is because the procedure does not randomize the points that do
not lie in the index-solution-set. Polynomial Reconstruction enjoys yet another partial random
self-reducibility property, namely that the choice of the index-solution-set is not important.
Informally this can be seen by the fact that one can permute the points of PR-instance by
applying a random n-permutation. This fact is of importance from a cryptographic viewpoint
since in many settings the index-solution-set plays the role of a cryptographic key. This second
partial random self-reducibility is formalized and strengthened in the next section.



2.4 Altering The Distribution of PR-Instance Solutions

Suppose that some points of a polynomial solution of PR[n, k, ] instance follow a given (non-
uniform over F) probability distribution. If A points of the polynomial solution follow a cer-
tain probability distribution we will fix these points to be the values of the polynomial over
{0,...,h — 1}. Without loss of generality we assume that 0,..., A — 1 are not equal to any of
the (z1,...,2z,) values in a PR-instance (this is an event of negligible probability). Note that
alternative “base” values wy, ..., w, can be used instead of 0,...,h — 1.

Let [n, k — h, t] be sound parameters for some 0 < h < k. Let Dj, be a samplable probability
distribution over F*. We can extend D}, to be a samplable probability distribution over Sn kit
by modifying the sampler S of section 2.1 so that it selects h values of the polynomial solution
following D), (instead of at random). We use the notation Sp, to denote this generalized sam-
pler over S, 1 ;. Note that we will use the same notation D, for both probability distributions
(over F* and Snkt). Defining Dy, over S, 1 +(I) can be done in a similar manner as above, and
the sampler will be denoted by S{)h. If the base values are set to {wy,...,w} the derived
probability distribution over Sy k¢ and S,k ¢() will be denoted by D, "™,

The next lemma reveals that even under such a “modified solution distribution”, the partic-
ular choice of the index-solution-set does not affect the output behavior of a certain procedure
that operates on PR-instances. The core of the proof below is that given a PR-instance with
unknown solution one can randomly permute the points in the instance.

Lemma 2.9 Let Dy, be a probability distribution over F*, with h € {0,...,k}. Let A : Snkt —
V be some PPT. Then it holds that there exists a PPT A’ s.t. for allv eV and I C {1,...,n}
with |I| = t,

| Probye,, s, [A(X) =v] - Probye, s, , (nlA'(X) = ]|

n,k,t

is negligible in n.

Proof. Fix some samplable distribution Dj, over F*, a v € V, and some I C {1,...,n} with
|I| =t. Let Sp, : Rp, — F* be the PPT that samples Dj. Let p € R be the randomness used
by Sp,, to sample an element of S, ¢, i.e. p = (I, 21,..., 20, M1, oy Mp_py T, Y1y« - oy Ynet);
it holds that #R = (7)(F),|F|*~"Rp,|F|"~'. Similarly denote by p’ € R’ to be the random-
ness used by S{)h, ie. pl = (21, 0y 20, May ooy ME—hy Ty Y1y - -+, Yn—t); it holds that #R' =
(F),.|F|*~"Rp, |F|"~t. Tt follows #R = #%’(?) Regarding the probability of A to return v,

we have that:
Probxe,, s, , ,[A(X) =1v] = Prob,c,»[A(Sp,(p)) = v]

Now consider the PPT A’ that on input X, first it selects a random permutation =, it
permutes the pairs of X according to 7 to obtain X™ and then it simulates A.

PrObXEDhSn,k,t(I);TFEUPerm(n) ['A,(ﬂ" /Y) =v]= PrObp’EU%’;WEUPerm(n) [*A([Sll)h (p,)]ﬂ) = 1]

Assume that A does ¢(n) coin-tosses and define C' := {(b,p) | A(b,Sp,(p)) = v} and
D= {(b, p,m) | A(b, [, (p)]") = v}, where b € {0,1}7(").

It follows that
#C

Probye,x[A(S2, (0) = ] = 5o



and

I #D
PrObP'EU%';WEUPerm(”) [‘A([SDh ('0/)]#) =v]= Qq(n)n'#%/
Consider a mapping J : R x Perm(n) — R so that if p = J(p', 7) with p = (I*,2],..., 25,
' ' ' ' ' ’ .
my,...omp_p Pyl oy and pf = (20, oz ml oo mb Pyl k) it holds
! ! ’ ! . .
that 2/ = 2/, mf = m/, r* = r” and y; = y;, fori = 1,...,n, j = 1,....,k — h and

£=1,...,n—tand additionally I* = {7 (i) | ¢ € I'}. It is easy to see that a certain p € R has
t!(n — t)! pre-images under J. It follows that #D = t!(n — t)!#C and as a result:

PrObPEUW[-A(SDh (P)) = U] = PrObp’EU%’;WEUPerm(”) [‘A([Séh (pl)]rr) = ?)]
the result of the theorem follows. [ |

Note that in the statement of the lemma above the choice of the points {0,...,h — 1} as
the ones that will be distributed according to some probability distribution is arbitrary as it
is very easy to reformulate the above result so that some other collection of “base” values is
selected. Additionally the value v used above can be generalized to being a function of X in
a straightforward manner, without any modifications in the proof.

2.5 The Intractability Assumption

A decision problem that relates naturally to the hardness of solving an instance X of PR[n, k, t]
is the following: given X and an index 7 € {1,...,n} decide whether i € I(X). We postulate
that such decision is computationally hard to make whenever PR is hard. Since this has to hold
true for all indices we will use a counter-positive argument to formalize the related decisional
intractability assumption. In the definition below we describe a pair of predicates that refutes
the assumption by “revealing” one of the points that belongs in the graph of the solution-
polynomial (note that we formulate probabilities independently of the index-solution-set since
given any PR-instance the index-solution-set can be randomized — see lemma 2.9):

Definition 2.10 A pair of PPT predicates Ay, As is called a gap-predicate-pair for the param-
eters n, k,t if for all I C{1,...,n} with |I| =t it holds that:

negligible Vig T

non—negligible for some € I,i <n—k

| Prob[A; (i, X) = 1] - ProblA;(i, X) = 1] |= {

where the probabilities are taken over all choices of X € Sy, 1:(I) and internal coin-tosses of
the predicates Ay, As.

A gap-predicate-pair when given a PR instance X and ¢ € {1,...,n} exhibits a measurable
difference for at least one i € I(X), where at the same time it exhibits no measurable difference
for indices outside 7(X). Using this, we formulate the Decisional-PR-Assumption as follows:

Decisional-PR-Assumption. (DPR[n,k,1])
For any sound parameters [n, k, t] there does not exist a gap-predicate-pair.

The relation of DPR to the Polynomial Reconstruction problem is revealed in the following
two facts which are used to underline the justification for our intractability assumption. The
first is straightforward:



Fact 2.11 The existence of a polynomial-time algorithm for PR[n, k,t] violates DPR[n, k, t].

To state the second fact we need a definition: a predicate A : U;D; — {0, 1} is called
independently samplable over U; D; if there is a PPT Sy that given u € IN and X € D;, it
draws u independently sampled values of A over the space D;. In particular, given X € D, it
holds that S(u, X) := (c1,...,c,) where each ¢; is distributed over {0, 1} according to A(Y)
where Y is uniformly selected over D;. We denote by >~ S4(u, X) the sum >"7 | ¢;.

Lemma 2.12 If there exists a gap-predicate-pair Ay, Ay so that the predicates are indepen-
dently samplable over the space UrS, (1), it follows that PR[n,k,t] is solvable with over-
whelming probability.

Proof. First we show how to obtain an 7 € I with overwhelming probability. Let A;, A; be
a gap-predicate-pair and denote the non-negligible probability of revealing an index of the
index-solution-set by a(n). Suppose we are given some X € S, ¢, let [ := I(X).

Since a(n) is non-negligible it follows that a(n) > -- for some ¢ and sufficiently large
n. Let N := n?*l. Consider the following procedure B: first compute the values a; :=
>S4, (N,i, X) and a} == >S4, (N,i,X) for all i = 1,...,n (note that Sy, (N,i, X) =
(Aq (7, Xq),..., A1(4, X)) and similarly for Sy,). For all ¢ € {1,...,n} check the difference

2nc+l
3

|a; — al|. 1f it is discovered that for some i, |a; — al| > , output i as a “good” index (i.e.
an index that belongs in T). If no such i is discovered the procedure fails.

We show that for any X € S, 1; the above procedure returns an element of (X') with over-
whelming probability. Let A; and A/ be the random variables that correspond to the computed
values a; and ). Let p; and p} denote the expected values of A; and A.. By definition it holds
that A;, A’ follow the Binomial probability distribution over N Bernoulli trials with probability
of success p; := Probxc,s, , (nlAi(i, X) = 1] and p; := Probyc,s, , ,(n[A2(i, X) = 1] re-
spectively. Using the Chernoff bound we have that for € > 0, Prob[|4;— Np;| > eN] < 2e~2¢*N
and Prob[|A! — Npl| > ¢N] < 2¢=2°N . Now observe that:

INp; = Np;| — [A; = Npi| — [A; = Npi| < |A; = A} < [Np; — Npi| 4+ |A; — Npi| 4 |A] — Npj|

Consider the following two facts:

(a) Suppose that ¢ ¢ I; then it holds that ¢; := Prob[|4; — A!| > %] is negligible in n.
Indeed, ¢; < Prob[|A; — Np;| + |A} — Npl| + |Np; — Npl| > ”6;1]. Now because |p; — pi|
is negligible it follows that for sufficiently large n it holds that |p; — p!| < ==. As a result

6nc”
¢ < Prob[|A; — Np;| + |AL — Npl| > ”:rl] It follows that ¢; < Prob[|A; — Np;| > ”:;H] +
1

] and using the Chernoff bound for € := == we conclude that

Prob||A! — Np| > %
g < 4e=(2/36)n" which is clearly negligible.

(b) Suppose that ig € I is the index for which a(n) = |p;, — pi | is non-negligible. The

probablhty Gy = Prob[lAZ.O _ A;0| S Qn;+1

’)’LC+1
Probl[|A;, — Np;,| + Al — Npl | > Nipy, — p | — #5—]. We know that |p;, _cf%°| > L
for sufficiently large n. As a result ¢;, < Prob[|A;, — Np;,| + [A}, — Npi | > “5—]. This
probability was shown in case (a) above to be negligible.
Using the above two facts we deduce the following about the procedure 5:

1. The procedure fails with negligible probability. This is because of fact (b).

] is negligible in n: first observe that ¢, <
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2. The procedure will report an index that is not in the index-solution set with negligible
probability. This is because of fact (a).

It follows that, given any X € S, 1+, B reports an index of the index solution set /(X))
with overwhelming probability. Moreover for such index #; it will hold that 7; < n — &k with
overwhelming probability (because of the corresponding property of the gap-predicate-pair).

Now we modify the instance X as follows: we substitute the #;-th point with the n-th point
to obtain the altered instance X,. Subsequently we repeat the procedure B that will recovers
an index of the index-solution-set (different from i1). By repeating the above k times we obtain
k points of the solution polynomial of X and the solution follows by interpolation. This will
be done with overwhelming probability. |

Fact 2.13 Violating the DPR by an independently samplable gap-predicate-pair with parame-
ters [n, k,t] implies that PR[n, k,t] is solvable with overwhelming probability.

3 Hardness of Recovering Partial Information of any Specific
Polynomial Value

In this section we show that PR[n,k,t] “leaks no partial information” about any specific
polynomial value under the DPR-Assumption. In particular, we show that for some fixed
value w € F, given an instance X := {(z;,y:)}7y € Sprs With w & {z1,...,2,}, we get
no polynomial advantage in predicting the value of any function g over the polynomial value
sx (w) for sx (w) drawn from any polynomially samplable probability distribution D, unless
the DPR fails for parameters [n, k — 1,¢]. In the remaining of the section we will fix w € F
and we will assume that S, ;+ does not contain instances with w among the z-values (which
is a negligible probability event). The generality of the proof stems from the fact that we can
map a PR[n, k — 1, t]-instance X into a PR[n, k, t]-instance X’ of which we can select the value
sx/(w). Then, we can use any algorithm that makes a non-negligible prediction regarding
some property of sx/(w) to extract a parameterized predicate that is sensitive to a parameter
choice inside the index-solution-set. This predicate yields a gap-predicate-pair that violates
DPR[n, k — 1,¢].

For the rest of the section fix some value w € F. Next, we formalize the concept of “leaking
no partial information.” Informally, we can describe the definition as follows: for any PPT that
predicts the value of g(sx(w)) given a PR instance, there is another algorithm with essentially
the same functionality that operates without the PR instance.

Definition 3.1 PR([n, k,t] leaks no partial information means that for all poly-time computable
g : F — R and all polynomial-time samplable probability distributions Dy over F it holds: for
all PPT A there exists a PPT A" such that the following is negligible in n:

| PrObTEUR§X€D1“’$n,k,t [-A(T: X) = g(SX (w))] - PrObT’EUR’WEDlF['A/(TI) = g(u)] |

A consequence of lemma 2.9 is that the definition above can be made more specific so that:
for all PPT A there exists a PPT A’ so that for all I C {1,...,n} with |I| =t it holds that
the following is negligible in n:

| PrObTEUR§XEDlwsn,k,:(I) [A(T‘, X) = g(SX(w))] - PrObT’EUR';UEDlF[AI(rI) = g(u)] |
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So, the probability of success of any PPT A is taken over §,, 1, +(1) following the distribution
DY, independently of the index-solution-set /. The core of the proof that PR leaks no partial
information is the following lemma:

Lemma 3.2 Suppose that there is a poly-time computable g : F — R and a probability distri-
bution Dy for which PR[n, k,t] leaks partial information. Then there exists a PPT B such that
for all I C {1,...,n} with |I| = t, if Bi(n) == Prob,c ».xeys, . 1. (D) [B(i,p, X) = 1] with
i €40,...,n} it holds that

1. For alli & I |B;—1(n) — Bi(n)| is negligible.

2. There exists an ig € I such that |B;;—1(n) — Bi,(n)| is non-negligible and ic < n — k + 1.

Proof. For simplicity we assume that D; is the uniform distribution. The proof is similar
in both cases (see below for comments in the case D is not uniform). Regarding the success
probability a(n) of A we have that for all T with |I| = ¢, and for all PPT A’ the probability
distance below is non-negligible in n:

| PrObTEU’R;XEUS,,,,k,r(I) [.A(T‘, /Y) = g(SX (w))] - PrObT'EUR';uEUF[A/(r/) = g(u)] |

Let B be the following PPT that operates on S, z—1+(I) with random input string p :=
(u,y,r) €y R = F x F* X R (in the case D is not uniform, u is not part of the random
input of B but rather it is sampled using the PPT that samples D). Given some X €
Snk—1 (1) = {(z, ;) }7—. The set of pairs X* := {(z;, (z; — w)y; + u)}7_, is computed. Note
that X* is a random instance of S, 1 +(/) (similarly if » was distributed according to some non-
uniform distribution Dy, then X would follow the corresponding distribution Dy over S, ).
Subsequently the y-part of the first ¢ pairs of X* is randomized by substituting them with the
first 2 values of the given string y € F*. The resulting partially randomized instance is denoted
by X*. Then A is simulated on input (r, X7). If A returns g(u) (i.e. A is correct) then B
returns 1 (0 otherwise).

It is easy to see that Gy(n) = a(n). When i = n — k+ 1, B completely randomizes the first
n—k+ 1 positions of the y-part of the constructed S, ; (/) instance. Consider a PPT A’ that
first samples a random Y € §,, := (F),, X F* (where (F),, denotes the set of all n-tuples over F
without repetitions) and then simulates .4 on Y. It holds that,

o' (n) := Probyc, r[A(") = g(u)] = Prob,c,r.veys,meprlA(r, Y) = g(u)]

Let C" .= {(r,Y,u) | A(r,Y) = g(u);Y € S,}, it holds that: &/(n) = #Rﬁig;xlﬁ“ We want
to compare the probability 5,_;41(n) to o/(n). Define the mapping J(i,u,y, X) := (X}, u),
where X * is defined as in the description of B. Given a certain (Y, u) for a ¥V € §,, we want to
compute how many pre-images of the form (y, X) has, under the mapping J(n —k+ 1, u, -, ).
Let h:=[IN{n—k+2,...,n}|; obviously h < k — 1. Fix h values of the polynomial-solution
of X to the corresponding y-positions of Y and k& — 1 — h values of the non-polynomial values
of X to the corresponding positions of Y. This leaves a total of |F|*~***=1 choices for the

pre-images of (Y, u). It follows that:

|F|n—t+k—1#cl |F|n—t+k—1 #Cl
THRXFXF X Spp14(1) #R-|F| - (|F]),, - [F]2r—t+h-1 —

Br-kt1(n)
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— e = of(n)
= FRW - (),

From the assumption of the theorem it is immediate that |a(n) — o'(n)| is non-negligible and
as a result we conclude that |8y(n) — Bn—k+1(n)| is non-negligible in n. It follows easily that
for some 7o € {1,...,n— k + 1} it should be the case that |3;,—1(n) — Bi, (n)| is non-negligible
(by the triangular inequality). It remains to show that it cannot be the case that ig & I.
In particular we will show that for any ¢ ¢ I it holds that |8;_1(n) — 3;(n)]| is negligible.
Let C; == {(r,y, X,u) | A(r,X}) = g(u); X} = J(i, X,y,u); X € Spp—1.:()}. It follows
that

. #C;
PrObTEURWEUF"§Xesn,k,t(l)?“EUF[B(Z7u|y|r7X) = 1] = HR X F" x Sn,k—l,t(l) <TF

Suppose ¢ € I. Next we will compare the number of elements of #C; and #C;_;.

Let (r,y~, X, u) be an element of R X F* x &, r_1+(I) X F with the i-th position of y and
the i-th y-position of X left “blank.” Define V, - x-, := {v | A(r,y~/v/X~) = g(u)}; here
y~ /v/ X~ denotes the set of pairs {(z;, y/) }7_, such that up to i — 1 y; agrees with y, ¥} = v and
from i 4+ 1 and on y! = (z; — w)y; + u (where X~ = {(z;,y;)}"_,). Any (r,y~, X, u) together
with some v € V, - x-,, can be extended to:

o |F| tuples (r, Yoy X u) that belong in C;_y; the number of tuples stems from the free

choice of v/ € F.

o |F| tuples (r, y[;],X[;,], u) that belong in Cj; the number of tuples stems from the free
choice of v’ € F.

It follows that
#Ci=F Y #V,y- x-u = #Cin

{ry= X~ )
and as a result 3;,_1(n) = f;(n). [ ]

The proof of this Lemma is a crucial contribution. It exhibits the two main proof-techniques
used throughout; one technique involves controlling portions of the instance’s solution, whereas
the other technique involves a “walking argument” over the points of the instance. Now observe
that if Ay (i,r, X) := B(i,r, X) and Ay(i,r, X) := B(i — 1,r, X), it follows easily that A, As is
a gap-predicate-pair. As a result,

Theorem 3.3 Suppose that there is a poly-time computable g : F — R and a probability
distribution Dy for which PR[n, k,t] leaks partial information. Then the DPR-Assumption
fails for parameters [n, k — 1,t].

Proof. The proof is immediate from lemma 3.2 and the definition of the DPR assumption. B

In the rest of the section we present special cases of the above Theorem which appear
frequently in cryptographic settings. Let us assume that the distribution D is uniform. Let
g : F — R be a poly-time computable function. Define F, = {u | g(u) = a;u € F} for
any ¢ € R. We say that ¢ is balanced if for all @ € R and all polynomials ¢ it holds that

| “ﬁ;?" - “ﬁ' |< m (for sufficiently large |F|). The balanced property means that any image
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under ¢ corresponds to roughly the same number of pre-images. This is a very general condition
that applies to individual bits of elements of F as well as to various length bit-sequences of
elements of F.

Naturally, guessing an unknown value of a balanced function with a uniformly distributed
pre-image cannot be done with probability significantly greater than 1/|R|:

Fact 3.4 Let g: F — R be balanced, poly-time computable and let n be polynomially related to
log|F|. Then, for any PPT inn, A, if o/(n) := Prob, ¢, m e w[A'(r') = g(u)] it holds that
| o (n) — ﬁ | is negligible in log |F|.

Proof. Let R!, := {r' | A'(+") = a} for any @ € R. Note that it holds that U,crR] = R'. Let ¢
be any polynomial; now because g is balanced:

O/(n) — EaeRmaHRM < EaeR|R;| (L 1 ) — L + 1
|F|[RY] IR \IR[ - q(log[F))/  |R] "~ q(log|F])
and
al(n) — EQER|FG||RIQ| > EQERW—\)’H (L _ 1 ) — L . 1
|F|[RY] IR \[R[  q(log[F))/ |R]  q(log|F])
consequently |o/(n) — ﬁ| is negligible in log |F|. [ |

The corollary of fact 3.4 and theorem 3.3 is the following;:

Corollary 3.5 For any balanced g : F — R, the success of any PPT A that given X € Sy, ¢,
computes the value g(sx(w)) is only by a negligible fraction different than 1/|R| unless the
DPR-Assumption fails for parameters [n,k — 1,t].

More specifically we can give the following examples of balanced predicates/functions that
are hard to compute given a PR[n, k, t]-instance:

Proposition 3.6 The following problems are hard under the DPR[n, k — 1,t]:

1. Let BIT(a) denote the [-th LSB of a € F. Given X € S, 1+ predict BIT(sx (w)) with
non-negligible advantage where | represents any bit, except the loglog |F| most significant
— in particular | as a function of log |F| should satisfy that for any ¢ € IN, | < log |F| —
cloglog |F| for sufficiently large log |F|.

2. Let BITS;(a) denote the sequence of the | least significant bits of « € F. Given X € S, .+
predict BITS (sx (w)) with probability J; + a(n) where a(n) is non-negligible.

3. Let QR(a) be 1 iff a € F is a quadratic residue, and assume F is of prime order. Given
X € 8,1 predict QR(sx (w)) with non-negligible advantage.

Proof. (1) Let H, denote the number of elements of F that their /-th LSB is v (where v € {0, 1}).
We want to show that % is negligible in log |F|. Let f := |Flmod2’. If is easy to see that
|Fo| — |Fy| = fif f < 271 and that |Fo| — |Fy| = 2! — fif £ > 2!='. At any rate we would
like to show that % is negligible in log |F|, which is easy to see under the condition of the
theorem.
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(2) For any bitstring b € {0,1} (where [ = 1,...,|log|F||) it holds that |F,| is either (a)

L@J or (b) L%J +1. Case (a): |% — ﬁ| = |J-%/|2ll — or| which is easy to see that is negligible
in log |F|. Case (b) is similar.

(3) Straightforward as we assume that F is a field of prime order. |

We note that the exclusion of the loglog |F| most significant bits from the item (1) above is
independent of our treatment as depending on the order of the field they may be easy to guess,
and as a result BI'l'; might not be balanced. Note that if the finite field is chosen appropriately
all bits of sx (w) will be hard: e.g. if we restrict to finite fields F such that there is a ¢ € IN:
|F| — 2Uos[Fl] < (log |F|)¢ then all bits will be hard (e.g. a field of numbers modulo a Mersenne
prime):

Corollary 3.7 Under the DPR-Assumption with parameters [n, k —1,t], predicting any bit in
a point of the graph of the solution polynomial of a PR[n, k,t] instance is hard.

A natural question to ask at this point is whether simultaneously more than one point of
the polynomial solution enjoys the hardness of extraction properties showed in theorem 3.3.
In particular we can extend the definition of leaking partial information to many points at the
same time as follows:

Definition 3.8 Fiz some wy,...,wy € Fwith h € {1,...,k—1}. We say that PR[n, k,t] leaks
no partial information for h points simultaneously if for all poly-time computable g : F* — R
and all polynomial-time samplable probability distributions Dj, over F* it holds: for all PPT A
there exists a PPT A’ such that the following is negligible in n:

_PrObT"EUR';llE'DhFh [AI(T‘I) = g(u)] |

By choosing the appropriate parameters for the DPR assumption it is possible to show
hardness of partial information extraction even in this extended setting:

Theorem 3.9 Suppose that there is a poly-time computable g : F* — R and a probability
distribution Dy, for which PR[n, k,t] leaks partial information for h points simultaneously.
Then the DPR-Assumption fails for parameters [n,k — h,t].

Proof. The proof of the theorem is a straightforward multidimensional extension of the proof
of lemma 3.2. |

4 Pseudorandomness

In this section we will show that distinguishing instances of PR[n, k, ] from random elements
of S, := (F),, x F” is hard under the DPR-Assumption (which essentially amounts to saying
that instances of PR[n,k,?] are pseudorandom under the DPR). We start with a standard
definition:
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Definition 4.1 Let {F,}nenN be a family of sets, such that F, contains all possible choices of
elements of size n. Two families of sets with A,, B, C F, are (polynomial-time, computa-
tionally) indistinguishable if for any PPT predicate A,

| PrObTEUR§XEUAn [.A(T‘, X) = 1] - PrObTEUR§XEUBn [.A(T, X) = 1] |

is negligible in n. If on the other hand there is an A for which the probability above is non-
negligible in n, we will say that A is a distinguisher for A,, B,. A family of sets A,, is called
pseudorandom if it is indistinguishable from F,.

Note that for this section we consider B,, = F,, := S, = (F),, x F” and A,, := S, .+ (the set
of PR[n, k, ] instances). Let A be a distinguisher for S, ; and S,. Because of lemma 2.9 it
holds that the particular choice of the index-solution set [ is independent of the distinguishing
probability, i.e. forall I C {1,...,n}, |I| =1, it holds that the following is non-negligible in n:

| Prob, ¢, ».xeps, ., (n[A(r, X) = 1] = Prob.¢,»;xeys,[A(r, X) = 1] |

In other words lemma 2.9 suggests that any distinguisher between S, 1. ; and S, also serves
as a distinguisher between S, 1 (/) and S, for all subsets I.

The core of the pseudorandomness proof is the next lemma that given such distinguisher it
shows how to extract a parameterized over {0, ..., n} predicate B that its behavior is sensitive
to some choice of the parameter that belongs in the index-solution-set of the given instance.

Lemma 4.2 Let A be a PPT predicate s.t. for all I C {1,...,n} with |[I| = t, A is a
distinguisher for S, 1 +(I) and S,. Then there exists an PPT B, for which it holds that for all
I CA{1,...,n} with |I| =t, there exists a ig € I with ig < n — k, such that if

Bi(n) :== Probxc s, (1);pepnBli p, X)=1] for i€ {0,...,n}

it holds that |Bi—1(n) — Bi(n)| is negligible for any i ¢ I and non-negligible for iy.

Proof. Let R be the set of random strings used by the distinguisher A. B is the following
algorithm: given y,r,7, X where i € {0,...,n} and y € F* substitute the first 7 y-positions
of X = {(zi;,y:)}"_; by the first i values of y; denote this partially randomized instance by
J(i,X,y). Then B simulates A on input r and J(7, X, y). Note that the randomness used by
Bis p:=(r,y) € R where R := R x F".

Define the probabilities a;(n) := Prob,c r.xeys, ,, () [A(r, X) = 1] and ay(n) =
Prob,c,r;xeys, [A(r, X) = 1]. Define the following sets:

o Cii={(ry, X)|A(nY)=1;r € Ryy € F"; X € S (1);Y = J(i, X, )}
o Vi={(r,X)|A(r,X)=1ire R; X € Spr:(I)}
o Vo={(r,X)|A(r,X)=1re R; X €S8,}

It is easy to see that §;(n) = W; ai(n) = ﬁ and that ay(n) = #fn%’ll'

Moreover from the lemma’s hypothesis we know that | aq(n) — az(n) | is non-negligible.
Consider Cy; it is immediate that #Cy = |F|"#V; and as a result §y(n) = a;(n).
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Consider Cy—; let h:=|INn{n—k+1,...,n}|, obviously it holds that h € {0,...,k}.
Let Y := {(z;,4:)}", € S,. It is not difficult to show that Y has |F|"~** pre-images under
J(n—k,-, ). It follows that,

Cn— F n—t+k V.
/@n—k(n) — # k — | | # 2 — CBQ(TL)
#HSn k(1) X R xXF* #8, 14(1) X R x F"

We conclude that |Bo(n) — B,—k(n)| is non-negligible. This means that there has to be

an ig € {1,...,n — k} such that |3;,_1(n) — Bi,(n)| is non-negligible (using the triangular

inequality).

To complete the proof we show that when ¢ ¢ I it holds that | 8;_1(n) — 3;(n) | is negligible.

Fix i € I. Let y~ denote a F” vector with its i-th position “blank” (so essentially a F*~!
vector); in a similar manner define X~ to be an instance of S, 1 ;(I) with its i-th y-position
“blank”. Denote by y[z] the F” vector that has v “filled” in its ¢-th position. Similarly define
X[;].

Let V. - x- = {v | A(r,y~/v/X~) = 1}, where the notation y~/v/X~ stands for an
element Y of S, s.t. its y-part is comprised of the first i — 1 elements of y~, followed by v,
followed by the n—1 final elements of the y-part of X =, and z(Y) = z(X ™) (where z(-) denotes
the z-elements of a PR instance). Any v € V, ,— x- together with (r,y~, X ™) can be extended
to:

o |F| tuples (r, Yo X[;]> € C;—1 — the fact that there are |F| tuples follows from the free

choice of v'.

e |F| tuples (r, y[;],X[;,]> € C, (recall: 7 ¢ I) — the fact that there are |F| tuples follows
from the free choice of v’.

It follows:
#C2 = |F| Z #Vr,y—,X— = #Ci—l
{(ry=,X7)
as a result §;_1(n) = B;i(n). [ |
Now observe that if Ay(i,r, X) := B(i,r, X) and Az(¢,r, X) :== B(i — 1,7, X), it follows
easily that Aq, A, is a gap-predicate-pair. As a result,

Theorem 4.3 Under the DPR-Assumption for [n,k,t], the set of instances S, 1., is pseudo-
random.

5 Applications

5.1 One-Way Function with Built-in Semantic Security

In this section we present a one-way function based on polynomial reconstruction that acts as a
“secure envelope” under the DPR-Assumption and can be used to build commitment schemes.
Note that there are generic ways [Gol90, Na91, HILL99] for obtaining such cryptographic
primitives based on the results we presented in sections 3 and 4, however describing a direct
construction with improved concealment properties is interesting in its own right for efficiency
and applicability purposes.
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Definition 5.1 A function f : A, — B, is one-way if f is polynomial-time computable and

for any PPT A’ it holds that Prob,c,r.acpa,[A'(f(a)) € f7'(f(a))] is negligible in n.

Fix some parameters [n, k,t]. The probabilistic function F, ;; : F — Sp k,t Operates as
follows: given x € F*, it samples a random element Y := {(z, yi) 3y of Sy ks so that (i) YV
has a solution sy that satisfies sx (0) = (x)o,...,sx(k — 1) = (X)g=1, and (ii) {z1,...,2,} N
{0,...,k—1}=0.

We note here that F, i ; is not an injection as it could be the case that I, 5 +(x) = F}, 5 +(x)
for x # x’. This happens when the randomness selected to engulf the polynomial derived from
x happens to correspond to several points of the graph of the polynomial defined by the
vector x’. Nevertheless this means that the PR instance generated by F), 1. ; has two distinct
solutions something that happens with negligible probability as shown in lemma 2.8 (given that
log |F| > 2n and ¢t > k). As a result we consider F), ; to be an injection for all purposes of
definition 5.1. Nevertheless it is important to point out that some user of F, ; ; may deliberately
embed more than polynomial-solution into the output of the function F), 1. ;. As a result F}, j ¢
thought of as an encryption function enjoys a natural “ambiguous commitment” property.

Theorem 5.2 Under DPRIn, k,t] the function F), i is a one-way function.

Proof. Suppose that there is A with Prob[A(F), (X)) = x)] non-negligible, where the prob-
ability is taken over all x € F* and the internal coin tosses of A and F, 1+. Obviously it holds
that A solves the PR with non-negligible probability. Let A’ be a PPT that first permutes the
pairs on the input (instance of PR) and then simulates A on the permuted pairs. It is easy
to show (cf. lemma 2.9) that for all I C {1,...,n}, [I| = ¢, Probxes_ , ,(n[A'(X) = sx] is
non-negligible in n.

Now we show how to use A’ to construct a gap-predicate-pair. Let B be a PPT that given
X € S, ks(1) and i € {0,...,n} it does the following: first it randomizes the first ¢ y-positions
of X and then simulates A’ on this instance. If A’ returns the correct answer (something that
is checkable in polynomial-time — a proposed solution for a PR instance can be verified in
poly-time), B returns 1, otherwise B returns 0.

It is easy to verify that Probx¢s, , (1) [B(0, X)) = 1] is non-negligible function in n, whereas
Probxcs, , ,(lB(n—Fk, X) = 1] is negligible function in n since A’ cannot predict a polynomial
which has been completely randomized (cf. lemma 4.2). It follows that

n,k,t

|Pr0bXEUSn7k7t(I)|:B(O7X) = 1] — PrObXEUS ([)[B(n — k,X) = 1:“

n,k,t

is non-negligible in n and by the triangular inequality it follows that for some ig € {1,...,n—k}
it holds that

|Pr0bXEU5n,k7;(I)[B(i0 - 1,X) == 1] - PrObXEUSH,k,t(I)[B(iOvX) == 1]|

is non-negligible in n. Using a similar argument as in proof of lemma 4.2 it can be shown
that iy should be an element of I. It follows that A;(7,-) := B(i — 1,-) and A3 (¢, ) := B(1, )
constitute a gap-predicate-pair and as a result the Decisional-PR assumption is violated. W

Based on the results of section 3, we draw the following corollary:
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Corollary 5.3 Under DPR[n, k — 1,t], F,, 1+ is a one-way function so that: if g : F — R is
some computable function, an adversary given V, := F,, p+({(x,ry,...,rp_1)), with ry,..., 75—
are selected at random over F, gains no advantage in computing g(z) even if z follows an
adversarially chosen probability distribution.

The above corollary suggests that V,, is a “secure envelope” for the value z. In fact it is
possible to increase the ratio of concealed information as the following theorem reveals:

Theorem 5.4 Let h € {1,...,k — 1}. Under DPR[n,k — h,t], if Vx = F,1:((zo,...,
Tho1,T1y...,Tk—h)), where r1,...,rk_}, are random elements of F, then Vx leaks no partial
information about x := (xq,...,xn_1) even if these values follow an adversarially chosen prob-

ability distribution over F".

Proof. The proof follows closely the arguments of lemma 3.2. Let A be a PPT and Dj, a
probability distribution over F* for which the commitment of some values x := (zoy ..y 2h)
leaks some partial information: i.e. for some poly-time computable function ¢ : F* — R, A
computes the value ¢g(x) with non-negligible advantage. As a result and due to lemma 2.9 we
can formulate the success probability of A as follows: for all I C {1,...,n}, |I|=t,

a(n) := Prob,e,rixen, s, (0[A(n X) = g((sx(0), ..., sx (h — 1)))]

The proof follows directly from theorem 3.9. |

An interesting property of the above “secure envelope” is that the hidden value x can be
superpolynomial size in the security parameter n. This is because the size of x is proportional
to log|F| which can be selected to be superpolynomial in the security parameter n without
affecting the security of the primitive. The “secure envelope” properties of F), ;. ; suggest that
the PR-based one-way function can be used directly in the design of commitment schemes.
More details about the use of F}, ; ; in commitment schemes are presented in the next section.

5.2 Value Commitment

A value commitment scheme involves two players A and B that act in two phases: the com-
mitment phase where A commits to some private input x. The output of this phase denoted
by Vi is transmitted to player B. The decommitment or “open” phase where A transmits the
decommitment witness U to player B. Player B applies U on Vi (a process that reveals x)
and either accepts or rejects the commitment. A commitment scheme should be (i) binding:
player A should not be able to “open” Vi to a value x’ # x; (ii) hiding: player B should not
be able to extract any partial information about x given V4. A commitment scheme is called
“non-interactive”, if no interaction is required from the two players (the communication flow
is only from player A to player B).

We point here that using generic techniques ([Na91]) it is possible to derive a PR-based
commitment scheme based on our pseudorandomness results of section 4. Nevertheless such
generic techniques are typically expensive to implement and it is of interest to pursue more
direct designs.

Theorem 5.4 suggests that the function F), 1 ; can be used to commit to an element x € F:
by publishing Vi as the commitment value. The decommitment witness is defined to be the
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index-solution-set [ of Vx. This scheme is non-interactive and hiding under the DPR[n, k—h, t].
Nevertheless the scheme is not binding for the commiter since player A might embed more than
one solution in the instance Vi and open one of them at her choice; as a result the scheme applies
only to the “honest commiter” case. By coupling the PR-based non-binding commitment with
a binding commitment scheme we derive a scheme with a unique property:

Commitment with Sublinear Decommitment Witness. Typically in commitment sche-
mes the size of the decommitment witness is of the same size as the committed value (or
larger). For example in Pedersen’s non-interactive scheme [Ped91], that is based on the discrete-
logarithm assumption, the commitment to some z < @ is a value g"h" that belongs to Z%
(where P = 2Q+1 with P, @ large primes, and g, h € Z} public parameters which are quadratic
residues modulo P) and the decommitment information is (r, ) (note that r < @ is selected at
random). Clearly the size of the decommitment witness is linear in the size of the committed
information. In many settings it is of great interest to minimize the size of the decommitment
information for private storage space saving.

In the case of PR-based commitment, we can use an alternative commitment scheme with
which player A commits to the index-solution-set I of Vy. The combined scheme becomes
binding. Because of the fact that the size of the committed value x (which is proportional
to log |F|) can be much larger (even superpolynomially) compared to the size of the index-
solution-set (which is n) this turns a binding/hiding commitment to a bitstring of small length
(n) to a binding/hiding commitment of a large value of length log |F|. Note that this does
not compromise security since min{(?), (Z)} (which is the number of steps required for a
brute-force attack against PR) can be chosen to be superpolynomial in log |F| even if log |F| is
superpolynomial in n.

Let us instantiate the above using Pedersen’s commitment scheme: suppose we want to
commit to a value = of size b bits. Using Pedersen’s commitment the decommitment witness
would be of size O(b). Instead, we commit to z using the PR-based commitment over a
finite field F with log |F| > b by sending the value F!, (z,7y,...,75—1) (where I is the index-
solution-set of the output of the PR-based one-way 7f{1nction); additionally we commit to vy
(which stands for a value that describes the set ) by sending ¢"h*7. The decommitment
information is (r,vy) and is of size O(n). To achieve sublinear decommitment witness size we
select the parameter n to be sublinear in the parameter b.

Proposition 5.5 The combined commitment scheme described above is hiding, binding and
non-interactive under the DPR[n,k — 1,t] over a finite field F, and the Discrete-Logarithm
Assumption over a multiplicative group of element size n, and can be used to commit to values
of size log |F| > n with decommitment witness information of size O(n).

Proof. The proof is straightforward from the properties of the Pedersen’s commitment scheme
and corollary 5.3. |

Corollary 5.6 The combined commitment scheme supports sublinear decommitment wilness
size since n can be selected sublinear to log |F| without affecting the security of the scheme
(which depends solely on the security parameter n).
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5.3 A Secure Stateful-Cipher

A cipher design involves two parties, who share some common random input (the key). The
goal of a cipher design is the secure transmission of a sequence of messages. Suppose that [
denotes the shared randomness between the sender and the receiver. A cipher is defined by two
probabilistic functions fr: K xP — K x C and g7 : K x C — K x P. The spaces K, P, C denote
the state-space, plaintext-space and ciphertext-space respectively. The functions f, g have the
property that if f;(s,m) = (s/,¢) (encryption) it holds that g;(s,c) = (s, m) (decryption);
note that s’ (given by both f, g) is the state that succeds the state s.

Stream-ciphers use public state sequences of the form (0,1,2,3,...). The reader is referred
to [LLub96] for more details on stream ciphers and how they can be built based on pseudoran-
dom number generators. Block-ciphers encrypt messages of size equal to some fixed security
parameter which are called blocks. Such ciphers are typically at the same state throughout
and this state is considered to be secret (it coincides with the secret shared random key). The
reader is referred to [Gol98] for further details on block-ciphers and generic constructions.

If a cipher, which operates on blocks, employs a “secret state-sequence update” and uses
the shared randomness (the key) only as the initial state of the state-sequence, it is called a
stateful cipher, see figure 1; (note that in a stateful cipher we suppress the subscript I from
the functions f, g).

Encryption Decryption

m m, my, c, c,

initial initial Figure 1.
state state 9 19

Stateful Cipher
=key =key
G G Cw m; m, m,

In the remaining of this section we introduce a stateful cipher that is based on PR and
possesses unique properties.

5.3.1 Description of the PR-Cipher

Let [n, ]“2;1, t] with k& <t be sound parameters for the PR problem. We work in a finite field
F with log |F| > 3n. The state-space K is defined to be the set of n-bitstrings with Hamming
weight t. For some s € K we define I to be the corresponding subset of {1,...,n}, and vg be
the corresponding integer that has s as its binary representation. We denote by Vk the set of
all numbers that their binary representation belongs in K. Let P := F5" and C := (F),, x F".
The shared randomness between the two parties is a random sy € K, that is the initial state
of the cipher. The encryption function of the cipher is defined as follows

f(sa m) = Fr{,sk,t(<3,7 (m)h Ty (m)%v T1yee ey r%»
where Fifk’t is the PR-based one-way function of section 5.1 so that index-solution-set of the
output of F, 1+ is set to I; rq,...,rx—1 are random elements of F, and s’ is a random element

of V. The decryption function g is dZ)eﬁned as follows: given (s,C) € K x C, the polynomial p
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that corresponds to the pairs of C' whose index is in [ is interpolated. The decrypted message
is set to be (p(1),...,p(551)) and the next state is set to the binary representation of p(0).

5.3.2 Semantic-Security

A semantic-security breaking adversary A for a stateful cipher is a PPT that takes the following
steps: (i) queries a polynomial number of times the encryption-mechanism, (ii) generates two
messages My, My and obtains the ciphertext that corresponds to the encryption of Mj where b
is selected at random from {1, 2}, (iii) queries the encryption-mechanism a polynomial number
of times. Finally the adversary predicts the value of b with probability substantially better than
1/2. This is illustrated in figure 2. A cipher is said to be semantically secure if any semantic-
security breaking adversary predicts b with negligible advantage in the security parameter n.
For more details regarding semantically secure symmetric encryption, see [Lub96, KY00].

Selected by = .
1

Figure 2.
Semantic
Security

. Adversary
Ciphertexts are . —

giventothe . __
Adversary

The Adversary decides whether C is an encryption of M, or M,

More formally semantic security in the context of stateful ciphers is defined as follows:

Definition 5.7 Let O°, with b € {1,2} be an encryption oracle for a stateful cipher initialized
to a random initial state that accepts two kinds of input: (i) a plaintext, where O returns
its encryption under the current state, (ii) a pair of plaintexts My, My, where O returns the
encryption of My (such input is allowed only once). A semantic security breaking adversary is
a PPT A that given oracle access to O° it predicts b with probability substantially better than
1/2, i.e. the distance

1
| Probye, f15[A” (1" = 8] - 7 |

is non-negligible in n, where the probability is taken over all internal coin-tosses of O and A
and all possible initial states for the cipher. If, for a certain cipher, there do not exist semantic
security breaking adversaries then we say that the cipher is semantically secure.

We remark that the two kinds of input to the encryption oracle define three stages of
adversarial action, namely (i) querying the encryption oracle a number of times, (ii) submitting
the “challenge” (the pair of plaintexts of which the adversary receives the encryption of one of
the two at random), and (iii) querying the encryption oracle a number of times before guessing
which of the two plaintexts of the challenge was encrypted. We proceed to show that the
PR-Cipher is semantically secure under the Decisional PR-Assumption, specifically:

Theorem 5.8 The PR-Cipher is semantically secure under DPR[n, ]“2;1, t].
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Proof. We start with a definition: we denote by ,Cq(ﬁ])m[mh ..., m,] the output of an encryption
oracle of the PR-cipher when accessed by an semantic security adversary. In other words it
is the space of sequences of S, 1 instances Xi,..., X, so that m; := (sx,(1),.. .,SXJ(]“Q;I»
and so that the binary representation of sx (0) corresponds to the characteristic string of
I(Xj41), for j=1,...,u— 1. For two families of sets A, and B, we write A, ~ B,, if they are
polynomial-time indistinguishable (see definition 4.1).

Claim 1. For any u > 1, Lflu,)”[ml, coomy] & (S, X Lfluk_;)[mg, ..., my] unless the DPR

with parameters [n, 251, ] fails.

Proof. Suppose the two families are distinguishable by some adversary A with non-negligible
advantage. We will show how to use the adversary to violate the DPR with parameters
n, k51, 1]

Adaptive Fncryption Sampler. The input is X € Sn’@’t(l) so that X = {(z;,y;)}", and
z & {0,...,k — 1}, and a sequence of messages my, N .,m, (submitted one by one). Let
p'(z) be a random polynomial of degree less than k so that (i) p’(0) is a random element so

that p'(0) < 2" and the hamming weight of p’(0) is ¢, and (i) p'(i) = (my); for i =1,..., 5L,

2
Consider the instance X,,, 1= {(z;, z:(zi—1) ... (z;— 551)y; +p'(2:) }. Define I, to be the subset
of {1,...,n} so that its characteristic string is identical to the binary representation of p/(0).
Next we sample Xy, so that (i) (sx,,, (1),--,5x,, (551)) = my, and (i) the characteristic

string of 1(X,,,) is identical to the binary representation of sx,, (0). Continuing in a similar

manner we construct adaptively the instances X,,,,..., X,,,. It is clear that this series of
samples is uniformly distributed over Lq(lul)c J[my, .o my].
Now suppose that the above sampling method is also given a parameter i € {0, ..., n— ]“2;1}

and the sampler randomizes the first ¢ positions of X,,,.

Now consider the predicates: A; that simulates A using the adaptive encryption sampler to
simulate the encryption oracle with parameter 7, and A that simulates A using the adaptive
encryption sampler to simulate the encryption oracle with parameter ¢ — 1. Following similar
arguments as in the proof of lemma 3.2 one can see that Ay, Ay constitute a gap-predicate-pair

with parameters [n, ]“2;1, t]. [ |
Claim 2. Liu,)c J[myq, ..., m,] & (S,)" unless the DPR with parameters [n, k=1 4] fails.

2
Proof. Suppose that there is a distinguisher A between the two families (the “extreme hy-
brids”). Then by the triangular inequality A can distinguish between two “neighboring hy-

brids” i.e. (S,)" X LS;:)[mu_U, conmy] % (Sy)VT x Lf;j];:_w[mu_y_l, ...,m,] for some
v € 40,...,u—1}. Based on claim 1 this contradicts the DPR with parameters [n, 162;1, t]. W
(Proof of theorem 5.8) Suppose now that A is a semantic security breaking adversary for the
PR-cipher. Consider a predicate B that operates as follows:

B receives as input i € {0,...,n — k%l} and X € §, k=1, and communicates with the
1T o b

adversary A (refer to figure 2 that presents the operation of the adversary). In the first w
queries to the adversary, B replies by random samples of §,,. The adversary cannot detect
the difference as the results of claim 2 reveal. When the adversary submits My, My, B selects
b € {1,2} at random and using X, samples an encryption of M; denoted by Xy, using the
technique described in the adaptive encryption sampler of the proof of claim 1. Subsequently
B randomizes the first i positions of Xps,. The remaining w’ queries of A are answered by
proper encryptions of the messages it submits (something that is possible for B since it resets
the the key of the cipher in the construction of Xy, ). Finally B returns 1 if the adversary
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guesses b correctly or 0 otherwise.

Define the predicate Ay := B, and let A3 be the predicate that simulates B on input i—1 and
X . Following similar arguments as in the proof of lemma 3.2 one can see that A;, Ay constitute
a gap-predicate-pair for the parameters [n, kz;l, t] and as a result the DPR is violated. |

5.3.3 Forward Secrecy

A cipher is said to satisfy forward secrecy if in the case of a total security breach at some
point of its operation (i.e. the internal state is revealed) the adversary is unable to extract any
information about the previously communicated messages.

This is formalized by two chosen plaintext security adversaries who are submitting adap-
tively messages to the encryption oracle. The encryption oracle flips a coin and answers by
encrypting the plaintexts submitted by one of the two adversaries (the same adversary through-
out). At some point the internal state of the system is revealed to the adversaries. Forward
secrecy is violated if the adversaries can tell with probability significantly better than one half
whose messages the encryption oracle was returning. More formally,

Definition 5.9 Let (’)é’s, with b € {1,2} be an encryption oracle for a stateful cipher initialized
to a random initial state that accepts two kinds of input: (i) a pair of plaintexts my, my, where
(’)?s returns the encryption of my under the current state, (ii) a termination message, where (’)?s
returns the current internal state; no more queries are accepted by (’)?s after the termination
message is submitted. A forward secrecy breaking adversary is a PPT A that given oracle
access to (’)?s it predicts b with probability substantially better than 1/2, i.e. the distance

: 1
| Probyc, (1.2)[A% (1") = 8] - 5 |

is non-negligible in n, where the probability is taken over all internal coin-tosses of (’)?s and A
and all possible initial states for the cipher. If, for a certain cipher, there do not exist forward
secrecy breaking adversaries then we say that the cipher satisfies forward secrecy.

The following theorem summarizes the properties of the PR-Cipher:

Theorem 5.10 The PR-Cipher satisfies forward secrecy under DPR[n, k%], t].

Proof. We denote by Efﬁ,)c’t[::?, ey E%] the output of an encryption oracle of the stateful
cipher when accessed by the two chosen plaintext adversaries that are part of the forward
security attack. In other words it is the space of sequences of S, 1+ instances Xy,..., X, so
that (sx,(1),.. .,SXJ(%;ID = m? for all j =1,...,u where b is a random coin toss; the binary
representation of sy, (0) corresponds to the characteristic string of I(X;41),forj=1,...,u—1.

Claim 3. Forany u > 1, £") [m? e E(’%] ~ (Sy) x E(u_;)[mg e 2(’1)‘] unless the DPR with

n,k,t m% ’ n, m% )
parameters [n, k%l, t] fails.
The arguments of the proof of claim 3 are similar to those of the proof of claim 1 of theorem

5.8.
m} mo]

Claim 4. ES‘I)C Ltse s mi] = (Sn)" unless the DPR with parameters [n, ]“2;1, t] fails.
37y 1 u

Again, this is shown using the same argument as in the proof of claim 2 of theorem 5.8.
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Now the result follows easily since: the output of the encryption oracle is indistinguishable
for the choice of b € {1,2} provided that the DPR with parameters [n, 1“2;1,15] holds. This
implies in a straightforward manner that the adversary cannot predict b with probability
significantly better than 1/2. [ |

5.3.4 Computational Perfect Secrecy

A generic chosen plaintext adversary for a stateful cipher is defined as follows:

Definition 5.11 Let O be an encryption oracle for a stateful cipher that is initialized to a
random initial state; given a plaintext, O returns its encryption under the current state. A
generic chosen plaintext adversary is a PPT A that is given oracle access to O.

For some stateful-cipher we consider the following two attacks that can be launched by a
generic chosen plaintext adversary: (i) “existential” where the generic chosen plaintext adver-
sary is allowed to query the encryption oracle a number of times and then is asked to decrypt
the next ciphertext (which encrypts a random secret message) (i) “universal” where a generic
chosen plaintext adversary is allowed to query the encryption oracle a number of times and
then is asked to recover the state of the cipher (something that allows the recovery of all future
messages from that point on).

It is clear that for any cipher an existential attack reduces to a universal attack. Neverthe-
less it is not at all apparent if the opposite direction in the reduction holds.

Definition 5.12 A stateful-cipher for which it holds that a generic chosen plaintext adversary
launching an existential attack implies the existence of a generic chosen plaintext adversary
launching a universal attack is said to satisfy computational perfect secrecy.

The equivalence of attacks that recover the message to attacks that recover the key has been
postulated by Shannon as “perfect secrecy.” Blum and Goldwasser [BG84] designed a factoring
based public-key system where they reduced semantic security of a message to breaking the
key (i.e. factoring the composite). They coined the notion of “computational perfect secrecy,”
a variant of which we define above.

Theorem 5.13 The PR-Cipher satisfies computational perfect secrecy.

Proof. Suppose that it is possible to launch an existential attack with u queries to the encryp-
tion mechanism. We show how to launch a universal attack: first we make (u—l— 1)—que1‘ies to the
encryption mechanism so we have the plaintext-ciphertext pairs (My,Ch), ..., (Myt1,Cuyr)
where My, ..., M, are chosen following the query algorithm of the existential attack algo-
rithm and My4 is chosen at random. Suppose that Cyy1 = {(z;,y)},. We compute
X":={(zi +1,y:)}",, and we feed X' to the existential attack algorithm to obtain the “mes-
sage” (a1, ...,ax—1) with probability of success a. Observe that sx/(z) =sx(z — 1) and as a

result a1 = sx/(1) = sx(0). It follows that the binary representation of a; is the characteristic
string of the next key (for the (u 4+ 2)-th encryption of the cipher). As a result the universal
attack reduces to an existential attack with the same probability of success. |
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5.3.5 Superpolynomial Message-Size

A cryptosystem that has this property allows the plaintext size to be superpolynomial in the
key-size, or in other words, it allows the key-size to be substantially shorter (inverse-super-
polynomial) in the size of messages.

This property allows much saving in the storage of the shared key which can be an expensive
resource in many settings. Additionally, it can be particularly useful in settings where we want
to extract a key from a small amount of information (such as key-extraction from biometric
data, see e.g. [MRW99]).

In the PR-Cipher the plaintext size is k%tlogﬂﬁ‘u and can be superpolynomial in the
security parameter since log |F| can be chosen to be superpolynomial in the security parameter
n without affecting the security of the cryptosystem. This is because a brute-force attack
against PR requires min{(?), (Z)} steps worst-case and this quantity can be selected to be
superpolynomial in log |F| even if log |F| is superpolynomial in n.

5.3.6 Error-Correcting Decryption

A cryptosystem is said to allow error-correcting decryption if the decryption procedure is able
to correct errors that are introduced during the transmission (possibly by an adversary). This
combines the decryption operation with the error-correction operation (that is important to
apply independently in any setting where two parties communicate).

A cryptosystem that transmits plaintext blocks of size d is called d’-error-correcting if up
to d’ corrupted blocks can be corrected for each transmitted ciphertext. The PR-cipher (which
transmits plaintext blocks of size 162;1 over the underling finite field F in each ciphertext)
is %—error—correcting since the interpolation step during decryption can be substituted by
the [BW86] polynomial-reconstruction algorithm that can withstand up to % errors (in the
worst-case).

5.3.7 Key-Equivalence

A symmetric cryptosystem is said to satisfy the key-equivalence property if there are no families
of keys of measurable size that are susceptible to attacks that do not apply to the key-space
in general. By “measurable-size” we mean that the ratio of the size of the family of keys over
the key-space size is a non-negligible function. More formally,

Definition 5.14 Let K,, denote the key-space of a cipher, where n denotes the security pa-
rameter. Let A be a PPT (thought of as a generic adversary) that takes as input a sequence of
ciphertexts s, as transmitted over the public channel by the sender to the receiver who share a
secret-key . The cipher satisfies the key-equivalence property if there exists a PPT A’ s.t. for
any family of keys K!, C K,, of measurable size: (#K!,/#K..) is non-negligible in n, it holds
that for all v in the range of A, the distance

| Prob,.c k! [A(s«) = v] = Prob.c,x, [A'(5:) = v] |

is negligible in n, where the probability is taken over the coin-tosses of A, A’ and the coin tosses
of the sender who generates the sequence of ciphertexts. Intuitively this suggests that an attack
of any kind against the cipher over a certain family of keys, can be generalized to an attack
against the cipher over the whole key-space. Note that v is possibly a function of s.
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The key-equivalence property is an important security aspect for a symmetric cryptosystem
as it suggests that there are no “weak” keys.

Proposition 5.15 The PR-Based Stateful Cipher satisfies the key-equivalence property.

Proof. This can be seen easily as a corollary of lemma 2.9 and the fact that the key-space for
the PR-based stateful cipher is defined to be the set of all subsets of {1,...,n} of size t. W
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